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Abstract—Conventional radio frequency (RF) sensing systems
rely on either frequency diversity or spatial diversity to ensure
high sensing accuracy. Such reliance introduces several practical
limitations that hinder the pervasive deployment of existing
solutions. To circumvent this prevalent reliance, we present
MetaSense, a system that leverages antenna pattern diversity for
fine-grained RF sensing. MetaSense incorporates the Dynamic
Metasurface Antenna (DMA) and the auxiliary-assisted ensemble
multi-mask learning framework (AEMML) in its design. The DMA
is a novel type of antenna that can provide a diverse set of
uncorrelated radiation patterns in a low-cost and low-complexity
manner. The AEMML is a quality-aware learning framework
that can dynamically assess and aggregate the heterogeneous
channel measurements from different antenna patterns to ensure
high sensing accuracy. It also incorporates a transfer learning
model that allows it to generalize to new sensing conditions with
few training instances required. We prototype MetaSense and
demonstrate its effectiveness on a writing motion recognition task
using a custom-designed two-dimensional DMA. The results show
that MetaSense achieves 92% to 98% accuracy in classifying
ten miniature writing motions, outperforming a non-tunable
antenna by 20% in all scenarios. Moreover, when deployed in new
sensing positions where limited training instances are available,
MetaSense requires as few as five training instances per class to
achieve over 90% accuracy.

Index Terms—Metamaterials, Metasurface, Reconfigurable In-
telligent Surfaces, Wireless Sensing, Ensemble learning.

I. INTRODUCTION

Leveraging signal fluctuations to detect environmental dy-
namics is a well-studied area in physics known as diffusing
wave spectroscopy [1]. This concept has been applied in
the RF sensing domain, where the variations in the wireless
signal are used to capture the environmental changes caused
by the motion of interest. To achieve high accuracy in RF
sensing, the fundamental issue is to obtain a high dimension
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of uncorrelated input that provides sufficient information
about the monitoring target. In wireless systems, this can
be achieved by having enough spatial or frequency diversity.
First, leveraging spatial diversity, we can add more transceiver
pairs at independent locations, where the local wireless signals
are affected by the monitored motion differently. Examples
are the use of Multiple-Input Multiple-Output (MIMO) [2]
and antenna arrays [3] for sensing. Second, we can rely
on frequency diversity to transmit the sensing signal in a
wideband. Examples are the WiFi-based solutions [4] that
transmit signal at a 20/40MHz bandwidth, as well as the radar-
based [5] and ultra-wideband-based [6] solutions that require
a GHz bandwidth for sensing.

In practice, however, reliance on either frequency diversity
or spatial diversity is difficult and costly. Custom-built devices
such as Doppler-radar [5], [7] and antenna array [3] are costly
in both hardware and signal processing. The wide frequency
band requirement makes radio frequency components, e.g.,
amplifiers and oscillators, more complex and expensive than
those of a narrow-band device. Moreover, increasing the num-
ber of antennas not only makes the device cumbersome, but
also increases the complexity in digital signal processing [3].
Commodity devices, such as WiFi infrastructures, are more
pervasive and widely deployed. Unfortunately, WiFi-based
solutions are known to degrade in performance due to the
multipath issues [8], [9].

In this work, instead of adding more transceivers or ex-
tending the signal bandwidth, we propose the use of antenna
pattern diversity to boost RF sensing performance. However,
achieving configurable antenna patterns with high diversity
is non-trivial. Conventional array antennas require power-
hungry phased shifters, amplifiers, and other RF components
to generate different antenna patterns [10], and thus are
costly and complex when a large scale of antenna elements
is needed. To move beyond these limitations, we exploit
the Dynamic Metasurface Antenna (DMA) to ensure antenna
pattern diversity for RF sensing. The DMA is a novel class
of antennas that can effectively and rapidly change their
radiation patterns from a simplified hardware platform [11],
[12]. Instead of using conventional antenna elements, the key
enablers of DMA are the metamaterial elements which are
artificial materials engineered to allow the manipulation of
electromagnetic waves in a deliberate and controlled man-
ner [13]. The DMA is embedded with a set of sub-wavelength-
sized metamaterial elements on its top layer. Each of the
embedded metamaterial elements passively radiates portion
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of energy from the antenna’s waveguide into the wireless
channel, and thus, by tuning the resonance frequency of each
individual element, the overall radiation pattern of DMA can
be effectively controlled [14].

Without the need for complex, costly, and energy hungry
RF components in its design, DMA is an emerging technology
for realizing large scale adaptive antenna arrays in a smaller
form-factor with simple and low-cost design [15]. Moreover,
metasurface and metamaterial-based antenna designs have
shown great performance in eliminating the mutual coupling
effects among antenna elements [16], [17] to ensure higher
antenna diversity [18]. In light of the great promise, a recent
report forecasts the commercial market of DMA-based sensing
and communication devices to exceed ten billion dollars by
2030 [19]. Indeed, DMA has attracted a lot of attention from
both academia [20], [21] and industry [22]–[24]. Industry lead-
ers, such as LG and NETGEAR, have included metamaterial-
based antennas in smartphones and routers [25], Huawei and
PARC have started to deploy metasurface antennas for 5G
communications [26], [27].

Despite the appealing benefits of DMA, its applications and
challenges for fine-grained RF sensing systems have not yet
been studied. In this paper, we present MetaSense, the first
end-to-end DMA-based RF sensing system. Leveraging the
antenna pattern diversity of the DMA, MetaSense embraces
a high dimension of uncorrelated channel measurement to
develop more accurate and robust RF sensing solutions. Bring-
ing this high-level concept into a practical system requires
overcoming several challenges:

� As there is no off-the-shelf DMA hardware available, the
first challenge is in prototyping an effective DMA to provide
a large set of distinct antenna patterns. In this paper, we
design and implement a single-port, two-dimensional DMA
with 98 metamaterial elements operating at microwave fre-
quencies (i.e., 17.5-22GHz). We design a simple Arduino-
based controller to configure the DMA’s antenna pattern. Our
prototype provides hundreds of uncorrelated antenna patterns
to boost the measurement dimension.

� The antenna pattern diversity of DMA offers a fruitful mea-
surement for sensing. Intrinsically coupled to this capability
is the challenge in designing a learning mechanism that can
properly assess and compare the sensing quality of different
antenna patterns, and can dynamically aggregate them based
on the estimated quality in runtime. This is essential as
different antenna patterns are unequal in signal resolvability
and sensing performance. Indeed, as will be shown in Sec-
tion VIII-D, the accuracy varies from 64% to 82% given dif-
ferent DMA pattern configurations. Moreover, the performance
changes dynamically with the sensing conditions, and is hard
to pre-estimate without actual channel measurement. In this
paper, borrowing the concept of certainties from information
theory, we propose the normalized entropy as the auxiliary
feature to assess the sensing quality of different DMA antenna
patterns. In addition, we design the quality-aware Auxiliary-
assisted Ensemble Multi-Mask Learning (AEMML) that can
dynamically aggregate the heterogeneous DMA measurements
to boost the sensing accuracy.

� Lastly, existing learning-based RF sensing systems [28],
[29] leverage the deep neural networks (DNNs) to boost
the recognition accuracy. However, a large labeled dataset
is required to achieve good sensing performance. Moreover,
when the pre-trained DNN model is deployed in a new location
or environment, its sensing accuracy will degrade significantly
due to the domain shift problem [30], as the radio signals
used for sensing are subject to environment and location
changes [28], [29]. Thus, existing DNN-based RF sensing
systems try to generalize the classification model by collecting
datasets across a large number of environments [28], [29],
which is expensive and inefficient. To move beyond this limi-
tation, we employ transfer learning to generalize the proposed
AEMML framework. Our solution significantly reduces the
number of training instances required to extend MetaSense to
new sensing locations and environments, allowing it to achieve
over 90% accuracy with only five training instances per class.
The main contributions of this paper are:
� We investigate the use of the antenna pattern diversity of
DMA to boost RF sensing accuracy. It achieves fine-grained
RF sensing with ‘a single transceiver device working at a
single frequency’. Our solution paves the way for future low-
cost and low-complexity RF sensing systems, where limited
transceivers and bandwidth are available or accessible.

� We present the first end-to-end system design for DMA-
based RF sensing which includes a signal processing pipeline
to handle noise and misalignment issues in the DMA signal,
a robust segmentation algorithm for motion detection, as well
as the quality-aware learning framework that can assess the
sensing quality of different DMA patterns and dynamically
aggregate them to boost the sensing accuracy at runtime.

� Using the two-dimensional DMA we designed and im-
plemented, we evaluate the performance of MetaSense. We
consider the miniature writing motion recognition as a case
study. Specifically, we leverage a programmable drawing
robot to generate miniature writing movements with high
randomness. This robot-based setup allows us to conduct
comprehensive and repeatable experiments when human in-
teractions are restricted due to the COVID-19. We also take
the MNIST handwritten digits dataset [31] as the reference to
design different drawing patterns. Extensive experiments show
that MetaSense achieves 92% to 98% accuracy in different
settings, outperforming the non-tunable antenna by 20% in all
scenarios. Moreover, by dynamically aggregating the inputs
from diverse DMA masks, our quality-aware multi-mask learn-
ing framework achieves up to 12.5% accuracy improvement
compared to the best conventional classifier.

� Our transfer learning-based framework enables efficient sys-
tem adaptation to new sensing conditions with limited training
instances required. Our evaluation shows that, together with
the help of the DMA antenna pattern diversity, MetaSense
requires as few as five training instances per class to achieve
over 90% accuracy when deployed in new sensing locations,
which outperforms the conventional method by 18%.

The rest of this paper is organized as follows. Related work
is reviewed in Section 2. Section 3 presents a primer on DMA
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and the use of DMA for sensing. Section 4 provides the system
overview of MetaSense. Section 5 details the design of our
DMA hardware. Section 6 introduces the signal processing
pipeline. Section 7 presents the quality-aware multi-mask
sensing framework. We present the evaluation in Section 8
and discuss the limitations and future directions in Section 9.
We conclude the work in Section 10.

II. RELATED WORK

A. Wireless Sensing

Our work is related to existing efforts that leverage RF
signal, visible light, and sound for sensing.

WiFi-based works rely on frequency diversity to obtain
detailed phase and amplitude information from each of the
subcarriers [32]. To further improve the sensing performance,
more advanced methods are stitching multiple antennas in a
single-device [3], [33] or leveraging multiple transceivers [2].
These solutions are cumbersome and costly in both hardware
and signal processing. More recently, attempts have been made
to achieve a single transceiver solution [34]. However, they still
rely on a wide bandwidth to ensure good sensing performance.

Radio Frequency Identification (RFID) is also promising
for sensing. However, existing methods need to attach the
RFID tags to the sensing target [35], [36] and require multiple
dedicated readers and antennas (e.g., RF-IDraw [35] needs
eight antennas and two readers, Tagoram [36] needs four
antennas).

Radar-based systems, including the ultra-wideband
(UWB) [37], Doppler-radar [5], and the frequency modulated
carrier wave (FMCW) radar [7], [38], rely on frequency
diversity to achieve good performance, as their sensing
resolution is proportional to the bandwidth that the signal
sweeps. For instance, FMCW radars need to sweep the
sensing signal in a total bandwidth of 1.69GHz [38], while
UWB-based systems require 1GHz bandwidth [37]. Recent
works in mmWave [39] based sensing make use of a higher
frequency band to avoid the multipath issue. They are
promising given their high sensing resolution, but are more
complex and expensive than the DMA in achieving a high
dimension of antenna patterns.

Instead of having more transceivers or extending the signal
bandwidth, MetaSense applies antenna pattern diversity to
obtain a high dimension of uncorrelated channel measurement
for sensing. It achieves high sensing accuracy with only a
single transceiver pair operating at a single frequency.

B. DMA-based Imaging

Recent works have proposed the use of DMA for com-
putational imaging [11], [12]. However, they focus on static
object imaging using one-dimensional metasurface with lim-
ited antenna pattern diversity. To improve the measurement
dimension, they require a wide frequency band to achieve
frequency-diverse antenna patterns (e.g., 8GHz [11]) and mul-
tiple transceivers (e.g., four transceivers [12]). By contrast,
MetaSense enables fine-grained dynamic motion sensing using
a single transceiver pair with a single carrier frequency.

C. DMA-based Sensing

Leveraging the antenna pattern diversity of DMA for sens-
ing has also been proposed recently [40], [41]. However, the
authors only focus on the niche case of binary motion detection
as a proof-of-concept (e.g., detecting the presence of motion).
By contrast, for the first time, MetaSense demonstrates the
use of DMA for fine-grained miniature motion sensing. We
build on the literature but advance it by addressing a set
of specific challenges that lacked adequate attention in the
past, namely, a complete processing pipeline to handle noise
and misalignment in the DMA signal, a robust segmentation
mechanism to extract the motion signal, as well as a quality-
aware multi-mask learning framework that can properly as-
sess and aggregate the high-dimensional measurements of the
DMA to improve sensing accuracy at runtime. Using our
two-dimensional DMA, we demonstrate the effectiveness of
MetaSense on a writing motion recognition task.

D. Domain Adaptation in RF Sensing

As the radio signals are subject to environment and location
changes [28], [29], it results in the domain shift problem [30]
when using the pre-trained classifier for recognition. Existing
works require collecting a large labelled dataset across differ-
ent sensing scenarios to generalize the recognition model [28],
[29], [42]. By contrast, MetaSense incorporates the transfer
learning [43] to address the domain adaptation problem in RF
sensing. Our evaluation indicates that MetaSense requires only
five training instances per class to achieve over 90% accuracy
when deployed in new sensing locations.

III. DMA-BASED RF SENSING

A. Background of the DMA

The Dynamic Metasurface Antenna (DMA) is a novel
antenna that offers controllable radiation pattern diversity from
a simplified hardware platform [11], [12]. The key enablers
of DMA are the metamaterials. Metamaterials were initially
proposed as artificial media that were engineered to allow
the manipulation of electromagnetic waves in a deliberate and
controlled manner [13]. This notion was later adapted to planar
counterparts, thus metasurfaces [15]. More recently, metasur-
faces excited by a guided mode (instead of a plane wave)
have been considered, giving rise to metasurface antennas. A
DMA, which is a subclass of metasurface antennas, is usually a
single-port waveguide exciting a set of sub-wavelength-sized
metamaterial radiators integrated into its top layer. Each of
the embedded metamaterial elements radiates a portion of the
energy from the waveguide into free space, and therefore, the
overall radiation pattern of the DMA is the superposition of the
contributions from all excited elements. The electromagnetic
response of each metamaterial element can be altered to
control the amplitude and the phase of the radiated signal
(hence, dynamic metasurface antenna). The operation of each
element is programmable using simple external electronic
controls. Thus, by varying the electromagnetic response of
the metamaterial elements and switching different sets of
elements to radiate, the DMA provides dynamic radiation
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pattern diversity without the need for power-hungry phase
shifters, amplifiers, and other RF components that are required
in conventional phased array antennas. More importantly,
metamaterial-based antenna designs can dramatically reduce
the inter-element coupling effect that occurs in conventional
large-scale dense antenna arrays [17], and thus ensure higher
antenna efficiency and diversity [18].

B. RF Sensing Primer

Below, we revisit the wireless channel theory to get some
intuition in using wireless signal for motion sensing. Con-
sidering the case where a stationary transmitter radiates a
sinusoidal signal at frequency f to a receiver, while the
sensing object is in motion within the transmission range.
For instance, as shown in Figure 1(a), a stationary transmitter
emits a signal to a receiver while a subject is in motion.
The wireless channel between the transmitter and the receiver
can be modeled as Y (f; t) = X(f; t) � H(f; t), where
X(f; t) is transmitted signal, Y (f; t) is the received signal,
and H(f; t) is the wireless channel response [44]. For a given
X(f; t), Y (f; t) is directly affected by the H(f; t), which is
sensitive to environment variations. Any small perturbations
in the environment will notably change the structure of the
wireless channel and cause variations in H(f; t). Due to the
multipath effect, H(f; t) is modeled as the weighted sum of
all paths’ channel responses. If there are N paths, H(f; t) can
be expressed as [32], [44]:

H(f; t) =
NX
k=1

wkAk(f; t)e�j2�
dk
� ; (1)

where wk is the corresponding weight of the kth path, Ak(f; t)
is the complex-valued representation of the amplitude and the
initial phase offset, dk is the path length, � is the wavelength,
and e�j2�

dk
� is the phase offset due to the propagation delay.

Moreover, we can divide the N paths into two groups, the
static and the dynamic paths [9], [45]. As shown in Figure 1(a),
HS(f; t) represents the overall channel response of the static
paths, which include the line-of-sight path and the paths
reflected by the static objects in the environment. When the
subject moves by a small distance, HS(f; t) does not change.
HD(f; t) is the channel response of the dynamic paths that
are reflected by the moving subject. As shown in Figure 1(a),
the moving person creates a path length change of �d in
the dynamic path, which then leads to a phase change of
e�j2�

�d
� in HD(f; t). The overall channel response H(f; t) is

the sum of HS(f; t) and HD(f; t). As shown in Figure 1(b),
the subject’s movement results in a variation of �H in the
overall channel response. By capturing the wireless channel
variation, we can detect the motion of interest.

C. Boosting Sensing Accuracy Using DMA
1) Motivation in DMA-based sensing: based on Equation 1,

we can further define the received signal Y (f; t) as:

Y (f; t; u) =

NX
k=1

wk � g(f; u) � �(f;  k); (2)

Static path

Transmitter

Receiver

Q

IO

Hs

Q

IO

Hs

Fig. 1: (a) Channel variations due to human movements; (b)
The phasor representation of the variations.

where N is the number of paths, u is the location of the
receiver, and g(f;u) is a term determined by frequency f
and location u. For the kth path, �(f;  k) is the product of
the transmitter antenna pattern, �t(f;  k), and the receiver
antenna pattern, �r(f;  k), in direction  k, and wk is the
corresponding weight. Note that the basic principle of boosting
sensing accuracy is to have a high dimension of uncorre-
lated measurement of Y (f; t;u) that can provide sufficient
information about the sensing target. Without the reliance on
multiple transceivers and a wide frequency band, the remaining
variables we can tune in Equation 2 are the carrier frequency
f and the antenna pattern �(f;  k):
� Frequency hopping. The first potential solution is switch-
ing the carrier frequency. For instance, assuming a 20MHz
bandwidth, we can change f among the center frequencies of
the 3 and 24 non-overlapping channels of the 2.4GHz and
5GHz WiFi, respectively, to boost measurement dimension
(non-overlapping channels are required to ensure low signal
correlation). However, achieving fast channel switching is non-
trivial. For WiFi-based systems, the default channel switching
mechanism in 802.11 protocol induces several seconds of
delay [46], which is far beyond the sensing requirement.
� Antenna pattern diversity. Alternatively, if we can program
the antenna to rapidly change its pattern, we can ensure
measurement diversity by having different �(f;  k). This
motivates us to use the DMA as either the transmitter or
the receiver, or even both, for RF sensing. For instance, with
the DMA as the transmitter, we can generate a variety of
radiation patterns on the transmitter, �t(f;  k), to probe the
N multiple paths with different weights. As will be shown
in Section VIII-B, using a single DMA as the transmitter,
we can easily obtain a 200-dimension of uncorrelated channel
measurements to boost the sensing accuracy.

IV. SYSTEM OVERVIEW

System design. Figure 2 shows the overview of MetaSense
which contains: (1) the DMA transmitter and (2) the Sensing
unit. The DMA transmitter is incorporated with our custom
designed DMA and a mask controller which dynamically
configures the DMA to send wireless signals with different
antenna patterns (Section V). The reflected wireless signal
captured by the dipole antenna is used as the input for
sensing. The sensing unit includes two major components: the
signal processing pipeline (Section VI) and the quality-aware
multi-mask sensing framework (Section VII). The former
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Quality-aware 
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Fig. 2: The overview of MetaSense which contains a DMA
transmitter and a sensing unit.

is a complete processing pipeline which handles denoising,
segmentation, and motion alignment for the DMA signal; the
latter is a recognition framework that can dynamically assess
and aggregate the diverse measurements from DMA to boost
sensing accuracy.

Fine-grained writing movement sensing. As a case study,
in this paper MetaSense is designed to recognize the ten Arabic
numerals written by a tiny drawing robot (details will be given
in Section VIII). The motions of the robot will cause variations
in the signal captured by the receiver. As the motions in
writing different digits affect the wireless signal differently,
we use those differences to recognize the digit that has been
written. Recognition of the writing motions can facilitate
many contactless human-computer interaction applications.
For instance, a user can draw digits in the air to interact
with smart-home appliances (e.g., smart TV) in a contact-free
and non-intrusive manner. The use of the robot allows us to
generate miniature movement with high randomness. As will
be shown in Section VIII, the robot ensures 2,500 possible
ways in drawing the same digit in a 2cm�2cm drawing area
which is 300 times smaller than the 35cm�35cm gesture
moving area considered in related work [47], [48]. The random
and minute robot movements make our task more challenging
than recognizing human drawing. Moreover, this robot-based
measurement methodology allows for the exact replication of
all our experiments by other research groups, and permits
data collection when human interactions are restricted, such
as throughout COVID-19 shelter-in-place orders. Note that
MetaSense is not limited to the application of robot writing
recognition as presented in this paper. With minor tuning
efforts, the same design can be easily adapted to other contexts,
such as activity recognition and gesture recognition.

V. DMA TRANSMITTER

A. Hardware Design

Figure 3 shows the schematic design of our DMA. Over-
all, the DMA is a single-fed, electrically-large cavity with
controllable metamaterial elements patterned into the front
radiating surface. The device is excited by a single coaxial
probe which feeds the radio waves into a planar cavity formed
by an irregularly shaped via cage. The radio waves bounce
around inside the cavity before leaking out through the meta-
material elements. These radiating elements thus project the

Tunable
metamaterial 
element

2D printed 
cavity formed 
by a via fence

Single feed

Fig. 3: Schematic of the DMA with an example of the radiation
pattern generated by the metamaterial elements.

(a) (b) (c)

resonator

diodes

coaxial probe

Fig. 4: DMA hardware design and implementation. (a) Back-
end of the device. A coaxial probe is used to feed the radio
wave into the device. (b) Front-end of the DMA. There are 96
metamaterial elements patterned randomly on the surface. (c)
The details of a metamaterial element.

wave formed inside the cavity into the wireless channel. The
superposition of the waves from all the radiating metamaterial
elements forms the overall radiation pattern. To realize a
dynamic response, each metamaterial element is loaded with
a PIN diode, giving rise to a binary response (radiating or not
radiating). The radiating status for each of the metamaterial
elements are addressed independently by applying simple DC
voltage signals. Thus, by selecting different sets of elements
to radiate, we can create distinct radiation patterns in a simple
programmable fashion.

B. Implementation

Figure 4 shows the implementation of the DMA. The de-
vice has a form-factor of approximately 15cm�15cm�3mm.
The front-end is embedded with 96 metamaterial elements.
Each of the elements is an electrically-small, complemen-
tary electric-LC resonator. This metamaterial element design
has been proven to exhibit high radiation efficiency while
maintaining low Ohmic losses and low cross-polarized radia-
tion [49]. In addition, a PIN diode is added to the resonator
to control its radiating state. In our implementation, each
of the 96 metamaterial elements is controlled externally by
the DC voltage provided by an Arduino microcontroller. The
tuning states of all the elements determine the overall radiation
pattern that will be generated by the front-end metasurface.
Thus, by binary tuning the DC voltage applied to the elements
(i.e., 0V for not radiating and 5V for radiating), the DMA
allows 296 = 7:9 � 1028 radiation patterns with a single RF
chain. In this paper we call different tuning states of the 96
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Mask 1 Mask 2 Mask 3 Mask 4

Fig. 5: Example of four different DMA masks. Each of the
bright spots is a radiating metamaterial element.

Mask 1 Mask 2 Mask 3 Mask 4

Fig. 6: The four resulting radiation patterns for different DMA
masks.

elements as different DMA masks. Each mask configuration
corresponds to a different DMA radiation pattern. As an
example, Figure 5 shows four DMA masks. Each of the bright
spots in these plots corresponds to a radiating metamaterial
element. Figure 6 shows the resulting radiation patterns of
the four DMA masks. Clearly, the radiation patterns change
with the mask tuning state. In addition to pattern diversity, the
device is capable of changing the mask configuration at a MHz
rate. When different DMA masks are used for sensing, the
changes in the motion being monitored are almost negligible
within the time duration of a few hundreds mask switches.

VI. SIGNAL PROCESSING

In this section, we present the design of the signal process-
ing pipeline which is used to prepare the raw DMA signal for
the recognition.

A. Denoising

The raw wireless signal captured by the dipole antenna is
noisy. The noise results from the ambient human movements
as well as minor imperfections of the antenna hardware.

We apply the Discrete Wavelet Transform (DWT) [50]
to filter time-domain and frequency-domain noise contained
in the raw signal. DWT is able to resolve the signal at
different frequency ranges and provides good resolution in
both time and frequency domains. It performs a hierarchical
transformation that transforms the raw signal into multiple
frequency levels called wavelet levels. For each wavelet level,
DWT calculates the detail coefficients and the approximation
coefficients which correspond to the high and low frequency
components in the signal, respectively. The key insight in
DWT-based noise filtering is to modify the coefficients of the
signal based on the estimated cut-off thresholds in different
wavelet levels. Below, we describe the denoising procedure.

First, we apply the Daubechies D4 wavelet on the raw signal
to compute the level 5 coefficients. The selection of level 5 is
based on the sampling frequency we used and the frequency
of the targeted motion. Since we sample the wireless signal
from each of the DMA masks at 500Hz (details are given

(a) (b)
Fig. 7: Example of denoising: (a) and (b) compare the ampli-
tude and the phase of the raw and the denoised DMA signal.

in Section VIII-A), the highest frequency component in the
measured signal is 250Hz. Moreover, based on the fast Fourier
transform (FFT), we notice that the frequency of the writing
motions is bounded by 7Hz. During DWT decomposition,
the frequency span halves every DWT level [50], and thus,
the level 5 coefficients represent the frequency range of [0,
250/25] Hz, i.e., [0, 7.8] Hz, which accommodates the targeted
frequency range of [0, 7] Hz. Second, we apply the soft-
thresholding method [51] to calculate the cut-off threshold
based on the Stein’s unbiased risk estimate. Then, we com-
pare the decomposed level 5 coefficients with the estimated
threshold and set all detail coefficients with values below the
threshold to 0. Finally, we apply inverse DWT on the modified
coefficients to reconstruct the denoised signal. As an example,
Figures 7 (a) and (b) compare the signal before and after the
DWT denoising. The signal is smooth after denoising.

B. Motion Detection and Segmentation

After denoising, we identify and extract the motion signal
from the entire time-series data. Following the widely used
assumption [47], [52], [53], we assume that there is a short
pause before and after each motion. As an example, Figure 8
shows the amplitude and the phase of the denoised wireless
signal which contains two writing motion segments. The
statistical properties of the signal (both amplitude and phase)
are stable within the pause duration, but change abruptly
within the motion segments. To extract the motion segments
from the time-series data, we first apply changepoint analy-
sis [54] on the denoised signal to identify the changepoints.
Formally, consider a data sequence, y1:n , (y1; :::; yn). A
changepoint is said to occur at sample index � , such that the
statistical properties of the split data sequences fy1; :::; y�g
and fy�+1; :::; yng are different. In practice, there could be d
changepoints in the target signal. They split the original time-
series into d + 1 segments, with the ith segment containing
the data sequence of y(�i�1+1):�i , where �i is the sample
index for the ith changepoint. The changepoints are identified
by finding d data points that minimize the target functionPd+1
i=1 [C

�
y(�i�1+1):�i

�
] + �d; where C is the cost function

and �d is the penalty term. In our implementation, the input
data sequence y1:n is a two-dimensional time-series which
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motion segment

Pause

�•1 �•i �•i+1 �•�Gmotion segment

Fig. 8: Example of motion detection and segmentation. Two
motions separated by a pause. The red dotted lines indicate
the sample indices of the identified changepoints.

contains the amplitude and the phase of the denoised DMA
signal. We use the root mean square (RMS) as the statistic
for the cost function, and apply the pruned exact linear time
algorithm [54] to detect the changepoints. As the number of
changepoints d is unknown, we add the penalty term �d to the
target function to avoid over-fitting [55]. As shown in Figure 8,
the changepoint detection algorithm estimates a set of sample
indices, �1:d, at which the RMS of the signal has changed
abruptly. The start and the end index of the motion segment
are estimated by finding any two adjacent indexes, �i and �i+1

in �1:d, that satisfy (�i+1 � �i) > K. The value of K equals
to the number of samples in the shortest possible pause. In
our implementation, given the sampling frequency of 500Hz
and a shortest pause duration of two seconds, K is set to
1000. Following this rule, as shown in Figure 8, we can easily
identify indices �i and �i+1 as the start and the end points
of the pause. The index of the first changepoint �1 and the
estimated index �i will be the start and the end index of the first
motion segment, respectively. The segmentation performance
of the proposed algorithm is evaluated in Section VIII-C.

C. Motion Alignment

The variations in the writing motions and experimental
setups lead to three types of misalignment in the segmented
signals: variations in the transmission power of the DMA,
variations in writing speed, and variations in the writing size.
As shown in Figure 9, the variations result in either temporal
misalignment or amplitude misalignment in the received sig-
nal. Specifically, different writing speeds and writing sizes lead
to varying signal duration which makes the same writing signal
mismatched in the time dimension (i.e., temporal misalign-
ment). Similarly, different power levels affect the resolution
of the received signal and cause amplitude shifts in the same
writing pattern (i.e., amplitude misalignment). We apply signal
transformation techniques to resolve the signal misalignment.
The alignment process is illustrated in Figure 10. First, we
apply the Z-score transformation [56] on the original signal to
minimize the amplitude variation. The Z-score transformation
returns the z-score for each data sample in the original signal,
such that the transformed signal follows the standard normal
distribution. Figures 10(a) and (b) compare the signal before
and after the Z-score transformation. The amplitude shifts
are eliminated and the two signals are converted to the same

(a) (b)

Fig. 9: Example of the signal misalignment: (a) the temporal
misalignment due to different writing speeds s, (b) the ampli-
tude misalignment due to different power levels.

Signal 
Segments

Z-score
transformation

DTW

(a) (b) (c)

Fig. 10: Alignment process. (a) Original signal. (b) Signal after
Z-score. (c) Signal after Z-score and DTW.

scale. Then, we apply the Dynamic Time Warping (DTW) [57]
to cope with the temporal mismatch. The final outputs are
shown in Figure 10(c), in which the misalignment in the two
signals is minimized. The signal alignment process allows
us to minimize the negative impacts from different practical
parameters on the recognition performance.

VII. QUALITY-AWARE MULTI-MASK SENSING
FRAMEWORK

The antenna pattern diversity of the DMA provides a
fruitful measurement for sensing. To ensure robust and high
recognition accuracy, we propose the Auxiliary-assisted En-
semble Multi-Mask Learning (AEMML) framework which can
properly assess and compare the sensing quality of different
DMA masks, and dynamically aggregate them based on the
estimated quality in runtime.

A. Auxiliary-assisted Ensemble Multi-mask Learning

Figure 11 shows the overview of the AEMML which
incorporates three major components in its design: (1) Con-
volutional Neural Network (CNN) based mask learner for
feature extraction and first-level recognition, (2) auxiliary
feature for runtime DMA mask sensing quality assessment,
and (3) stacking-based multi-mask learning which dynamically
aggregates the heterogeneous recognition results from the
mask learners to boost the sensing accuracy.

DMA mask learner. The AEMML contains m independent
mask learners, where m equals to the total number of DMA
masks used for sensing. The mask learners are homogeneous
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Fig. 11: The architecture of the Auxiliary-assisted Ensemble
Multi-Mask Learning (AEMML).

TABLE I: The network architecture of the mask learner.
Layer Size In Size Out Filter
conv1 64 � 32 � 2 64 � 32 � 64 3 � 3, 1
conv2 64 � 32 � 64 62 � 30 � 64 3 � 3, 1
pool 62 � 30 � 64 31 � 15 � 64 2 � 2, 2

Flatten 31 � 15 � 64 29760
fc1 29760 512
fc2 512 10

in architecture but trained independently using the signal from
different DMA masks, such that a particular learner is designed
to learn the features for a specific DMA configuration. The
mask learners adopt CNN-based architecture given its ability
in learning a proper data representation from high-dimensional
input [58]. The network architecture of the mask learner is
shown in Table I, which consists of two convolutional layers
(conv1 and conv2), one pooling layer (pool), one flatten layer,
and two fully connected layers (fc1 and fc2). We use this
shallow design to avoid over-fitting. We apply the spline in-
terpolation on the pre-processed signal to make the input data
have the same length of 2048. Then, we reshape it to the size
of 64�32. The size of the final input to the first convolutional
layer is 64�32�2, where the two channels correspond to the
amplitude and the phase signals, respectively.

Runtime mask assessment. Given the antenna pattern
diversity of the m DMA masks, the m mask learners are
unequal in their recognition performance. One way to assess
and compare the performance of different mask learners is to
leverage the confidence values reported by the classifiers [59].
In our design, borrowing the concept of certainties from
information theory, we propose the normalized entropy as
the metric to assess the sensing quality of different mask
learners. For the kth mask learner, the normalized entropy
Ski measures the learner’s confidence on the classification of
the ith instance, and is defined as Ski (Pki ) = �

PjJ j
i=1

pi log pi
log jJ j ;

where Pki = fp1; :::; pjJ jg is the probability vector of the kth
mask learner on the ith instance, and jJ j=10 is the set of
ten possible writing digits. The normalized entropy values are
between 0 and 1. A value close to 0 indicates that the mask
learner is confident about its classification on the instance,
whereas a value close to 1 means that it is not confident. The
normalized entropy is used as the auxiliary feature to assess
the quality and confidence of the heterogeneous mask learners.

Stacking-based multi-mask learning. Although the nor-
malized entropy captures the sensing quality of different DMA
masks, aggregating the m sensing outputs to boost the final
prediction accuracy is not straightforward. A naive solution is
to use the normalized entropy as the weight and apply either
weighted average or weighted majority voting to combine the
m outputs. However, these methods are sensitive to the biases

Algorithm 1 AEMML training and classification
Training input: (1) Dataset D = fD 1; D2; :::; Dmg, in which Dk =

f(x k
1 ; y1); :::; (x k

n; yn)g is the pre-processed RF signal for the kth
mask; (2) m mask learners: CNN1; CNN2; :::; CNNm; and (3) the meta-
classifier META .

1: # Training of the m mask learners
2: for k = 1 ; :::; m do
3: hk = CNNk(D k); . train CNNk using data Dk

4: # Training of the meta-classifier
5: D = ;; . initiate a new dataset for META
6: for i = 1 ; :::; n do . iterate over the n training instances
7: for k = 1 ; :::; m do . iterate over the m masks
8: P k

i = hk(x k
i ); . probability vector of the kth CNN

9: Sk
i = �

P jJ j
j=1

P ki (j) log P ki (j)

log jJ j ; . normalized entropy

10: D = D [ ((P 1
i ; :::; P m

i ); (S 1
i ; :::; Sm

i ); y i);
11: h0 = META (D); . train META using D
12: # Multi-mask stacking for recognition
Classification output: y0 = h0(h 1(x 1); :::; h m(x m));

of the mask learners with respect to their heterogeneous input
signals [60], and result in higher prediction error. To reduce
the biases of the mask learners and boost the final prediction
accuracy, we borrow the concept of stacking [61] and use a
meta-classifier for multi-mask aggregation. In our design, the
meta-classifier is a shallow neural network with three fully
connected layers. As shown in Figure 11, the meta-classifier
can be considered as a second-level recognizer that is trained
to combine the predictions of the first-level mask learners. It
takes the probability vectors and normalized entropy of the m
mask learners as the input, and outputs the aggregated result.

Putting all together. The details of the AEMML are
shown in Algorithm 1. The training contains two major steps.
First, we use the signal of the kth DMA mask, Dk =
f(xk1 ; y1); :::; (xkn; yn)g, to train the kth mask learner. The
dataset Dk contains n training instances, in which xki is
the pre-processed signal of the ith writing instance, and yi
is the corresponding label. In the second step, we use the
probability vectors, i.e., fP1

i ; :::;Pmi g, that output from the
m mask learners (i.e., base CNNs) to train the meta-classifier
META. In addition, we calculate the normalized entropies,
fS1

i ; :::;Smi g, from the probability vectors as the auxiliary
information to quantify the classification performance of the
mask learners. This runtime mask assessment allows the meta-
classifier to dynamically adjust the stacking weights during the
classification. As the mask learners are unequal in accuracy,
AEMML is more robust against this variance when compared
to the standard stacking methods which assign equal weights
to the base CNNs during the aggregation.

B. Transfer Learning for New Sensing Domains

The proposed AEMML framework takes advantages of
the superior feature learning and classification capabilities of
CNNs to ensure good sensing performance. Such capabilities,
however, rely on the availability of abundant labeled training
instances that cover diverse sensing conditions. Moreover, as
shown in Equation 2, the radio signals captured by the receiver
are not only affected by the motion of the sensing object, but
also the environment and physical location where the receiving
wireless signals are measured. Consequently, when the sensing
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location or environment changes, the features of the receiving
signal also change. This is known as the domain shift prob-
lem [30], which significantly degrades the sensing accuracy
of pre-trained DNN models. Thus, existing DNN-based RF
sensing systems try to generalize the classification model by
collecting datasets across a large number of environments [29],
which is expensive and inefficient.

To efficiently generalize AEMML to different locations and
environments in a data-efficient manner, we employ transfer
learning [43] to transfer knowledge from a pre-trained source
domain (e.g., a known environment or location) to a new
target domain (e.g., a new deployment location). Specifically,
we divide the AEMML architecture into general layers and
domain-specific layers. The general layers include the first two
convolutional layers of the mask learner, i.e., conv1 and conv2.
The domain-specific layers include the two fully connected
layers of the mask learner, i.e., fc1 and fc2, and all layers in the
meta-classifier. The underlying principle of our design is that
the low-layers of the DNNs are known to learn features that
are not specific to the training dataset or task, but are general
and applicable to datasets or tasks in different domains. On the
other hand, features computed by the last layers of the DNNs
depend greatly on the training dataset and task [43]. When
deployed in the target domain (e.g., a new sensing environment
or location), the AEMML model inherits the general layers
directly from a pre-trained model (e.g., AEMML model that
is well-trained with sufficient training instances collected at
a specific location) and only fine-tunes the domain-specific
layers with a small number of new instances collected from
the target location (e.g., five or ten instances per class). This
transfer learning-based AEMML design significantly reduces
the number of model parameters that need to be trained
for different sensing domains, and dramatically reduces the
number of required training instances to adapt the framework
to new domains without sacrificing recognition accuracy.

VIII. EVALUATION

A. Experimental Setup

Hardware setup. We use the DMA as the transmitter and
a dipole antenna as the receiver. As shown in Figure 12(a),
to form a single-device design, the DMA and the dipole
antenna are placed closely together. The signal of the DMA
is transmitted at a single frequency of f = 19:4GHz with
10dBm transmission power. The power is 20 and 100 times
lower than the default 23dBm and 30dBm power used in WiFi
(5GHz channel) and mmWave-based sensing systems [39],
[62], respectively. We configure the DMA with 40 randomly
selected masks to enable 40 distinct radiation patterns (which
we find is sufficient to ensure high accuracy in this case study).
The wireless signal is measured by the dipole antenna at
a sampling rate of 20KHz (with each DMA mask sampled
at 500Hz). The measurement is a 40-dimensional complex-
valued time-series, where each dimension corresponds to the
receiving signal (amplitude and phase) of a particular mask.

Data collection. As shown in Figure 12(b), we use the
drawing robot from Line-us [63] to perform digit writing.
The robot is controlled wirelessly by a G-code [64] program.

DMA Transmitter

Dipole 
Antenna

Drawing Robot

(a) (b) Pen

Drawing Area

Quarter 
Coin

Fig. 12: (a) The setup of the DMA transmitter and dipole
antenna, and (b) the drawing robot used in the experiment.

Fig. 13: The ten digits that the robot is programmed to draw.
We consider three variants for each of the digits. The arrows
on the digits indicate the motion of the pen.

As the writing habits vary among users, we take the MNIST
handwritten digits dataset [31] as the reference to design
different drawing patterns. Figure 13 shows the ten digits that
the robot is programmed to draw. We consider three variants
for each of the digits. The arrows on the digits indicate the
movement of the pen during drawing. As shown in Figure 14,
we consider five deployments of the sensing device and the
robot: three line-of-sight distances (i.e., P1, P2, and P3) and
three angles (i.e., P1, P4, and P5). For each of the deployments,
we program the robot to draw 20 times for each variant of
the ten digits. In total, we collect 10�3�20 = 600 drawing
instances for each of the five deployments, resulting in 3,000
instances in total. We use a central controller to coordinate
the DMA mask switching, the robot drawing, and the signal
measurement of the dipole antenna.

Robot control. The use of the robot allows us to generate
miniature movement with high randomness. The robot is
programmed to draw digits at random size, speed, and starting
position (i.e., the position where the pen starts to draw). For
each of the digit variants, we consider ten distinct speed levels,
ten distinct drawing sizes, and 25 distinct starting positions,
which results in 10�10�25=2,500 possible ways to draw the
same digit. Moreover, as shown in Figure 12(b), the largest
and smallest drawing sizes of our robot are 5.5cm�10cm (i.e.,
5.5cm horizontal and 10cm vertical) and 2cm�2cm, respec-
tively, which are 20 to 300 times smaller than the 35cm�35cm
gesture moving area considered in related works [47], [48],
and make our task more challenging.

B. Sensing Signal Correlation

Below, we examine the sensing signal correlation of the con-
ventional WiFi CSI-based system, and compare it with that of
our DMA-based solution. Note that we are not comparing the
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Fig. 14: (a) The five different deployments of the drawing
robot. (b) The setup at P1. The robot is placed at a line-of-
sight distance of 50cm from the sensing device.

recognition accuracy of WiFi-based and DMA-based sensing
systems directly, as they are using radio signal with different
frequencies. Instead, as an approximation, we compare their
sensing signals in both dimension and correlation. This is
because a high dimension of uncorrelated signal is critical
in boosting the final recognition accuracy [34]. For a given
dimension of signals, the lower their correlation, the more
complementary information can be captured, and thus the
higher the final recognition accuracy.

Strong correlation in WiFi CSI. First, we set up a pair of
WiFi transceivers equipped with the TL-WND3800 wireless
adapters. Both transceivers have two antennas, and thus form
four transmission links. The transceivers are separated with
one meter line-of-sight distance to ensure good signal quality.
We use the Atheros CSI tool [65] to collect the WiFi CSI
at 300Hz rate. Both transceivers are configured at the 5GHz
channel with 20MHz bandwidth for communication, and thus,
result in a 56-dimensional time-series measurement (each
dimension corresponds to one of the 56 subcarriers) for each
of the four links. We apply the DWT-based denoising method
to filter out the noise in the raw CSI measurement (as noise
is always uncorrelated), and then calculate the correlation
matrix. Figure 15 shows the correlation matrices of the CSI
amplitude for the four transmission links. We can see that the
subcarriers in the same link have high positive correlation (i.e.,
with correlation coefficient above 0.8), and the correlations are
higher between successive subcarriers.

Weak correlation in DMA signal. In comparison, we
configure the DMA with 200 randomly selected masks as
the transmitter, and use a dipole antenna as the receiver to
measure the wireless channel. The signal from each of the
masks is measured at 300Hz sampling rate. This provides
us a 200-dimensional time-series measurement. We filter out
the noise in the measurement and calculate the correlation
matrix. Figure 16 shows the correlation matrices among the
200 dimension of DMA measurements in amplitude and phase,
respectively. Distinct from the WiFi CSI, the results indicate
weak correlation (i.e., correlation coefficient below 0.2) among
the 200 DMA masks.

Advantage of DMA in RF sensing. The high correlation
among the WiFi subcarriers indicates a high redundancy
in the CSI measurement, which severely limits the signal
diversity and recognition performance of WiFi-based system,
especially in the ‘sensing dead zone’ [8], [9]. To obtain a high
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Fig. 15: Correlation matrices of 56 CSI subcarriers for the four
WiFi links.
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Fig. 16: Correlation matrices of the amplitude and phase of
the 200 randomly selected DMA masks, respectively.

dimension of uncorrelated sensing inputs, existing solutions
are stitching multiple antennas in a single-device [3], [33]
or leveraging multiple transceivers [2]. The state-of-the-art
solution SWAN [3] is stitching 12 antennas on a single device,
and thus, can provide 12�12=144 streams of uncorrelated
channel measurement using a pair of devices. By contrast,
using a single DMA as the transmitter, we can easily obtain
a 200-dimensional uncorrelated input for sensing (and thus, a
pair of DMAs can easily boost the dimension to 40,000). As
will be shown in the following evaluation, the weak correlation
ensures largely disjoint failure conditions among different
DMA masks, and thus, boosts the final sensing accuracy.

C. Performance of Motion Segmentation

Below, we evaluate the segmentation algorithm presented in
Section VI-B. We are interested in the detection ratio, defined
as the total number of correctly detected and segmented
writing motions divided by the total number of actual motions
the robot has performed. If the algorithm fails to detect the
appearance of a writing motion, we consider it as an error.
Moreover, if it detects the motion but mistakenly segments it,
we also count it as an error. The segmentation performance
is quantified by the variation in both amplitude and phase of
the captured wireless signal, as the algorithm relies on the
RMS of the signal to detect the changepoints. The heatmap
in Figure 17(a) shows the detection ratio of the ten digits
across 40 masks. A darker area in the heatmap indicates a
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(b)

(a)

Fig. 17: (a) Heatmap of the detection ratio given different
DMA masks and digits. (b) The average detection ratio per
mask over all 10 digits.

higher error rate. The error rates vary for different DMA
masks depending on their radiation pattern and signal quality.
For instance, masks #11 and #29 have an 8% detection error,
whereas masks #21 and #35 achieve 100% detection rate over
all 10 digits. The overall detection ratio of our algorithm is
98% averaged over all masks and digits. The errors are mainly
due to the mistakes in signal segmentation, especially when
the writing motion is minute (i.e., the drawing size of the digit
is 2cm�2cm).

D. Recognition Performance of AEMML

1) Methodology: We compare the performance of the pro-
posed AEMML with the following baseline methods:
� Conventional machine learning algorithms, i.e., Decision
Tree (DT) and Support Vector Machines (SVM), that have
been widely used in RF-based recognition [4]. The SVM
is configured with the Gaussian kernel function to ensure
good performance in dealing with nonlinear features [66].
Unlike AEMML which uses the pre-processed signal as the
input for training and classification, we extract two sets of
features from the phase and amplitude as the input for DT and
SVM: we consider four statistical features, peak factor, wave
factor, coefficient dispersion, and autocorrelation coefficient,
which are introduced in [47], to capture the time-domain
characteristics; we adopt the widely used Daubechies D4
wavelet to decompose the raw signal and extract the wavelet
detail coefficients in the 5th level as the features.
� To investigate the advantages of AEMML in dynamic multi-
mask stacking, we implement the Ensemble Multi-Mask Clas-
sifier (EMML) as the variant for comparison. For EMML, the
auxiliary feature is not used by the meta-classifier and the
mask learners are considered equally in the stacking process.

The final classification results are obtained using 3-folds
cross-validation where each fold contains 200 instances (i.e.,
20 instances for each of the ten digits). For both AEMML
and EMML, the three folds are used for training the base
CNNs, training the meta-classifier, and testing, respectively.
For DT and SVM, only one fold is needed for training and
one fold is used for testing. Below, we evaluate our system
in the following four aspects: first, we take the deployment
at position P1 as an example to study the impact of DMA

antenna diversity on the recognition performance. Second, we
compare the AEMML with the other three classifiers to prove
its advantages in dynamic multi-masks stacking. Lastly, we
study how the device positioning, i.e., distance and orientation,
affects the recognition accuracy.

2) Advantages of DMA antenna diversity: First, to study
how the recognition accuracy can be improved by the antenna
diversity, we randomly select m masks (m � 30) from the
original 40-mask measurements for training and testing. As
the selection of the m masks will affect the recognition result,
we repeat the experiment 40 times (each time with randomly
selected m masks) and report the averaged result as the final
accuracy. We examine the case where only the amplitude or
the phase is used as the input for classification, as well as the
case where both amplitude and phase are used. The results
are shown in Figure 18. First, relying on a fixed antenna
pattern for sensing gives the worst accuracy. As shown in
Figure 18(a), in the single mask cases, the average recognition
accuracy for SVM and DT can be as low as 50%, and
the accuracy for both AEMML and EMML is only 70%.
However, for all scenarios, the sensing accuracy increases
with the number of DMA masks used – i.e., the accuracy
increases with the increase in antenna pattern diversity. As
discussed, the recognition accuracy of a single DMA mask
is quantified by the channel variation. With diverse antenna
patterns, we are more likely to find several masks that can
provide complementary and disjoint features to ensure good
sensing performance. As an illustration, Figure 19 shows the
recognition accuracy of the 40 mask learners. The accuracy
varies from 64% to 82% given different DMA configurations.
This confirms the heterogeneity of the sensing signals from
different DMA masks. The accuracy variance also indicates
largely disjoint failure conditions among the 40 mask learn-
ers in the recognition. However, despite the heterogeneity
of recognition accuracy, there are eight masks that achieve
more than 80% accuracy. Thus, by leveraging DMA’s antenna
diversity, we can dramatically improve the accuracy.

3) Advantages of AEMML: Figure 18 also compares the
recognition performance among the four classifiers. In all
scenarios, AEMML and EMML outperform the conventional
classifiers (i.e., SVM and DT). This is expected, as the former
two methods adopt our CNN-based mask learner for feature
extraction and recognition, whereas the latter two rely on
manually crafted features (i.e., statistical features and DWT
coefficients) for classification. For AEMML and EMML, their
gain in performance comes from the ability of CNN in
automatic feature learning and data representation [28], [67].

Moreover, we can see that AEMML achieves over 6%
improvement compared to the standard ensemble method (i.e.,
EMML), and up to 12.5% improvement compared to the best
conventional classifier (i.e., SVM). The advantage of AEMML
is most distinct when the number of masks used is small
(i.e., m = 5), and diminishes with more masks used. To
explain, Figure 19 shows the uneven recognition accuracy for
the 40 base CNNs. As the conventional methods weight the
m masks equally, with a small number of masks used, the
performance of the classifier is more likely to be affected by
the ‘bad’ mask learners (e.g., mask learner #11, #26, or #36).
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(a) Amplitude only (b) Phase only (c) Amplitude and phase

Fig. 18: Recognition accuracy at position P1 for different classifiers and different number of DMA masks (m).
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Fig. 19: Recognition accuracy for the 40 mask learners. The
accuracy varies among different DMA masks.
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Fig. 20: The accuracy of AEMML given different locations of
the sensing target: (a) distance and (b) angle.

By contrast, the auxiliary feature enables the AEMML to learn
and discriminate the quality of different masks on the specific
recognition task, and allows it to dynamically integrate the
multi-mask outputs in a better way. Thus, AEMML is more
robust as it learns to assign less weight to the ‘bad’ masks
and more weight to the ‘good’ masks. The negative impact
of ‘bad’ masks diminishes when more masks are combined.
The result demonstrates the superiority of AEMML over the
conventional methods.

4) Effects of target location: Below, we evaluate the per-
formance of AEMML given different locations. We fix the
position of the sensing device and place the robot at five
different positions shown in Figure 14. The distance and angle
determine the sensing coverage of the system. The results are
shown in Figure 20.

Distance coverage. As the receiving signal strength attenu-
ates with the propagation distance, the recognition accuracy
also decreases with the distance. In our experiment, given
10dBm transmission power, when the distance increases from
50cm to 150cm, MetaSense experiences a minor 4.8% ac-
curacy decrease with m = 30 masks used for sensing. We
can still achieve 94% accuracy in recognizing the miniature
robot motion at 150cm. Note that the 10dBm transmission
power used in this experiment is 20 and 100 times lower

than the default 23dBm and 30dBm power used in WiFi
(5GHz channel) and mmWave-based sensing system [39],
respectively. Therefore, by increasing the DMA transmission
power, we can expect a longer sensing distance.

Angle coverage. In the single mask case we notice a 12%
and a 13% decrease in the accuracy when the drawing robot
has a 45� or -45� angle difference with the sensing device,
respectively. This is because the DMA is not configured to
generate directional antenna patterns, and most of the energy
is radiated towards the direct front of the antenna (i.e., 0�).
Thus, the signal that is reflected by the drawing robot becomes
weaker when there is a large angle difference between the
robot and the sensing device (i.e., 45� or -45�). However, by
leveraging DMA’s radiation diversity, the imperfection can be
resolved with more mask used. Overall, we achieve over 93%
accuracy with m = 30 at all locations.

E. Performance in New Sensing Locations with Limited Train-
ing Samples

Below, we evaluate the performance of AEMML in scenar-
ios where limited number of training samples are available.
Specifically, we consider position P1 as the source domain
with sufficient training instances available (20 instances per
class), and the other four positions P2-P5 as target domains
with only a few-shot training instances (i.e., 5-shot and 10-shot
cases where only five and ten instances are available per class,
respectively). The experiment simulates the practical scenario
where the system is extended to sense motion performed at
new positions or deployed in new environments with limited
training samples provided by the user.

We compare the sensing accuracy of two training strategies:
(1) we only use the few-shot samples, i.e., 5-shot and 10-
shot, from each of the four target positions to train the
AEMML and test it using the remaining data collected from
the target position. This represents the position-dependent
training strategy; (2) we first pre-train the AEMML model
using the source domain dataset collected from position P1.
Then, we incorporate AEMML with the transfer learning
model introduced in Section VII-B. Specifically, we transfer
the general layers of the pre-trained model and only fine-tune
the domain-specific layers using the few-shot instances from
the target domain (e.g., new sensing position). We also use the
remaining data collected from the target position as the testing
dataset. This represents the transfer learning training strategy.
Figure 21 compares the accuracy of AEMML at the four
target positions with different number of masks used as the
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(a) Accuracy of AEMML in 5-shot scenario.
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(b) Accuracy of AEMML in 10-shot scenario.

Fig. 21: The accuracy of AEMML at different sensing loca-
tions with a different number of training instance available:
(a) 5-shot scenario, and (b) 10-shot scenario.

sensing input. Overall, the proposed transfer learning-based
strategy outperforms the position-dependent strategy by 7-18%
and 8-19% in the 5-shot and 10-shot scenarios, respectively.
As shown in Figure 21, together with the help of the DMA
antenna pattern diversity, MetaSense can still achieve over
90% accuracy with as few as five training instances available
per class when deployed in new sensing positions. The results
demonstrate the capability of MetaSense to generalize to new
sensing environments and locations in a data-efficient manner.

F. System Profiling

Below, we provide a comprehensive profiling of the system
in terms of computation latency and runtime memory usage.
Specifically, we use a desktop equipped with an Intel i7-
8700k CPU and an Nvidia GTX 1080 GPU to simulate an
edge server, and leverage a laptop embedded with an Intel i7-
7700HQ CPU and an Nvidia GTX 1050 GPU to simulate the
next-generation home appliances. Moreover, we only enable
a single CPU core among the four cores of the laptop to
approximate the computational power of a smart TV. In prac-
tice, Samsung SMART TVs are equipped with 1.3GHz Quad
core processor and the AI Quantum-series processor [68],
while Sony has incorporated the X1-series processor in their
smart TV [69]. Both of them are more powerful than the
single core laptop CPU we considered in this measurement
and should achieve a lower latency. We have torn down the
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Fig. 22: The average computation latency of different system
components on two platforms: (a) denoising, (b) motion de-
tection and segmentation, (c) motion alignment, (d) AEMML
running on CPU, (e) AEMML running on GPU, and (f) end-
to-end latency with AEMML running on GPU. The error
bars indicate the standard deviation of the measured latency
for the 500 trials. Overall, with signals from 30 masks used
as the input, the end-to-end latency of MetaSense is 433ms
and 311ms when running on the laptop and the desktop,
respectively.

system pipeline into four computing stages: (1) denoising, (2)
motion detection and segmentation, (3) motion alignment, and
(4) classification using the AEMML framework. We realize
the first three system components in Matlab and deploy them
on the CPU. The Matlab-based implementation ensures good
computational efficiency in signal processing where large
arrays and matrices are involved, and can be easily deployed
on both low-end IoT devices and on an edge server [70]. The
AEMML framework is implemented using Keras 2.3 on top
of the TensorFlow 2.0 framework and is tested on both CPU
and GPU.

1) Computation latency: To examine the computation la-
tency, we run 500 trials of the end-to-end system pipeline
and report the average computation latency for each of these
computing stages.

Figure 22 shows the average latency on the two platforms
when a different number of DMA masks is used for sensing.
The error bars in the plots indicate the standard deviation of
the measured latency for the 500 trials. We have three major
observations. First, the latency for all the computing stages
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Fig. 23: Runtime memory usage (in MB) of the AEMML when
running on CPU and GPU, respectively.

increases with the number of masks used. This is because,
when a higher dimension of DMA signal is used as the input,
it requires more computations during the signal processing and
more inferences in the AEMML which make the computation
more intensive. Second, as shown in Figures 22(d) and (e), the
latency of the AEMML is significantly lower when running on
the GPU than when running on the CPU. For both platforms
we examine, GPU achieves at least five times speedup over
CPU regardless of the number of masks used. Lastly, the
desktop achieves the lowest latency in all the computing
stages. Overall, with the signal from 30 masks used as the
input, the end-to-end latency of MetaSense is 433ms and
311ms when running on the laptop and desktop, respectively.

2) Memory usage: We also evaluate the runtime memory
usage of the AEMML framework. We subtract the memory
usage before the framework is loaded and only report the
memory that is allocated to the framework and the inference
data (the preprocessed signal for recognition). Note that the
memory usage of DNNs is determined by the input data
size and the network model (e.g., the weight parameters and
activations). For a given number of masks used as the input,
the memory usage of AEMML is deterministic. Figure 23
compares the memory usage of AEMML when running on
CPU and GPU. Even with 30 masks used as the inputs,
the AEMML framework requires a modest memory usage of
1174MB and 1697MB when running on the CPU and GPU,
respectively.

IX. DISCUSSION AND FUTURE DIRECTIONS

Evaluation with real subjects in different sensing ap-
plications: in our current evaluation, we leverage the pro-
grammable robot to generate repeatable and miniature digit
writing movements. This robot-based setup also allows us to
conduct comprehensive and reproducible experiments when
human interactions are restricted. However, despite the high
randomness of the robot, the movements of the robotic arm
constitute only a finite set of real-world writing motions. In
practice, the writing movements of real subjects are more
diverse and have higher degrees of freedom. Thus, one of
the future directions is to evaluate the proposed system with
real subjects. Moreover, in addition to the writing recognition
considered in the current work, we believe that MetaSense
can be easily adapted to many other sensing applications with
minor tuning efforts. In future work, we will investigate the use
of MetaSense in applications such as daily activity recogni-
tion [32], respiration detection [8], and user authentication [2].

Passive and energy-neutral operation: thanks to its small
form-factor and hardware simplicity, the DMA can be easily
embedded into walls and daily small objects. Instead of using
the DMA as an active RF sensor, we believe that another
promising use of the DMA in RF sensing is to leverage it as a
passive signal reflector to improve the sensing performance
of existing deployments. For instance, as a reflector with
antenna reconfigurability, the metasurface antenna can assist
high-frequency bands solutions, e.g., millimeter-wave-based
systems [71], to extend the non-line-of-sight sensing coverage
by reflecting the original signal into the desired direction.
Moreover, for a single pair of Wi-Fi devices with limited an-
tenna pattern diversity [34], [72], the RF signal backscattered
from the DMA can help the Wi-Fi receiver obtain a higher
dimensional channel measurement (i.e., the DMA backscatters
the same incoming RF signal with different antenna patterns,
and thus ensures signal diversity in the receiving signal).
Indeed, a similar concept has been envisioned recently to
boost the wireless communication performance [20], [21],
[71], [73], [74], where a metasurface is used to configure
the electromagnetic behavior of a wireless environment. In
addition, as metamaterial elements can be made out of passive
elements that do not require any active power sources for
transmission [75], the DMA can be potentially powered by
energy harvesting solutions [76], [77] to achieve energy-
neutral operation.

X. CONCLUSION

This paper presents MetaSense, the first system that
achieves fine-grained RF sensing with a single transceiver pair
and a single frequency. It exploits the antenna pattern diversity
of the Dynamic Metasurface Antenna (DMA) to ensure high-
dimensional sensing measurements. We implement MetaSense
and evaluate its performance on a fine-grained writing recog-
nition task. Our experiments show that MetaSense can achieve
over 93% accuracy in different settings, outperforming the
non-tunable antenna by 20% in all scenarios. Moreover, when
deployed in new sensing positions where limited training
data are available, MetaSense requires as few as five training
instances per class to achieve over 90% accuracy.
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