An Introduction to Intensional Semantics

1. The Inadequacies of a Purely Extensional Semantics

(1) Our Current System: A Purely Extensional Semantics
The extension of a complex phrase is (always) derived by computing the extensions (and only the extensions) of its component parts.

(2) The Insufficiency of This System
As powerful as this system is, it is still not sufficient for doing natural language semantics.

(3) Acute Empirical Problem: Some Semantic Arguments Can’t be Extensions

Consider the verb “believe”; from sentences like the following, it seems to have a meaning that combines with the meaning of a sentence (its complement clause).

a. Rush believes [that Barack smokes].
In our extensional semantics, the ‘meaning’ (semantic value) of a sentence is its T-value.

b. \[[\text{Barack smokes}]\] = T
Thus, in our purely extensional semantics, we would have to view \[[\text{believes}]\] as a function of type \(< t, < e, t >>\). But, now consider the fact that the extension of (3a) is T.

c. \[[\text{Rush believes [that Barack smokes]}]\] = T

Given that “believes” is of type \(< t, < e, t >>\), it of course follows that the equation in (d) holds. But, given the values of the extensions in question, it follows that (e) holds, too.

d. \[[\text{believes}]([\text{that Barack smokes}]) ([\text{Rush}]) = T.\)

e. \[[\text{believes}](\text{T}) (\text{Rush}) = T.\)

But, now consider that the sentence in (f) is also T, and thus has T as its extension.

f. \[[\text{Barack is a natural-born citizen}]\] = T

From (f) and (e), the equation in (g) now follows.

g. \[[\text{believes}]([\text{that Barack is a natural-born citizen}]) ([\text{Rush}]) = T.\)

Thus, under a purely extensional semantics, the truth of (c) entails the truth of (h).

h. \[[\text{Rush believes [that Barack is a natural-born citizen]}]\] = T

1 These notes are based upon material in Heim & Kratzer (1998: Chapter 12).
Epic Fail:

Our putative extensional semantics for “believe” makes the *obviously false* prediction that if X believes one true/false sentence, then X believes all true/false sentences!

…But this obviously false prediction is a necessary consequence of two core assumptions of our purely extensional semantic system:

(i) The semantic value of a structure is (always) its extension.

(ii) The extension of a sentence is its truth value.

(5) **The Key Conclusion: A Purely Extensional Semantics is Not Enough**

For words like “believe”, their extension does *not* combine with the extension of their sentential complement (unlike purely extensional ‘logical connectives’ like *and*, *or*, *not*).

- Thus, in this structural context, our ‘semantic interpretation’ function “[[]]” has to provide something *other* than the extension of the complement clause.

- Thus, for sentences containing the verb “believes”, their extension (T-value) is not determined purely by computing the extensions of their component parts.

- **Thus the core assumptions of our purely extensional semantics in (1) are wrong!**

2. **Towards a Solution: Intensions?**

Interim Conclusion:

The T-conditions of sentences containing *believes* suggests that *believes* has a meaning that doesn’t take the extension of its sentential complement as argument…

Question:

- What, then, does the meaning of *believes* take as its first argument?

- What is the semantic contribution of the sentential complement of *believes*, if not its extension?
Recap: The Distinction Between ‘Intension’ and ‘Extension’

a. The extension of a phrase is the thing ‘out in the world’ that it ‘picks out’.
 (i) The extension of a definite description is the thing it refers to

 EXTENSION(the president) = Barack Obama

 (ii) The extension of a sentence is its T-value

 EXTENSION(the president smokes) = TRUE

b. The intension of a phrase is (vaguely put) the ‘general concept’ behind the phrase, which determines (for a given time/situation) what the extension of the phrase is.
 (i) The intension of a definite description is (vaguely) the ‘conceptual content’ of the description.

 (ii) The intension of a sentence is (vaguely) its T-Conditions

Observation: Within our formal theory of extensional semantics, we have a rather more precise picture of what the extension of a phrase is than what its intension is.

Key Observation

Sentences with the same extension (truth value) can nevertheless have two different intensions (truth conditions)

• “Barack smokes” is T \[\iff \] Barack smokes

• “Barack is a natural-born citizen” is T \[\iff \] Barack is a natural-born citizen.

One Line of Thought...

Given the observation in (7), if believes took the intension of its sentential complement as argument (rather than its extension), we could avoid the false prediction in (3)!

• Since the intension of “Barack smokes” is distinct from that of “Barack is a natural-born citizen”, Rush could stand in the ‘believes’-relation to the former, but not the latter!
Some Independent Motivation

Question: What kind of relation does the verb “believes” represent?

a. Not a Relation Between an Entity and Truth Value
 See reasoning above in (3)…

b. Not a Relation Between an Entity and a Sentence
 - The following seems true: “Julius Caesar believed that Gaul surrendered.”
 - But, what kind of possible relation could Julius Caesar have had to the *Modern English sentence* “Gaul surrendered”? … he never said it, he never thought it, he never assented to it…

c. Relation Between an Entity and a Sentential Intension (T-Conditions, Proposition)
 - Even though Julius Caesar never uttered or assented to the *English sentence* “Gaul surrendered”, he *did* utter and assent to a *Latin sentence* that had the same T-conditions / intension.
 - So really, believes seems to denote a relation between an individual and some sentential *intension*, which we could label a ‘proposition’…

Conclusion

- From the considerations in (8) and (9), it seems that the meaning of believes takes as argument the intension of its sentential complement.
- Thus, our semantic valuation function “[[.]]” must be able, in some contexts to deliver intensions rather than extensions as values…

3. Formalizing the Notion of an Intension

Interim Conclusion: The verb believes has an extension that takes as argument the intension of its sentential complement.

Problem: How Do We Actually Model This?

- Thus far, our concept of an ‘intension’ has been quite vague (6b)…
- It’s been allowed to stay vague because so far our formal semantic system hasn’t needed to operate over them…
- But, if we want a formal system that ‘manipulates’ intensions, we need some kind of a formal model of what an ‘intension’ is.
Towards A Formal Model of ‘Intensions’: The Basic Idea

a. The Core Property of an ‘Intension’ (6b)
 For any structure X, the ‘intension’ of X determines the extension of X (in the actual world/situation).

b. The Formal Insight
 Thus, the ‘intension of X’ can be thought of as a function!
 • It takes a world/situation as argument/input…
 • …and gives the extension of X at that world/situation as output!

Problem: What’s a World/Situation?
If we want to treat intensions as functions in the way (12b) suggests, we need to get clear on what their argument/inputs are…

Novel Terminology
Instead of talking loosely of ‘worlds’ and ‘situations’, we will employ the more precise (though still confusing) philosophical notion of a possible world.

The Metaphysics of ‘Possible Worlds’ (Leibniz, Kripke, Lewis)
- The ‘real world’ is more-or-less the sum total of all the facts in the universe throughout time.
- However, the real world is only one of an infinite number of other, possible worlds.
- The facts in these other possible worlds may be different from those of the real world.
- For example, there are possible worlds where:
 - Mitt Romney won the 2012 presidential election.
 - Human beings never evolved.
 - People can fly using telepathy.
 - Everything else is the same, except that the letter “s” is written backwards.

The World-Dependency of an Expression’s Extension
Clearly, if we buy into the metaphysics in (15), the extension of an expression will depend upon which possible world the expression is evaluated in.

Examples:
- In any possible world where Romney won the 2012 election, the extension of “the president” is Mitt Romney.
- In any possible world where Barack never started smoking, the extension of “Barack smokes” is False.
So, under the metaphysics in (15), an expression will only have a given extension *relative* to some possible world…
… therefore, it no longer makes sense to talk about an expression’s ‘extension’ in any absolute sense…
…So, let us adjust our notation for calculating extensions accordingly…

So, let us adjust our notation for calculating extensions accordingly…

(17) **New Notation**

\[
[[X]]^w \quad \text{‘the extension of X at world w.’}
\]

Observation: We are adding into our ‘contextual parameters’ (which already includes \(g \) and \(C \)) the possible world \(w \) that an expression is uttered in.

(18) **Introducing World-Relativized T-Conditional Statements**

- Consider the following generalization:

 \[
 \text{For any world } w, [[\text{Barack smokes }]]^w = T \text{ iff Barack smokes in } w
 \]

- This generalization does seem to be intuitively true…

 Consider a world where Barack doesn’t smoke. “Barack smokes” is F there.
 Consider a world where Barack does smoke. “Barack smokes” is T there.

- Knowing this generalization is functionally equivalent to knowing the T-conditions of a sentence.

 o Suppose we assume the speaker is being truthful in saying “Barack smokes”.
 o Given the generalization above, we can conclude that the world we are in (whatever that world is) is a world where Barack smokes…

Key Question:
Can we augment our extensional semantics so that it is able to derive this generalization?

To answer this question, let us consider the following two sub-questions…

(19) **New Question**

Relative to some world \(w \), what is the extension of “smokes”?

(20) **Answer**

It’s that function which takes an entity \(x \) and gives T *iff* \(x \) smokes in that world \(w \)

(21) **Answer in Notation**

For any world \(w \), \([\text{smokes}]]^w = [\lambda x : x \text{ smokes in } w]\)
New Question
Relative to some world \(w \), what is the extension of “Barack”?

Answer (Controversial)
In any possible world, the name “Barack” just picks out Barack, the same guy across all possible worlds.

Answer in Notation
For any world \(w \), \([\text{Barack}]^w = \text{Barack}\)

A Note on ‘Rigid Designation’

- Following the lexical entry in (24), the entity that “Barack” has as its extension is the same in all possible worlds.
- The term for a word that has the same extension in all possible worlds is a rigid designator (Kripke)
- For now, we can view this treatment of proper names as just a ‘simplifying assumption’…
- …however, it is a rather serious (and widely-held) philosophical position, one that has some important argumentation in support of it…

We almost have all we need in order to derive generalizations like that in (18)…
... all we need is one minor adjustment to our rule of Function Application

Function Application (Relativized to Worlds)

If \(X \) is a branching node that has two daughters – \(Y \) and \(Z \) – and if \([Y]^w \) is a function whose domain contains \([Z]^w \), then \([X]^w = [Y]^w ([Z]^w)\)

Derivation of Relativized T-Conditions

Let \(w \) be any possible world:

a. \([\text{Barack smokes }]^w = T \quad \text{iff} \quad \text{by FA}\)
b. \([\text{smokes}]^w ([\text{Barack}]^w) = T \quad \text{iff} \quad \text{by TN, (24)}\)
c. \([\text{smokes}]^w (\text{Barack}) = T \quad \text{iff} \quad \text{by TN, (21)}\)
d. \([\lambda x : x \text{ smokes in } w \,] (\text{Barack}) = T \quad \text{iff} \quad \text{by LC}\)
e. Barack smokes in \(w \).
What Have We Done So Far?

- We’ve introduced an ontology/metaphysics of possible worlds.

- We noted that, following this ontology/metaphysics, the extension of an expression depends upon the world relative to which the expression is being evaluated.

- We noted that, consequently, T-conditional statements for sentences of natural language should appear explicitly relativized to possible worlds, as in (18).

- We therefore augmented our semantic system so that it could:
 a. Capture these new, relativized T-conditional statements, and
 b. Explicitly reflect the fact that the extension of an expression crucially depends upon the possible world that the expression is being evaluated in.

We actually now have all the machinery in place to deliver a formal theory of ‘intensions’ as semantic values…

... recalling the ‘key idea’ (29), consider the function in (30)…

An ‘Intension’ as a Function (12b)

The ‘intension’ of an expression X can be thought of as a function!

- It takes a possible world as argument/input…
- …and gives as value/output the extension of X at that possible world.

The Intension of “Barack Smokes” (?)

The following functional descriptions are all equivalent.

a. $\lambda w : [[\text{Barack smokes }]]^w = T$

b. $\lambda w : \text{Barack smokes in } w$

c. $\lambda w : [[\text{Barack smokes }]]^w$

d. The function from possible worlds to T values, which when given a possible world w as an argument, yields T if Barack smokes in w

e. The function from possible worlds to T values, which given a possible world w as argument, yields the extension of “Barack smokes” in w
(31) **Key Observation**

Given that (30a-c) are just the functions in (30d,e), it follows that we can regard the formulae in (30a-c) as describing the intension of the sentence “Barack smokes”.

This basic result generalizes to all structures of natural language...

(32) **The Intension of “X”**

Recall the definition of the following notation from (17):

a. \([[X]]^w = \text{the extension of } X \text{ at world } w \).

Thus, the function in (32b) clearly can be characterized by the prose in (32c)

b. \([\lambda w : [[X]]^w] \]

c. *The function whose domain is the set of possible worlds, and when given a possible world \(w \) as argument, yields the extension of \(X \) at \(w \) as its value.*

Thus, following our ‘targeted formal insight’, the function in (32b) is identifiable as ‘the intension of \(X \)’

(33) **General Conclusion**

For any structure \(X \), the function ‘ \([\lambda w : [[X]]^w]\)’ is the *intension* of \(X \).

(34) **Quick Amendment**

Due to the vagaries of our proof system for deriving T-conditions, if \(X \) is of type \(t \), then its intension is more perspicuously written as ‘ \([\lambda w : [[X]]^w = T]\)’

... though it would also be technically correct to write it the other way, too...

(35) **Some New Terminology for Certain Kinds of Intensions**

a. **Proposition:** function from worlds to truth values (the intension of a sentence)

b. **Property:** function from worlds to \(<et>\) functions (the intension of a VP, NP)

c. **Individual Concept:** function from worlds to entities (intention of a definite DP)
‘Intensionalizing’ our Theory of Types

- The reason why we’ve developed this formal treatment of ‘intensions’ is that we want these objects to sometimes be the *arguments* of the extensions of certain verbs.

- Therefore, our system of semantic types will necessarily have to incorporate such ‘intensional types’.

- The following is the simplest, most appropriate way to accordingly expand our system of semantic types:

 a. **The Set of Possible Worlds**

 Besides D_t and D_e, there is also a set W, taken to be the set of all possible worlds.

 b. **Inductive Statement for Intensional Domains**

 If D_X is a domain, then D_<s,X> is a domain, and is the set of all functions from W into D_X.

 c. **Inductive Statement for Intensional Types**

 If X is a type, then <s , X> is a type.

Thus, for every semantic type (extension) X of our earlier extensional semantics, we also have the ‘intensional type’ <s , X> of functions from possible worlds to things of type X.

4. **The Truth-Conditions of ‘Belief’-Sentences**

(37) **What We Have Thus Far**

- An informal hypothesis that the meaning of the verb “believes” takes as argument the *intension* of its complement clause.

- A formalized theory of what *intensions* are, which allows us to compute the intension of a complex phrase from the ‘meanings’ of its component parts.

(38) **What We Need to Do Now**

Develop a lexical entry for the verb “believes” which accomplishes the following:

a. Takes as argument the (formalized) *intension* of its sentential complement.

b. Captures the intuitive, logical content of the verb “believes” in a perspicuous way.
Problem

Before we can hypothesize a lexical entry for “believes”, we need to have a more refined theory of the T-conditions of sentences containing it…

So… what are the truth conditions of sentences containing the verb “believes”?...

Core Observation 1

A person’s beliefs seem to determine a particular set of possible worlds: those possible worlds that are compatible with the person’s beliefs.

a. Compatibility With ‘the Beliefs of X’
 For any entity X, the worlds compatible with the beliefs of X are those worlds that X would recognize as possibly being the actual world.

b. Illustration:

 • Suppose I believe only two things: the Earth is flat, and the sun is a god.

 • Let’s suppose we’re playing a game where:
 (i) You submit to me various possible worlds w from W, and
 (ii) I have to say whether or not I think that w could be the actual world

 a. If you were to submit to me a world where the Earth is round, or where the sun is simply a star, I would say “No; according to my beliefs, this could not be the actual world”

 b. But, if you were to submit to me a world where the Earth is flat, and the sun is a god, I would say “Yes; according to my beliefs, this could be the actual world”.

 c. Since I only believe a finite number of things, there will be many worlds that I say ‘yes’ to.
 - Suppose we have two worlds w’ and w’’:
 - In w’, the Earth is flat, the sun is a god, and Mars is -67 F.
 - In w’’, the Earth is flat, the sun is a god, and Mars is -65 F.
 - Since I don’t have an opinion about the temperature of Mars, I would accept both worlds as possibly being the actual world

 • Now let’s suppose we gather up all those worlds that I said ‘yes’ to.
 This set of worlds is ‘the set of worlds compatible with my beliefs’. These will be all and only the worlds where the Earth is flat and the sun is a god.
Core Observation 2

- We’ve just seen that, intuitively, ‘the beliefs of X’ determine a unique set of worlds.
- Consequently, for purposes of formalization, we could simply identify ‘the beliefs of X’ with that set of possible worlds.

Illustration:

a. ‘the beliefs of Seth’ = \{ w : the Earth is flat in w and the sun is a god in w \}

b. ‘the beliefs of Seth’s cat’ = \{ w : tuna juice is tasty in w, and the vacuum cleaner is a monster in w, and the sofa is a fancy scratching post in w, and children are a nuisance in w, and… \}

New Notation

\(w_0 = \text{the actual world} \)

New Notation

‘Beliefs(X, w)’ = the beliefs of X in world w
(the worlds compatible with the beliefs of X in w)

Illustration: \(\text{Beliefs(Seth, } w_0) = \{ w : \text{the Earth is flat in w and the sun is a god in w} \} \)

Core Observation 3

- Intuitively, “X believes S” is T in w iff “S” is true in all the worlds that are compatible with X’s beliefs in w.
 (to see this, just imagine playing the game described in (41b)…)
- Therefore, using the vocabulary and notation introduced in (42)-(44), it follows that “X believes S” is T in w iff “S” is true in all the worlds in Beliefs(X, w)

From the ‘Core Observation’ in (45), the following key conclusion follows….

The Truth Conditions of Belief Sentences

\[[\text{Rush believes that Barack smokes}]^w = T \iff \text{For all } w' \in \text{Beliefs(Rush, } w) \text{, Barack smokes in } w' \]
5. The Lexical Entry for Believes

If we assume the T-conditional statement in (46), we can now begin to work backwards towards a lexical entry for the verb believes.

(47) Deducing the Extension of the VP “believes that Barack smokes”

a. \[[[\text{Rush believes that Barack smokes}]]^w = \text{T} \iff \text{for all } w' \in \text{Beliefs}(\text{Rush}, w), \text{Barack smokes in } w' \]

b. \[[[\text{believes that Barack smokes}]]^w ([[\text{Rush}]]^w) = \text{T} \iff \text{for all } w' \in \text{Beliefs([[\text{Rush}]]^w, w) }, \text{Barack smokes in } w' \]

c. \[[[\text{believes that Barack smokes}]]^w = [\lambda x : \text{for all } w' \in \text{Beliefs}(x, w), \text{Barack smokes in } w'] \]

Now recall the following core assumption of this entire approach to the semantics of ‘believes’:

(48) Core Assumption
The meaning of “believes” takes as argument the intension of its sentential complement.

\[[[\text{believes S}]]^w = [[\text{believes}]]^w ([\lambda w' : [[\text{S}]]^w' = \text{T}]) \]

(49) Consequence of (47c) and (48)

\[[[\text{believes}]]^w ([\lambda w'' : [[\text{Barack smokes}]]^w'' = \text{T}]) = [\lambda x : \text{for all } w' \in \text{Beliefs}(x, w), \text{Barack smokes in } w'] \]

From this equation in (49), we can now reason our way towards a lexical entry for ‘believes’:

(50) Deducing the Lexical Entry for the V “believes”

a. \[[[\text{believes}]]^w ([\lambda w'' : [[\text{Barack smokes}]]^w'' = \text{T}]) = [\lambda x : \text{for all } w' \in \text{Beliefs}(x, w), \text{Barack smokes in } w'] \]

b. \[[[\text{believes}]]^w ([\lambda w'' : [[\text{Barack smokes}]]^w'' = \text{T}]) = [\lambda x : \text{for all } w' \in \text{Beliefs}(x, w), [\lambda w'' : [[\text{Barack smokes}]]^w'' = \text{T}] (w') = \text{T}] \]

c. \[[[\text{believes}]]^w = [\lambda p_{\text{bar}} : [\lambda x : \text{for all } w' \in \text{Beliefs}(x, w), p(w') = \text{T}]] \]
Hypothesized Lexical Entry for Believes

[[believes]] \[=\] \[\lambda p_{\text{st}}: [\lambda x: \text{for all } w' \in \text{Beliefs}(x,w), p(w') = T]\]

Now, to confirm that (51) will indeed work to derive our targeted T-conditions in (46), let us attempt to directly compute those T-conditions...

Derivation of the Truth-Conditions in (46)

a. \[[\text{Rush believes that Barack smokes }]]^w = T \quad \text{(by FA)}

b. \[[\text{believes that Barack smokes }]]^w([\text{[Rush]}]^w) = T \quad \text{iff} \quad \text{....}

We can’t continue the ‘proof’ in (52) past the line in (52b)!

- According to our lexical entry in (51), [[believes]] must take a proposition as argument.

- As of yet, our semantic system still doesn’t ever yield propositions (intensions) as the values of “[[]]” (see our rule of FA in (26))

New Rule: Intentional Function Application (IFA)

If X is a structure consisting of two daughters – Y and Z – and if \[[Y]]^w is a function whose domain contains \[\lambda w': [[Z]]^w\], then [[X]]^w = [[Y]]^w (\[\lambda w': [[Z]]^w\])

Derivation of the Truth-Conditions in (46)

a. \[[\text{believes that Barack smokes }]]^w([\text{[Rush]}]^w) = T \quad \text{(by IFA)}

b. \[[\text{believes}]]^w (\[\lambda w': [[\text{that Barack smokes }]]^w = T \]) ([\text{[Rush]}]^w) = T \quad \text{iff} \quad \text{(by Rules)}

c. \[[\text{believes}]]^w (\[\lambda w': \text{Barack smokes in } w'\])(\text{Rush}) = T \quad \text{iff} \quad \text{(by TN)}

d. \[\lambda p_{\text{st}}: [\lambda x: \text{for all } w'' \in \text{Beliefs}(x,w), p(w'') = T]\]
\[(\lambda w': \text{Barack smokes in } w')(\text{Rush}) = T \quad \text{iff} \quad \text{(by LC)}\]

e. \[\lambda x: \text{for all } w'' \in \text{Beliefs}(x,w), \]
\[(\lambda w'. \text{Barack smokes in } w')(w'') = T \] (Rush) = T \quad \text{iff} \quad \text{(by LC)}

f. For all \[w'' \in \text{Beliefs}(\text{Rush},w)\], Barack smokes in \[w''\]
The Empirical Adequacy of Our Semantics in More Detail.

Let’s see in finer detail how our semantics avoids the ‘epically false’ prediction in (3):

- Given our lexical entry for “believes”, our semantics predicts that:

 \[
 \text{[[Rush believes that Barack smokes]]}^w = T
 \]

 \[
 \text{For all } w' \in \text{Beliefs(Rush,}w) : \text{Barack smokes in } w'
 \]

 \[
 \text{[[Rush believes that Barack is a natural-born citizen]]}^w = T \text{ iff}
 \]

 \[
 \text{For all } w' \in \text{Beliefs(Rush,}w) : \text{Barack is a nat.-born citizen in } w'
 \]

- However, consider that there are possible worlds \(w \) such that:

 Barack smokes in \(w \), but Barack is not a natural born citizen in \(w \).

 Barack doesn’t smoke in \(w \), but Barack is a natural born citizen in \(w \).

- It follows that:

 The worlds \(w \) such that Barack smokes in \(w \) are not all such that Barack is natural-born citizen in \(w \).

 The worlds \(w \) such that Barack is a natural-born citizen in \(w \) are not all such that Barack smokes in \(w \).

- Consequently:

 If it’s the case that for all \(w' \in \text{Beliefs(Rush,}w) : \text{Barack smokes in } w' \) …

 …it doesn’t necessarily follow that:

 for all \(w' \in \text{Beliefs(Rush,}w) : \text{Barack is a nat.-born citizen in } w' \)

- And therefore:

 If it’s the case that “Rush believes that Barack smokes” is \(T \) …

 …it doesn’t necessarily follow that:

 “Rush believes that Barack is a natural born citizen” is \(T \)

6 Some Evidence that Intensions are Still Not Enough

Key Problem for Our ‘Intensional’ Treatment of Believes

Even for two sentences \(S1 \) and \(S2 \) sharing the same intension, it is possible for “\(X \) believes \(S1 \)” to be true while “\(X \) believes \(S2 \)” is false.
(57) **Illustrative Example**

a. Two Sentences Sharing the Same Intension
 (i) \(2 + 2 = 4\) (true in *all* possible worlds)
 (ii) \(14589 - 658 = 13931\) (true in *all* possible worlds)

b. Two Sentences With Different Truth Values
 (i) My daughter believes that \(2 + 2 = 4\) (True)
 (ii) My daughter believes that \(14589 - 658 = 13931\) (False)

(58) **Another Illustrative Example**

The problem in (57) doesn’t just hold for sentences that are necessarily true/false. It also applies to *any* two sentences that are logically equivalent.

a. Two Sentences Sharing the Same Intension (Due to Logical Equivalence)
 (i) Muno is orange.
 (ii) Everything that is not orange has a property that Muno lacks.

b. Two Sentences With Different Truth Values
 (i) My daughter believes that Muno is orange. (True)
 (ii) My daughter believes that everything that is not orange has a property that Muno lacks. (False?)

(59) **One Possible Response: Impossible Worlds**

Suppose we allow the existence of worlds where \(14589 - 658 \neq 13931\)…

…After all, the fact that I don’t know the answer to ‘\(14589 - 658\)’ (or get it wrong) means that I believe that \(w_0\) could be a *mathematically impossible* world where ‘\(14589 - 658\)’ is some *other* number.

…If we allow such worlds, then it’s no longer obvious that the two equations in (57a) have the same intension!

(60) **Another Possible Response:Ambiguity of Believe**

Some people have noted that there *does* seem to be a reading of (58bii) where it *does* follow from (58bi).

… Thus, maybe our intensional semantics accurately correctly captures one ‘reading’ of *believes S*…

… but there is also another reading of *believes S* where it means something more ‘behavioral’, like ‘X is disposed to assent to the English sentence S’…
A Third Possible Response / Conclusion

- Our intensional semantics for believe is just wrong.
- The verb believe is not a relation between an entity and an intension.

So what kind of a relation does the verb “believe” describe?...

One Line of Thought (‘Structured Intensions/Meanings’)

a. Looking to the examples in (57) and (58), we notice that two different formulas/sentences can have the same intension.

b. Intuitively, though, we obtain that intension in two separate ways for each of these sentences, by combining different constituent meanings in different orders.

c. Let’s suppose, then, that the object of belief is (in some sense) a kind of representation of the way we obtain/compute the intension. For purposes of discussion, let’s call this kind of an object a ‘structured intension (SI)’:

\[
\text{(i) SI(“Muno is orange”)} = \\
< [\lambda x. x \text{ is orange in } w], \text{Muno} > \\
The \text{meaning of ‘orange’ applied to the meaning of ‘Muno’}
\]

\[
\text{(ii) SI(“Everything that is not orange has a property Muno lacks”)} = \\
< [\lambda P. \lambda Q. \text{ for all } x, \text{ if } P(x) = T \ldots > \\
The \text{meaning of ‘everything’ applied to…}
\]

d. Consequently, two sentences with the same intension might nevertheless have two different ‘structured intensions’.

e. So, if we assume that “believe” is a relation between entities and structured intensions, we would accurately capture the possibility of (57b) and (58b).

This ‘structured intensions’ approach is (to my knowledge) the oldest and best-worked-out solution to the problems raised by (57) and (58)

[It is particularly well-developed in the work of Max Cresswell…]