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Word segmentation is one of the first tasks infants must learn when 
acquiring language: they must learn to identify word boundaries in order to 
segment incoming speech into individual words. This task is nontrivial because, 
unlike what we perceive, there are no pauses or other language-independent cues 
to the location of word boundaries cross-linguistically. Despite this difficulty, 
infants show the capacity to segment by the time they are 8 months old (Saffran, 
Aslin, & Newport, 1996). Many researchers have proposed computational 
models to try to explain how infants might accomplish this task. 

Computational models of word segmentation fall into two broad categories: 
a) constrained models that incorporate cognitive limitations in memory or 
processing to model how learning occurs procedurally (e.g. Brent, 1999; 
Venkataraman, 2001; Pearl, Goldwater & Steyvers, 2010), and b) ideal learner 
models that aim to formalize the underlying inference problem involved in the 
task (e.g. Goldwater, Griffiths, & Johnson, 2009). The constrained models 
generally involve search heuristics that impose memory or processing 
limitations on the learner in order to constrain it in cognitively realistic ways. In 
contrast, the ideal learner models seek to derive all predictions from the 
underlying probability model that is used to characterize the learning process 
abstractly, without interference from other constraints. Intuitively, we might 
expect constrained models to show worse performance than ideal learner 
models, simply because they have restrictions imposed on them that limit the 
amount of information they can process, both in terms of the total amount of 
information they can process and the window of information they can process at 
one time. However, limited memory and processing have been argued to be 
beneficial in accomplishing certain tasks (Newport, 1990; Pearl et al., 2010). As 
a clear example, the less-is-more hypothesis posits that children are better at 
learning aspects of language due to their greater cognitive limitations as 
compared to adults (Newport, 1990). Another instance of this pattern can be 
seen in word segmentation models. Venkataraman (2001) proposed an 
incremental, constrained segmentation model that exhibited relatively good 
segmentation performance while Goldwater et al. (2009) showed that an ideal 
learner model with precisely the same underlying probability model exhibited 
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massive undersegmentation. Goldwater et al. showed that the search heuristics 
of constrained models allow them to find relatively accurate segmentations 
although the probability models they rely on actually favor poor outcomes with 
substantial undersegmentation. They criticize the constrained model approach 
for making constraints on learning “implicit and difficult to examine” (p. 26).  

In this paper, we examine the implicit learning constraints imposed by 
cognitive limitations on memory and processing. We ask how incremental 
processing can lead to such dramatic improvements in segmentation 
performance. To answer this question, we analyze the properties of the 
incremental, constrained learner proposed by Venkataraman (2001) and a batch, 
ideal learner version of Venkataraman’s learner that relies on the same 
probability model. We identify the crucial properties of this probability model 
responsible for undersegmentation. We then show that variants of the batch 
model with memory limitations imposed on them mimic incremental processing 
and segment as well as the constrained, incremental model. In sum, we show 
that cognitive limitations exert pressures during learning that shape learning 
outcomes, and we argue that these pressures are important to examine and 
understand when designing computational models of language acquisition.  
 
1. Probability Model 
 

In this section, we introduce the segmentation model proposed by 
Venkataraman (2001) whose behavior, with and without cognitive limitations, 
we will subsequently examine. The model assumes that individual words are 
independent and calculates the probability of any given segmentation by 
multiplying together the probabilities of all of the words that constitute it. 
Likewise, the likelihood of the entire corpus is found by multiplying the 
probabilities of all the utterances in it. The model defines the best segmentation 
as the one that maximizes the likelihood, as shown in (1). In this equation, s 
refers to a posited segmentation consisting of words w1,…,wn. 
 
(1) ! = 𝑎𝑟𝑔𝑚𝑎! !! 𝑠 ! 𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃 𝑤!!

!!!  
 
The model defines the probability of a given word, ! !, differently depending on 
whether 𝑤! is present in the lexicon or not, as shown in (2). If the word, 𝑤! , is a 
known word (e.g. its count, c(wi), is greater than 0), then its probability depends 
on its relative frequency in the corpus. If the word 𝑤! is an unknown word, then 
its probability depends on the product of three components. The first is the base 
probability of an unknown word, which is the same for any unseen word and 
depends directly on the parameter λ that determines how many counts are 
allocated to unknown words. The second term in the equation corresponds to the 
probability of generating the phonemes that make up the unknown word. We 
follow the version of Venkataraman’s model that assumes a uniform probability 
distribution over all phonemes, in order to simplify the analysis. The model 
assumes phonemes are generated independently and that all phonemes, 



including the special end-of-word symbol, #, are equally likely, generated with 
probability ! 𝑝 . The probability of a string of l phonemes is simply ! 𝑝 
multiplied l times for each phoneme and one additional time for the end-of-word 
symbol. The consequence of this is that words of equal length will have equal 
probabilities, whereas longer unknown words will always be less probable than 
shorter unknown words, regardless of the phonemes that constitute it. The final 
term is simply a normalizing term to ensure that the total probability of all 
strings sums to 1 and, like the first factor, is the same for all unknown words. 
 

(2)  ! 𝑤! !

! !!

!!!
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Overall, this model favors segmentations utilizing few, frequent words. Frequent 
words are more likely, and fewer words means fewer terms are multiplied 
together, resulting in a higher probability, all else being equal. After describing 
the data and evaluation measures, we examine how the relative balance of these 
preferences plays out when the lexicon must be learned from an unsegmented 
corpus. We show that whether segmenting new words is favored or not depends 
on the kinds of assumptions that are made about the learner’s cognitive abilities. 
 
2. Evaluation 
2.1. Corpus 
 

The models were evaluated on the Bernstein-Ratner child-directed English 
corpus (1987). This corpus, which is available from the CHILDES database, 
consists of spontaneous speech to nine children between the ages of 13 to 23 
months. It includes 9,790 utterances containing a total of 33,399 words that 
consist of 50 different phonemes. Infants are known to segment by 8 months of 
age, so a corpus of speech directed to younger infants would be preferable. 
However, this corpus has come to be the standard corpus used in research on 
word segmentation, so we make use of the same corpus for ease of comparison. 
Here, we make use of the phonemic transcriptions created by Brent (1999).  

Following previous work, we assume that the input data provided to the 
models is an unsegmented version of the corpus, where all word boundaries 
have been removed with the exception of word boundaries corresponding to 
utterance boundaries. The utterance boundaries have been left intact, as these 
indicate long pauses in the speech stream. The task of the models is to discover 
the words and the segmentations that restore the word boundaries in the corpus. 
 
2.2 Scoring 
 

We measure performance using precision, recall, and F-score (Equations 3-
5), each calculated over word boundaries, word tokens, and word types. These 



measures are calculated by comparing the model’s segmentation output to the 
true segmentation of the corpus.  
 
(3)    

(4) 
 

(5)	  
	  

 
Precision determines how many of the model’s hypothesized boundaries, word 
tokens, or word types were correct. Recall determines how many of the true 
boundaries, word tokens, or word types the model found. F-score is the 
harmonic mean of these two measures, which means it can only be high when 
both precision and recall are high. All of these values range from 0 to 100, with 
100 indicating the best possible performance. Boundary metrics measure how 
well the model finds the boundaries, word token metrics measure how well the 
model finds word tokens, which requires positing two correct boundaries, and, 
finally, word type metrics measure the quality of the lexicon hypothesized by 
the model. Although these three groupings tend to correlate, we present all nine 
metrics because each will prove to be invaluable in elucidating the models’ 
performance. For a more detailed discussion of these evaluation metrics, see 
Brent (1999) and Goldwater et al. (2009). In the next section, we replicate 
previous findings regarding the performance of a constrained and an ideal 
learner model that make use of the probability model defined previously. 
 
3. Simulation 1: Batch versus Incremental Models 
3. 1. Batch Model 
 

We first analyze a batch learner without cognitive limitations that relies on 
the probability model described in Venkataraman (2001) and in section 1. This 
model is based on the Expectation-Maximization algorithm. Before the model 
performs any segmentation, it iterates through the entire corpus and calculates 
the probability of all of the strings separated by word boundaries, according to 
Equation 2, treating these as potential words. Initially, this will consist of all of 
the utterances in the corpus. In this way, the model constructs a rudimentary 
lexicon before segmenting. The lexicon is rudimentary because although the 
model has access to the whole corpus before performing segmentation, it is only 
provided with an unsegmented version of the data. While the model has access 
to the location of utterance boundaries, it does not have access to the location of 
individual word boundaries and, consequently, does not know how many words 
are in any given utterance. In order to succeed, the model must further segment 
the initial lexical entries into smaller, more productive units (words). 

Precision=
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives

F-score= 2*Precision*Recall
Precision + Recall



After estimating its initial lexicon and determining the number of distinct 
phonemes in the data, the model then considers each utterance one-by-one, 
identifying the most likely segmentation for that utterance given the current 
lexicon, according to Equation 1. This segmentation can be determined 
efficiently using dynamic programming. The model segments the entire corpus 
using the same lexicon, without updating any information. Consequently, an 
utterance segmented in one way will be segmented identically throughout the 
whole corpus. After the model has segmented every utterance, it consults the 
resulting segmentation of the corpus to re-estimate its parameters. This involves 
counting the number of occurrences of each word in the new segmentation and 
entering this information into the updated lexicon. The algorithm continues 
iterating between segmenting the corpus (an approximate expectation step) and 
re-estimating the parameters (the maximization step) until the results converge 
on a given segmentation of the corpus, at which point that segmentation is used 
as the output of the model. Each iteration has the potential to posit new word 
boundaries (and new words), which then enter the lexicon and potentially aid in 
segmenting out further words in the next iteration.  
 
3. 2. Incremental Model 
 

The algorithm proposed by Venkataraman (2001) makes use of an 
incremental search that better approximates the processing limitations of human 
learners, who only have the ability to process the data they have already 
observed. Venkataraman’s online algorithm processes each utterance one at a 
time and makes only a single pass through the corpus. For each utterance, the 
algorithm finds the most likely segmentation based on its current parameters, as 
defined by Equation 1, and then updates its lexicon after processing that 
utterance. Thus, unlike the batch search model, the online model updates all 
frequency counts and information based on its segmentation of each utterance 
and before considering the next one. Note that this estimation procedure 
provides a minimal contrast with the batch estimation procedure we defined in 
the previous section. Both algorithms alternate between finding the most likely 
segmentation and re-estimating parameters based on that segmentation. In the 
batch case, this procedure is calculated over the whole corpus, while in the 
incremental algorithm, it is calculated over individual utterances. 
 
3.3. Results 
 

The results are summarized in Table 1. For both the batch and incremental 
models, we tested a range of values between 5 and 4828 (the number of 
utterances occurring exactly once in the corpus) for λ. The results were nearly 
identical across λ values. For consistency, we focus our presentation on the 
results for λ=1000 across the models. For the batch model, the boundary F-score 
and word F-score converged to 0.03% and 9.55%, respectively. Due to the high 
number of utterances that are actually just one word, the model achieves 



misleadingly high word token F-score rates. By simply not hypothesizing any 
word boundaries, the model accurately hypothesizes almost 10% of the words. 
Examining the boundary recall and precision statistics, which reach values of 
0.01% and 100%, respectively, makes it clear that the model has posited only a 
few boundaries that are all correct, but fails to predict the vast majority of word 
boundaries. The model posits new boundaries only in the three utterances: 
“Yeah yeah”, “Okay there,” and “There, look.” Overall, the model exhibits 
massive undersegmentation of the corpus, as Goldwater et al. (2009) observed. 

 
Model λ BP BR BF WP WR WF 
Batch 1000 100 0.01 0.03 21.07 6.18 9.55 
Incremental 1000 75.8 81.8 76.7 64.4 68.0 66.2 

Table 1: Comparison of results from the batch and incremental models. 	  
 

The incremental segmentation model proposed by Venkataraman (2001) 
exhibits significantly improved performance over batch estimation. We found 
that the incremental algorithm achieves a word token F-score of 66.2%, with a 
precision of 64.4% and a recall of 68%, replicating the results originally 
reported by Venkataraman. Because recall is higher than precision, the model is 
no longer resulting in such massive undersegmentation. 

In sum, we replicated previous findings that the incremental version of this 
probability model performs significantly better than the batch version. In the 
next section, we show that the probability model proposed by Venkataraman is 
biased towards hypothesizing very few boundaries, and we identify two factors 
that help overcome this bias in the incremental case. 
 
3.4. Analysis 
 

In this section, we begin by addressing the question of why segmenting 
words is nearly impossible using the batch estimation algorithm. To address this 
question, we consider a hypothetical case where the model must determine how 
to segment the utterance [ðəkæt] – ‘the cat’ where /ð/, /ə/, /k/, /æ/, /t/ are all 
individual sounds, the word ‘ðə’ was seen frequently in the training corpus, but 
‘kæt’ and all other subparts of the utterance were never seen as words. Because 
the batch learner estimated its initial lexicon from all utterances in the data, the 
utterance ‘ðəkæt’ has been seen at least once. Since the model must posit new 
words to succeed, the model should ideally segment out the known word (‘ðə’) 
and leave the remaining material as a novel word. That is, ideally, we want the 
model to segment ‘ðəkæt’ as ‘ðə#kæt,’ where ‘#’ represents a word boundary, 
under the assumption that ‘ðə’ was seen much more frequently than ‘ðəkæt.’  

The model’s decision about how to segment this utterance rests solely upon 
which of ‘ðəkæt’ or ‘ðə#kæt’ is more probable. If ‘ðəkæt’ is more probable, the 
model will not posit any boundaries and its output segmentation, will consist of 
one known word. If ‘ðə#kæt’ is more probable, then the model will segment the 



utterance into two words and the final segmentation will consist of one known 
word ‘ðə’ and one unknown word ‘kæt’. All other segmentations are less 
probable because they consist of two or more unknown words and no known 
words. Following equation (2), the probability of each of the two segmentations 
under consideration is calculated as follows by the batch model: 

 
(6) ! ð! kæt !

!!ðə!æ#)
!! !

 
(7) ! ðə#!"# = !!ðə)

! !!
× !
!! !

!
!
!!
× !

! !!
!
 

 
For the Brent corpus, when unsegmented utterances are used to estimate the 

initial parameters, n = 9830 and p = 50. For the model to posit an additional 
word, as in (7), the frequency of ‘ðə’ as compared to ‘ðəkæt’ would need to 
overpower the additional terms in the denominator of (7). Specifically, the 
frequency of ‘ðə’ would need to overpower (n + λ), which is a constant penalty 
for having an additional word, and it would need to overpower p4, which is the 
cost of positing a new word with three phonemes. This is almost never the case. 
The model only segments an utterance into multiple words if the resulting words 
are both very short and frequent, so few word boundaries are ever posited. 

In general, there are two undersegmentation factors at work in the batch 
model. The first factor is that segmenting additional words incurs a fixed penalty 
whose strength depends on n. The second factor is that segmenting novel words 
incurs a penalty depending on the length of the new word while keeping the 
utterance unsegmented incurs no length penalty even though the utterance 
necessarily involves a longer word. This is because the utterance as a whole is 
treated as a seen word by the batch estimation procedure. With batch processing, 
positing novel words is extremely costly due to these two factors. 

The sole difference between the batch and incremental models described is 
the type of search procedure they rely on. Merely switching from a batch search 
to an incremental search improves the model’s performance substantially and no 
longer results in undersegmentation. To consider the question of why online 
processing exerts additional pressure to segment as compared to the batch 
search, we consider the segmentations of ‘ðəkæt’ in the incremental model: 
 
(8) 𝑃 ! ə!"# = !

!! !
!

!
! !

!
!

! !!!
 

(9) ! ! ! ! !"# !
! ! ! ! !

! ! !
!

!

! ! !
!

!

! ! !
!

! !
!
!

 

 
There are two immediate consequences of switching to incremental 

processing of the input data. First, when the model initially encounters the 
utterance ‘ðəkæt,’ it is unknown and the segmentation ‘ðəkæt’ is therefore 
assigned probability according to the equation for unknown words, as shown in 
(8). Second, the incremental model learns words one utterance at a time, and so 
n begins at 0 and gradually increases as more utterances are processed. As a 



result, the cost of positing novel words is reduced, and the comparison between 
the two segmentations ‘ðəkæt’ (8) and ‘ðə#kæt’ (9) changes substantially in 
favor of ‘ðə#kæt’ as compared to the batch model. The probability of 
unsegmented ‘ðəkæt’ now includes a strong penalty for the length-six string, p6, 
since the entire string is treated as a novel word. Additionally, the penalty for 
positing an additional word in ‘ðə#kæt’ (n + λ) is substantially lower since n is 
almost always lower. This reverses both factors previously identified as favoring 
lack of segmentation in the batch model. In fact, for this corpus, as long as ‘ðə’ 
is seen frequently enough, the model will always choose to segment it as a word. 
Once the model chooses to segment out new words, segmentations with these 
words will be favored in subsequent utterances. 

In sum, the fact that batch search leads to minimal segmentation can be 
explained by two factors: the fact that each utterance the model must segment is 
considered a known word and the fact that positing additional words incurs a 
heavy penalty that depends on the number of word tokens in the entire corpus. 
The incremental search imposes additional pressure to segment, by altering 
these factors. Although we have only considered one specific example here, the 
incremental model shows the same pattern of behavior throughout, showing a 
much stronger tendency to segment. 
 
4. Simulation 2: Memory Limitations  
 

To demonstrate that these factors are indeed responsible for the incremental 
model’s improved segmentation, we define and analyze additional models that 
impose memory constraints on the batch model. These memory restrictions are 
designed to affect the two factors in the same way as in the incremental model.  
 
4. 1. The Models 
4. 1. 1. Batch Subtract-k Model 
 

The subtract-k variant of the model is identical to the batch search model, 
except that the counts of words in the lexicon are systematically ‘forgotten’. 
Specifically, while the batch search model estimates the probability of a word, 
wi, by finding its relative frequency in the entire corpus, the subtract-k version of 
the model subtracts a small fixed amount k from the count of every word. If a 
certain word in the lexicon occurs fewer than k times, then its count becomes 
zero. The consequence of this is that infrequently seen words are considered 
unknown if their frequency is less than or equal to k. 
 
4.1.2. Batch Forget-p Model 
 

In the forget-p batch model, counts of words in the lexicon are 
probabilistically ‘forgotten’. Specifically, after the batch search model has 
iterated through the corpus to re-estimate the various word probabilities, it 



probabilistically forgets each word token’s count with a probability of p. For 
each word count, the word token will be forgotten and the word’s count will 
decrease by one with chance p. Once again, word types for which all of the word 
tokens are forgotten become unknown. 
 
4.1.3. Incremental Forget-p Model 
 

We also consider a forget-p variant of the incremental model to confirm that 
memory restrictions are not harmful to the incremental model. This model is 
identical to the incremental search model, except that when the model segments 
an utterance, words tokens in that utterance are probabilistically ‘forgotten’ with 
probability p and their counts are never updated. 
 
4.1.4. Effects on the Undersegmentation Factors 
 

These memory restrictions affect the undersegmentation factors we 
previously identified, much like incremental processing. The first relevant factor 
was that the batch model had an elevated lexicon size, relative to the incremental 
model. Forgetting counts, either by subtracting absolute counts or by forgetting 
them probabilistically, causes the total lexicon size to decrease substantially. For 
example, if we set k to 1, then the size of the resulting lexicon is nearly halved. 
Likewise, if we set p to 0.2, then we would expect many low frequency word 
types to be probabilistically forgotten altogether, decreasing the lexicon size. 
The second relevant factor is that in the batch model, the utterances that are 
being segmented are necessarily considered known, while this is often not the 
case for the incremental model. The batch memory-restricted models generally 
forget infrequent words. Because whole utterances are infrequently repeated, 
many of them are forgotten, which means that it is no longer the case that an 
utterance is reliably known when segmented.  
 
4.2. Results 
 

The results of these simulations are shown in Table 2,together with results 
from Simulation 1. The batch subtract-k and forget-p models outperform the 
batch model with perfect memory and show similar performance to that of the 
incremental model with perfect memory, which all achieve a boundary F-score 
in the mid-seventies. We also find that imposing additional memory restrictions 
on the incremental model does not result in a drop in performance; instead, we 
see quantitatively similar patterns of results.  

 



 
p/k BP BR BF WP WR WF LP LR LF 

Inc. 
 

75.8 81.8 76.7 64.4 68.0 66.2 43.5 38.9 41.1 
Batch 

 
100 0.01 0.03 21.1 6.20 9.60 5.80 25.9 9.50 

Sub-k  1 88.5 56.8 69.5 63.5 47.1 54.0 39.4 56.1 46.3 
(bat.) 2 87.8 64.3 74.2 65.5 53.1 58.6 49.7 53.5 51.6 

 
3 87.5 67.6 76.3 66.6 55.9 60.8 53.8 55.9 54.8 

 
4 85.7 70.8 77.5 67.2 59.0 62.8 53.8 54.7 54.3 

 
5 84.2 73.0 78.2 67.8 61.4 64.4 53.1 52.7 52.9 

For-p  .1 89.6 33.9 49.2 53.0 29.7 38.1 19.2 50.9 27.9 
(bat.) .2 89.5 48.4 62.8 59.0 39.8 47.6 30.1 54.3 38.7 

 
.3 88.5 55.8 68.4 61.1 45.2 51.9 39.8 54.4 46.0 

 
.4 88.1 60.8 72.0 63.2 49.4 55.4 44.8 52.2 48.2 

 
.5 87.1 63.0 73.1 63.1 50.8 56.3 50.5 51.4 50.9 

 
.6 87.4 65.2 74.7 65.5 53.7 59.0 51.8 51.3 51.6 

 
.7 88.2 63.7 74.0 64.0 51.4 57.0 50.6 51.2 50.9 

For-p  .1 77.0 81.2 79.0 65.5 68.0 66.7 43.3 42.4 42.8 
(inc.) .2 77.7 80.5 79.1 65.8 67.5 66.6 42.9 45.0 43.9 

 
.3 78.1 79.7 78.9 66.0 67.0 66.5 41.3 46.8 43.9 

 
.4 79.1 78.5 78.7 66.8 66.4 66.6 39.4 49.0 43.7 

 
.5 79.6 76.4 77.9 66.7 64.9 65.8 36.4 50.5 42.2 

Table 2: Table of full results (highest LF scores in each group are shaded) 
 
4.3. Discussion 
 

In Section 3, we considered the previously demonstrated finding that a 
constrained word segmentation model outperforms an ideal learner model that 
makes use of the same underlying probability model. In particular, we analyzed 
the properties of the probability model that biased the batch model towards 
undersegmentation and considered what properties of incremental processing 
alleviated this pressure to allow the constrained model to exhibit relatively good 
performance. We found that there were two factors involved: both having 
observed too many word tokens and having false evidence that whole utterances 
were words caused the batch, ideal learner model to rarely hypothesize novel 
words. We considered variants of the previous models that had additional 
memory limitations imposed on them and showed that the memory constraints 
mimicked the incremental model. Specifically, memory limitations affected the 
undersegmentation factors in the same way as the incremental model. Indeed, 
with these factors altered, both batch models performed at the level of the 
incremental model, substantially outperforming the batch model with perfect 
memory. Therefore, our results suggest that including processing and memory 
restrictions leads to improved segmentation results. This improvement arises 



because both kinds of cognitive limitations limit the total size of the lexicon and 
minimize the chance that utterances will be treated as known lexical entries. 

 
4.4. Differences between Cognitive Limitations  
 

Although the memory-restricted batch models and the incremental model 
show similar performance, there are two important qualitative differences in 
their behavior. First, while both models have almost identical boundary F-
scores, they achieve this performance through different means. The memory-
restricted batch models have higher precision than recall when it comes to 
boundaries, while the incremental model shows the opposite pattern. The 
relative difference between these two measures corresponds to how many 
boundaries the model is hypothesizing relative to how many boundaries actually 
exist. The incremental model is actually oversegmenting somewhat, while the 
memory-restricted batch models are not. Figure 2 illustrates this with example 
segmentations on which the two types of models differ in their predictions. 
 

English 
Transcription  

Incremental 
Segmentation 

Batch Forget-p 
Segmentation 

See if you can do it s i I f yu k&n du It si If yuk&nduIt 
Has to stay inside h&z tu st e In s 9d h&z tu st e In s9d 

Lift it up l I f t It Ap lift It Ap 
Did you go to the pool 

yesterday? 
dId yu go tu D6 p u l 

yEs t Rd e 
dId yu go tu D6 

pulyEstRde 
She’s sitting down Si z s It IN dQn Si z sIt IN dQn 

Figure 2: Sample outputs of the incremental model with perfect memory 
and the batch forget-p model.  
 

As can be seen in Figure 2, the incremental model is hypothesizing far too 
many boundaries, even proposing words with a single consonant in them. The 
batch memory-restricted models do not suffer from this same problem.  

Second, while the incremental model shows a higher word token F-score, 
the memory-restricted batch models show a higher word type F-score, an 
indication of the quality of the lexicon it has hypothesized. We also see a 
difference in the models’ performance on word types of different frequencies. If 
we break down the words in the corpus into frequency bins, based on their 
relative occurrence in the corpus and measure the models’ performance on each 
bin, it turns out that the incremental model does well at finding extremely high-
frequency words (such as ‘the’), but performs worse on low frequency words. In 
contrast, the memory-restricted batch models show more balanced performance 
across the various word-frequency bins. This can be seen in Figure 3.  

Therefore, although the batch memory-restricted models reach levels 
comparable to those of the incremental model, there are some clear qualitative 
differences between the two types of cognitive limitations. 

 



 
Figure 3: Word token f-score of the incremental and subtract-3 batch 
model as a function of word frequency 
 
5. Discussion  
 

In this paper, we considered the properties of three types of segmentation 
algorithms: a batch search model with perfect memory, an incremental search 
model with perfect memory, and a variety of memory restricted batch and 
incremental models. We found that the batch search model massively 
undersegmented the corpus, and we replicated the finding that the incremental 
version of the same model does not. Our mathematical analysis hypothesized 
two properties of incremental search that favor segmentation. We showed that 
batch models with memory constraints specifically targeting the factors that 
distinguish incremental from batch processing showed substantially improved 
performance relative to the batch model with perfect memory. Since the batch 
algorithm massively undersegments, and the other models do not, the results 
also demonstrate that the two main pressures we identified are sufficient to 
overcome the inherent undersegmentation biases of the probability model. While 
both incremental processing and memory limitations improve segmentation 
performance, their effects are qualitatively somewhat different and may play 
distinct roles in word segmentation.	  Incremental models perform better on word 
tokens and high frequency words, whereas models with memory restrictions 
exhibit less oversegmentation and learn a more reliable lexicon. 

These findings have a number of implications. We show that cognitive 
limitations exert pressures during learning that shape learning outcomes and, in 
this case, are actually advantageous to producing more accurate segmentations. 
The findings we present here mirror the counter-intuitive less-is-more 
hypothesis that suggests that cognitive limitations can actually be beneficial in 
learning language. In this case, we have shown that providing this model with 
access to all of the available information prevents it from segmenting accurately. 
By restricting the information the model can use, through these cognitive 
limitations, we can get the model to hypothesize a segmentation that resembles 
the true segmentation. This is a case in which imposing limitations is very 
clearly beneficial for the task at hand. 
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Although our analyses are just an initial exploration of the role of cognitive 
limitations in segmentation, we have shown that the implicit learning constraints 
imposed by search heuristics can be examined and understood. In this particular 
case, we were able to analyze the difference between the batch and incremental 
models to explain what factors allowed the incremental model to overcome the 
inherent bias of the probability model to leave utterances unsegmented. Such 
analyses help us understand how various cognitive limitations interact with and 
alter the learning task at hand. 

This work, combined with previous findings, also raises questions about the 
conclusions that can be confidently drawn from an ideal learner perspective that 
ignores these cognitive limitations. Pearl et al. (2010) showed that conclusions 
drawn about ideal learners do not necessarily transfer to constrained learners. 
They showed that while the ideal learner defined by Goldwater et al. (2009) 
benefitted from modeling word-to-word dependencies, some models with 
cognitive limitations using the same probability model did not. Our work 
supports their conclusion that cognitive limitations themselves may play a 
critical role in language learning, but also shows that it is possible to understand 
what makes them critical. Further work is needed to understand more fully what 
learning constraints are imposed by the cognitive limitations themselves, and 
caution is warranted when drawing conclusions based on ideal learners since, as 
we have shown, cognitive constraints may fundamentally alter the nature of the 
learning task. Because we are ultimately trying to model infants, who are 
constrained learners, understanding the biases of constrained learners, in 
addition to those of ideal learners, will shed light on the nature of language 
learning and the various factors that influence this complex process. 
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