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In this paper, we present our exploration of  the use of  a natural language processing (NLP) 
method called parts-of-speech (POS) tagging to support discourse analysis in a collaborative 
learning setting. NLP methods such as POS are used widely in data science applications to help 
create predictive and descriptive models of  behavior as embedded in textual sources. NLP is one 
of  a plethora of  computational methods that fall under the umbrella of  artificial intelligence. 
Here, we define artificial intelligence (AI) in education as computational entities (technologies or 
methods) that support student learning and/or research on learning through adaptable machine 
intelligence.

Examples of  AI approaches that support student learning include intelligent tutoring systems, 
personalized learning systems, agent-based software systems and systems that have a more 

Abstract
In this study, we explore the potential of  a natural language processing (NLP) approach 
to support discourse analysis of  in-situ, small group learning conversations. The 
theoretical basis of  this work derives from Bakhtin’s notion of  speech genres as bounded 
by educational robotics activity. Our goal is to leverage computational linguistics 
methods to advance and improve educational research methods. We used a parts-of-
speech (POS) tagging program to automatically parse a transcript of  spoken dialogue 
collected from a small group of  middle school students involved in solving a robotics 
challenge. We grammatically parsed the dialogue at the level of  the trigram. Then, 
through a deliberative process, we mapped the POS trigrams to our theoretically derived 
problem solving in computational environments coding system. Next, we developed 
a stacked histogram visualization to identify rich interactional segments in the data. 
Seven segments of  the transcript were thus identified for closer analysis. Our NLP-based 
approach partially replicated prior findings. Here, we present the theoretical basis for the 
work, our analytical approach in exploring this NLP-based method, and our research 
findings.
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physical component including robotics (Dillenbourg, 2016). AI approaches that support research 
on learning are usually termed learning analytic approaches. In addition to NLP-based text data 
mining approaches, learning analytics may focus on gaze, gesture and other modal enactments 
(Worsley et al., 2016). Key to all AI applications in education (those that support learning and 
those that support research on learning) is the reliance on computational entities that interpret 
and respond to human intelligence.

The goal of  our work is the development of  a theoretically based, computational method for 
assisting in the microgenetic analysis of  speech data (specifically, copresent, collaborative 
problem-solving group talk in a robotics learning environment). Microgenetic analysis is an 

Practitioner Notes
What is already known about this topic

• Over the last 10 years, several educational research papers indicate that natural lan-
guage processing (NLP) techniques can be used to help interpret well-structured, writ-
ten dialogue, eg, conversations in online class discussions.

• Two recent papers indicate that NLP techniques can also be used to help interpret 
well-structured, spoken dialogue, eg, replies to interview questions and/or comments 
made during think aloud protocols.

• Multimodal learning analytic techniques are being used to investigate collaborative 
learning. These studies use non-verbal features of  data (gaze, gesture, physical ac-
tions), prosodic features of  verbal data (pitch and tone) and/or turn-taking and dura-
tion of  talk per speaker data, as means of  predicting group success. None of  the MMLA 
studies attempt semantic analysis of  student talk in collaborative settings.

What this paper adds

• A theoretical framework for why and how an automated NLP approach can support 
discourse analysis research on co-located, computer-based, collaborative problem 
solving interactions. This framework, entitled the Problem Solving in Computational 
Environment Speech Genre, links children’s physical interactions with computational 
devices to their verbal exchanges and presents a theoretical rationale for the use of  
NLP methods in educational research.

• Description of  an interdisciplinary method that combines NLP techniques with quali-
tative coding approaches to support analysis of  student collaborative learning with 
educational robotics.

• Identification of  student learning outcomes derived from the semantic, PSCE Speech 
Genre and NLP approach.

Implications for practice and/or policy

• Educational researchers will be able to expand upon our findings towards the goal of  
using computation and automation to support microgenetic analysis of  large datasets.

• Robust microgenetic learning findings will provide curriculum developers, educa-
tional technology developers and teachers with guidance on how to construct and or 
create learning materials and environments.

• From an interdisciplinary perspective, this research can support more interdiscipli-
nary exploration of  conversational dialogues that are ill-structured, indexical and 
referential. This research will support the further development of  machine learning 
techniques and neural network models by computational linguists.
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extremely robust form of  learning research (Kuhn, 2002) that focuses on the development of  
conceptual understanding. However, due to the intensive nature of  data collection and analysis 
required, microgenetic research is typically performed with very small numbers of  participants, 
which limits the application of  the findings (Pressley, 1992). In our work, we seek to address this 
limitation of  the microgenetic approach by exploring how computational means can be devel-
oped and meaningfully deployed to assist researchers in microgenetic analysis.

Microgenetic analysis
Microgenetic analysis is an observational research technique in which the researcher attends 
closely to the social interactions, speech acts and the use of  tools within the learning environment 
in order to understand the genesis (or the origins) of  conceptual development. Siegler (2006) has 
described three essential properties of  microgenetic analysis thusly: “(1) observations span the 
period of  rapidly changing competence; (2) within this period, the density of  observations is high, 
relative to the rate of  change; and (3) observations are analyzed intensively, with the goal of  infer-
ring the representations and processes that gave rise to them” (p. 469). Collecting and analyzing 
all interactions over a given period of  time gives the researcher the advantage of  understanding 
the trajectory of  the cognitive change. As a result, empirical findings arrived at through microge-
netic analysis are remarkably robust (Kuhn, 2002).

The two primary constraints of  the microgenetic technique include the amount of  time it takes to 
conduct close analysis of  the data (Siegler, 2006), and secondarily the lack of  the generalizability 
of  findings derived from microgenetic case studies featuring only a few participants (Pressley, 
1992). Here, we examine if  and how computational methods can be meaningfully deployed to 
mitigate the time and generalizability constraints of  microgenetic techniques.

Learning analytics
Learning analytic techniques have been used with three types of  data that can be collected from 
people while they are learning: behavioral, physiological and representational. Approaches that 
focus on representational data include those that examine speech, text, drawing and other exter-
nalizations of  cognitive activity. Written text analysis is, by far, the most prevalent form of  learn-
ing analytics aimed at representations. This is due, in part, to the number of  natural language 
processing tools currently available to perform such analysis, eg, Coh-Metrix (Dowell, Graesser, 
& Cai, 2016), Netlytic, Linguistic Inquiry and Word Count (LIWC), Rapid Miner, LightSIDE and 
WEKA (Gruzd, Paulin, & Haythornthwaite, 2016). These tools make possible a number of  descrip-
tive and analytic activities, eg, word, sentence and paragraph counts, word cloud visualization, 
sentiment analysis, lexical diversity type–token ratio calculations to determine text cohesion, as 
well as examination of  the relatedness of  words through cluster analysis. This last technique is 
useful for delineating topics of  discussion.

Another approach, multimodal learning analytics (MMLA), seeks to capture and synthesize 
some combination of  all three types of  learning data: behavioral, physiological and representa-
tional, towards the goal of  developing comprehensive models of  student learning (Worsely et al., 
2016). Recent studies related to colocated, computer-based, collaborative problem solving (CPS) 
using the MMLA approach, focus on understanding how gaze, gesture and physical actions in 
the computer environment predict group success (Cukurova, Luckin, Millán, & Mavrikis, 2018; 
Schneider & Blikstein, 2015; Schneider, Sharma, Cuendet, Aufferey, Dillenbourg, & Pea, 2018; 
Spikol, Ruffaldi, Landolfi, & Cukurova, 2017). These studies have demonstrated the utility of  
these types of  data as a means of  convergent triangulation in correlating non-verbal elements 
with learning gains.
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Other co-located computer-based, CPS studies using the MMLA approach have included verbal 
data in the analysis, but these studies focus not on the semantic meaning of  the utterances, rather 
they focus on prosodic elements (pitch, tone), duration of  speaking time and/or turn-taking to 
help interpret group functioning (Lubold & Pon-Barry, 2014, Praharaj, Scheffel, Drachsler, & 
Specht, 2018). While all of  these studies are important and are contributing to our understand-
ing of  body language and turn taking in colocated, computer-based, CPS, none of  them are seek-
ing to use learning analytics to semantically analyze human dialogue.

MMLA appears to be a very promising method; however, the research undertaken in this vein has 
a number of  limitations that have yet to be fully resolved. For instance, in a review of  the MMLA 
literature Worsley (2018) notes that 35 of  46 empirical studies published from 2012 to 2018 
have taken place in laboratory settings; this is so because the reality of  collecting multiple streams 
of  data from numbers of  individuals in actual learning settings is not feasible. Indeed, two recent 
field-based studies in the MMLA literature report on the difficulty of  recording audio data in par-
ticular (Echeverria, Falcones, Castells, Granda, & Chiluiza, 2017; Liu & Stamper, 2017). However, 
while laboratory studies are easier to set up and control, they lack external validity, thereby atten-
uating the utility of  findings. A further problem with the MMLA approach is the interpretability 
of  multiple data streams within a unifying theoretical framework, such that the “the output of  
MMLA [becomes] more actionable.” (Worsley, p. 8). These challenges remain for MMLA research-
ers to solve.

Our work focuses on verbal interactions as representations of  cognitive activity. We seek to build 
on the work of  researchers who have used learning analytics to identify meaningful textual 
exchanges in learning situations. For example, Ferguson and Shum (2011) used a technique that 
focused on identifying specific discourse features in online discussions as well as time stamp data 
and counts of  participants to allow them to pinpoint particularly meaningful discussions in the 
context of  a daylong online workshop for teachers. Thus discovered, these meaningful discus-
sions could then be submitted to deeper analysis. Our work builds on this work, but does so with 
transcripts of  copresent, indexical conversations, a qualitatively different data corpus, that pres-
ents special problems for analysis.

Text mining and the analysis of  co-present data
Our research focuses on analyzing conversational data about educational robotics captured on 
video and audio tape in face-to-face classrooms and informal learning environments. Our work 
is similar to that of  other educational researchers who have focused analysis on spoken language 
including Worsley and Blikstein (2011) and Sherin (2013). However, it differs from these proj-
ects in that we seek to understand in-situ, problem-solving conversations, not responses to think-
aloud prompts (Worsley & Blikstein) or interview questions (Sherin; Worsely & Blikstein). Our 
colleague’s data are qualitatively different to our data, in that think-alouds and interviews are 
aimed at eliciting targeted and specific thoughts or responses, whereas, the dynamic, ongoing, 
in-situ interchange of  collaborative problem-solving conversations is noticeably different in lin-
guistic character. Our data is highly contextualized, referential and indexical talk that is often 
partial, fragmented and/or overlapping.

Dialogue models, semantic and syntactic analysis
To guide us in analysis of  our dataset, we turned to the work of  Ginzburg and Fernandez (2010), 
Bakhtin (1986), and Goffman (1974). Ginzburg and Fernandez have contributed, theoretically, 
to the development of  computational models of  dialogue for automated agents in teleservice set-
tings; eg, booking an airline flight over the phone. From their work, we derived ideas for analyzing 
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sentence fragments, indexical and pronominal terms. Specifically, we realized we needed to work 
at both the utterance (semantic) and the grammatical (syntactic) levels, focusing on what was 
said and how it was said. To get at the latter we used parts of  speech analysis (eg, noun, verb, ad-
verb, preposition). In this way, we could meaningfully examine partially expressed thoughts and 
sentence fragments, as well as more fully formulated utterances. This conceptualization of  our 
analysis task led us to thinking more about the nature of  the robotics activity, itself. We realized 
that the very bounded nature of  the activity may, similarly, bound the types of  speech acts stu-
dents might utter. To develop these ideas further, we turned to Bakhtin’s (1986) work on speech 
genres and Goffman’s (1974) theory related to social frameworks.

Speech genres and social frameworks
According to Bakhtin (1986), speech genres are characterized by relatively stable types of  utter-
ances occurring within a particular sphere of  human activity. There are many and varied types 
of  speech genres from everyday talk—“short rejoinders in everyday dialogue” (p. 60)—to various 
forms of  writing (eg, the novel, scientific reports) to verbal military commands to poetry. The 
social and symbiotic nature of  speech genres may be regarded as tools that help us act in and 
make sense of  the world, and as products of  our acting in and making sense of  the world (Varelas, 
Becker, Luster, & Wenzel, 2002). Speech genres serve to organize a sequence of  interactions in a 
culturally recognizable situation (Wells, 1999). This culturally recognizable situation may best be 
thought of  as Goffman’s (1974) social interaction frame.

Goffman (1974) argues that all social interactions are framed by the sociocultural context and 
an individual’s understanding and interpretation of  that context. Social frameworks “provide 
background understanding for events that incorporate the will, aim, and controlling effort of  an 
intelligence, a live agency, the chief  one being the human being” (p. 22). Varenne (1998) adds to 
Goffman’s frame theory by discussing the “always already there” (p. 185) impact of  historically 
situated cultural and social facts. However, both theorists stress the idea that individuals—while 
influenced by the cultural and social frames they are born into—have the ability to act inde-
pendently to achieve their own specific goals.

Therefore, specific sociocultural contexts, such as working in a small collaborative group to solve 
a robotics problem in a sixth-grade science class, invoke a social interaction frame for students 
and evinces the relatively stable use of  particular utterances in speech interactions. In this paper, 
we define a problem solving in a computational environment (PSCE) speech genre that refers 
to talk that occurs among middle school students within the context of  solving a robotics prob-
lem in class (a particular sphere of  human activity). The categories created for this analysis are 
reported in the methods section. In adopting this speech genre approach, we are not attempting 
to map out the entire domain of  possible speech acts that may occur in the setting, rather we are 
seeking to identify the regularities in the speech genre that may point, over time, to the microge-
netic development of  conceptual understanding.

Methods
Speech genre analysis and qualitative models of  activity
Our method includes a speech genre analysis in which we seek to understand the work that par-
ticular types of  utterances are doing in a given student interaction while solving a robotics prob-
lem. We utilize qualitative models of  student activity in the problem-solving environment to help 
us contextualize student utterances and better understand the possible meaning of  an utterance. 
To explore this method, we are using a dataset we collected as part of  a prior study. For a complete 
description of  the research site, participants and data collection procedures from this prior study, 
see Sullivan (2011). In this prior analysis, we examined a focal student groups’ collaborative 
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development of  a creative idea in solving a robotics challenge. The teaching goal of  the robotics 
challenge set by the curriculum designers and enacted by the teacher, was to acquaint the stu-
dents with the functioning of  the light sensor. A key element of  the creative solution development 
was the change in student conceptual understanding of  how the light sensor functions.

As part of  this prior, by-hand analysis, we developed a qualitative model of  student problem- 
solving activity with robotics. This model consisted of  a troubleshooting cycle, which includes 
the following activity: “(1) writing and testing the program, (2) diagnosing problems with the 
program or structure of  the device, (3) proposing and arguing for specific changes to the pro-
gram/structure, (4) making changes to the program/structure, and (5) testing the device again” 
(Sullivan, 2011, p. 57). The troubleshooting cycle is a relatively regular and stable feature of  
student activity while solving robotics problems.

The temporally sequential nature of  the troubleshooting cycle is ideal for microgenetic analysis 
and it strongly informed our development of  the PSCE coding system (presented below). Through 
our current computational analysis of  this same dataset, we sought to identify regularities in 
speech (the problem solving in computational environments speech genre) that might map to the 
identified regularities in student troubleshooting activity. Drawing on Bakhtin’s (1986) speech 
genre theory, we argue that while students are engaged in the troubleshooting activity character-
istic of  group CPS with robotics, their speech will, likewise, be directed towards problem solving. 
Figure 1 presents a theoretical model of  our speech genre approach.

Computational analysis
The computational aspect of  our approach relies on linguistic regularity and the function of  
particular grammatical constructions as spoken by students in the robotics learning problem 
space. Due to the relatively stable character of  troubleshooting cycle activity, we hypothesized 

Figure 1: Theoretical model of  PSCE speech genre development
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a relatively stable character to the domain of  utterances that may be offered during these times: 
in short, we hypothesized an identifiable speech genre that we could then explore computation-
ally. As noted above, speech genres are bounded domains of  potential utterances that make up 
the genre. Further, the utterance themselves will consist of  a range of  specific words (the vocab-
ulary associated with the activity) and they will have a particular grammar. As Halliday and 
Matthiessen (2014) have noted, it is both the vocabulary and the grammar that are the meaning 
making resource for those involved in the activity and the discussion. While text-mining keyword 
searches are useful for delimiting the vocabulary usage, we found that they were insufficient for 
analysis of  learning processes. Therefore, we sought to also examine the grammar of  utterances.

Towards that end, we employed a natural language processing library created by colleagues at 
Stanford University (Toutanova, Klein, Manning, & Singer, 2003), featuring a parts-of-speech 
(POS) Treebank developed at the University of  Pennsylvania by Santorini (1990) to allow us to 
identify important grammatical constructions that make up the PSCE speech genre. We reasoned 
that the POS tagger would begin to help us identify types of  utterance that may all be doing the 
same kind of  work in terms of  the troubleshooting cycle; eg, we sought to linguistically identify 
periods of  diagnostic activity and periods of  argumentation. These activities are foundational to 
the troubleshooting cycle. We reasoned that if  we could identify cycles of  diagnostic and argu-
mentative activity in the dataset, we could find conceptually rich segments of  the data. We also 
sought to identify comments aimed at group regulation (eg, who will do what) as these types 
of  comments are foundational to the functioning of  collaborative learning groups (Sullivan & 
Wilson, 2015).

Ngram unit of  analysis
In developing our computational POS tagging approach, we needed to decide upon a useful unit 
of  analysis. We chose to work with utterances at the level of  the bigram (two words) and trigram 
(three words). We selected these ngram configurations because, arguably, they are the smallest 
levels at which complete utterances might be made. Halliday and Matthiessen (2014) point out 
that while the clause is the smallest semantic unit in the English language, clauses are made up 
of  smaller grammatical units that also have meaning, including the nominal group, the verbal 
group, the adverbial group and the prepositional phrase. Importantly, the theme of  a clause will be 
carried by one of  these smaller structural elements (p. 92). In this way, Halliday and Matthiessen’s 
(2014) system of  classifying utterances into these smaller units provides a basis for interpreting 
the partial contributions of  grammatical elements in determining the meaning of  an utterance 
in context. For example, nominal groups that include deictic terms (eg, “that,” “this,” “these,” 
“those,” “here,” “there”) indicate contextually specific Things. An instance of  this from our tri-
gram analysis is that black light. In this nominal group, the light is the Thing that the students are 
indicating. It is subcategorized by the modifier black and differentiated from other Things by the 
use of  the determinative that.

Other examples of  nominal groups that feature deictic terms from our trigram analysis were: all 
those lines, the ruler there. The work that these trigrams performed was to focus the attention of  
the group on a specific Thing in the robotics learning environment. These Things were, almost 
always, one of  the objects that help make up the robotics challenge problem space (eg, the micro-
computer, the sensors, the motors, the Lego pieces, the laptop, the Robolab software program, 
the space on the classroom floor designated as the testing zone for completed programs). In this 
way, particular POS analysis of  the trigrams that included deictic terms and nouns could be inter-
preted within the PSCE coding framework as having to do, specifically, with objects in the problem 
space.
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Meanwhile, verbal groups contain a word whose primary classification is a verb. Examples of  
verbal groups from our trigram analysis include: have to go, have to put and go to step. By definition, 
verbal groups deal with the action or states of  being. In the context of  robotics problem solving, 
these verb groups often dealt with what action the group needed to take to solve the problem or 
the state of  the robot in relation to solving the challenge; hence, the interpretability of  the verb 
group POS trigram. Likewise, adverbial groups and prepositional phrases were also interpretable.

The data used to pilot our method consisted of  the interactions of  three students during a 30-min-
ute videotaped classroom activity devoted to learning how to use the light sensor. To accomplish 
the PSCE speech genre analysis, the transcripts of  the words uttered by the students were broken 
down into bigram or trigram word segments which were named in such a way as to retain tem-
poral differentiation. For example, an excerpt from the transcription reads:

1. I: okay
2. J: oh okay
3. I: but we need a ruler to make it go far away

Single-word utterances were not considered for this analysis; therefore, the utterance in line one 
was not included. An utterance of  two words was included in the analysis if  and only if  the entire 
utterance consisted of  two words. Since line two consists of  only two words, it was included in the 
analysis. Any utterance of  three or more words was then divided into multiple overlapping three-
word segments and included for analysis, the formula for developing the trigram segments was 
(n-2). Therefore, the 11-word utterance in line three would have been divided into nine segments:

but we need

we need a

need a ruler

a ruler to

ruler to make

to make it

make it go

it go far

go far away

The line number of  the original utterance was preserved along with each unique segment to 
retain temporality. The dataset produced 2,627 unique ngram segments of  text. The vast major-
ity of  ngram segments were trigrams (as opposed to bigrams), in the following pages we refer to 
POS trigrams as a default term for both POS bigrams and trigrams.

Parts of  speech tagging
These trigram segments were then processed through the Java-implemented Stanford log-linear 
POS tagger (Toutanova, et al., 2003). POS taggers tokenize individual words and then utilize com-
putational methods to assign a POS (such as noun, verb, coordinating conjunction) to each word. 
The Stanford POS tagger utilizes the Penn Treebank tag set (Santorini, 1990). Marcus, Santorini, 
and Marcinkiewicz (1993) note that the computational Penn Treebank approach outperforms 
manual methods on three dimensions “speed, consistency, and accuracy” (p. 313).

A report was then created of  each unique POS trigram, along with the associated text segment 
and line number. Based on our domain expertise and the qualitative model of  the troubleshooting 
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cycle, we mapped each POS tag string to a code in the PSCE speech genre coding scheme (Table 1). 
It is important to recognize that the same POS tag string may be assigned to trigrams consisting 
of  different words. We sought to interpret the work each POS tag string was doing by looking 
across the trigrams that garnered the same string. In other words, it was not the specific words 
that mattered, rather it was the grammatical role the words played in the overall structure of  the 
utterance that mattered. The mapping of  POS trigrams to PSCE codes was a deliberative process. 
The process included reading the trigrams in context and discussing each one in terms of  the 
troubleshooting cycle qualitative model. Based on this model and the specificity of  this text, we 
both deductively and inductively created the PSCE coding system used here.

In order to meaningfully manage the 2,627 unique trigram segments of  text, we elected to only 
map frequently occurring POS trigram segments to the PSCE codes. For the purposes of  this anal-
ysis, if  5 or more segments of  text were associated with the same POS trigram, we mapped that 
POS configuration to the PSCE codes. Exceptions were made when a partial POS tag could be 
coded to the same code. For example, in Table 2, the trigrams were all coded as activity negotiation. 
Therefore, any segments with a partial match of  RB VBP were coded as activity negotiation. That 
being said, trigrams with partial matches to a specific PSCE code were mapped only to that code 
and to no other code. All trigrams were only counted once, and only assigned to one PSCE code 
(if  warranted by frequency count). Some trigrams were not coded beyond being assigned the 
POS tag string, even if  there were five instances or more. This was the case if  it was clear that the 
trigram consisted of  ideas belonging to two separate sentence clauses, meaning that a noun, verb 
or adverb group or a prepositional phrase had been split up in the trigram segmenting process. In 
these instances, the trigram would be handled more appropriately in a different trigram constel-
lation with no break in grammatical meaning.

Finally, as part of  our analysis, we produced a stacked histogram (Figure 2) that indicated the 
number of  PSCE codes generated per group of  10 utterances. For this analysis, the utterances 
were grouped temporally by their original location in the transcript. The number and type of  
PSCE-coded trigrams that occurred in each group determined the height of  the bar. For example, 
point 0 on the x-axis represents the first 10 utterances made by the students in this 30-minute 
problem-solving vignette, 15 of  these trigrams received a PSCE code. The stacked histogram was 
then analyzed to identify clusters of  high occurrences of  coded trigrams, which, theoretically, would 

Table 1: Problem solving in computational environments speech genre coding scheme

Diagnosis Query Argumentation

Evaluation Clarification Group regulation
Organization of tasks/roles
Modal
Activity negotiation

Confirmation Content and concepts
Programming elements

Comparative
Explanation

Building elements
Comparative
Explanation

Puzzlement Problem definition
Familiarization
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indicate sections within the transcription that are conceptually rich in terms of  discussion within 
the troubleshooting cycle. In the following section, we present the results of  our analysis of  these.

Results
There were 605 utterances made by the students in the 30-minute vignette analyzed here. A vi-
sual inspection of  the stacked histogram (Figure 2) revealed that seven of  the utterance clusters 
peaked above the 25 PSCE code point on the y-axis, signaling a potentially high level of  prob-
lem-solving discussion in the text at those peaks. In closely analyzing these segments, we were 
able to identify a clear progression in student conceptual understanding related to the function-
ing of  the light sensor, which was the goal of  this particular challenge and key to their creative 
problem solving. In relation to Figure 2, the utterance cluster peaks can be identified as points 
along the x-axis as demonstrated in Table 3.

In the following, temporally sequenced excerpts (Tables 4‒8), we demonstrate, with the data, the 
change in student’s way of  thinking and talking about how to solve the problem, and specifically 
how to use the light sensor to help solve the problem. As will be shown, the students begin with no 
understanding of  how the light sensor functions in relation to solving the problem, they then prog-
ress to a view of  the light sensor as a measurement device whose primary purpose is to record a 
light reading. This view then evolves as they work through the problem to an understanding of  

Table 2: Example of  POS to PSCE coding scheme

Text segment POS tag string Tag meaning PSCE code

Now do the RB VBP DT Adverb, verb, determiner Activity negotiation
Now put it RB VBP PRP Adverb, verb, preposition Activity negotiation
Hey don't play RB VBP RB VB Adverb, verb, adverb, verb Activity negotiation

Figure 2: Stacked histogram of  coded ngrams  
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the light sensor as a computational device, a device that not only takes a reading, but compares 
the current reading to a programmed threshold and executes an event triggered by reaching the 
threshold. This progression demonstrates how the students’ conceptual understanding of  the 
light sensor changed over time and through interaction in the learning environment. The utter-
ances that were most relevant to our interpretation occurred in five of  the seven clusters, these 
utterances are presented in bold text in Tables 4‒8 below.

Meanwhile, two of  the utterance clusters identified by the MLA technique, while evidencing a 
high number of  PSCE codes, did not relate directly to the use of  the light sensor. One of  the con-
versations focused on a debugging discussion related to the placement of  the robot on the floor 
(line #s 251–260), and the second conversation involved the teacher who modeled debugging 
activity for the students while helping them think about a problem, and, hence, his utterances 
increased the number of  PSCE codes in that segment (line #s 351–360). Because we were inter-
ested in how the MLA technique might aid in understanding how student knowledge changed 
over time, we focused on the identified discussions as they related to the light sensor.

The specific robotics challenge students were trying to solve is as follows:

1. move forward until a black line on the floor is detected
2. turn 90 degrees
3. back up for 1 foot
4. stop

In the first excerpt (Table 4), students discuss programming the robot to move forward by use of  a 
timing element. However, no timing element is required for the first step of  this challenge. To solve 
this challenge, the first step needs to be programmed with a light sensor, not a timing element. 
The fact that the students were discussing how to program the forward movement of  the robot 
with a timing element, indicates they did not, yet, understand how the light sensor functions.

Table 3: Correspondence of  utterance cluster peaks to transcript lines

Cluster # x-axis points Corresponding utterance lines in transcript

1 5–6 51–70
2 8–10 81–110
3 19–21 191–220
4 25 251–260
5 27–29 271–300
6 35 351–360
7 40 401–410

Table 4: Cluster #1: programming with timing elements

Line # Speaker Utterance

50 J Well I don't know why it's only doing the first of  three that step let's do one 
cause it probably has to be on time first

51 S Yeah that has to be on time
52 J Then this has to do the light sensor
53 S No do it
54 J This has to be this has to be time again
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As can be seen in line 50, student J states that the program “has to be on time first,” meaning the 
first step in their program is to move the robot forward for a specific amount of  time. This rea-
soning is concurred with on line 51 by student S when she states “yeah that has to be on time.” 
In line 52, student J suggests that the second step of  the program should involve the light sensor, 
but the choice of  words belies little knowledge of  how to actually do this—he says “this has to do 
the light sensor.” Indeed, the first step in the program should set a triggering numeric threshold 
for the light sensor. The student’s comment in line 52 does not reflect this level of  understanding.

A few minutes later, the students were still using the timing element, but they were starting to 
discuss the idea that, in order for the program to function properly, the light sensor must see 
the black line, which they erroneously call the “light,” in line 106. This excerpt is presented in 
Table 5.

On line 97, student S begins to identify the contradiction between their existing program, which 
uses a 1-second timing element to move the robot forward, and the instruction to write a program 
that uses the light sensor to detect a black line. Here, the notion that the robot has to “touch” the 
black line refers to the need for it to sense the black line.

In Table 6, students continue to think they need to program both the light sensor and provide 
a timing element in order to move the robot forward. However, their understanding of  the light 
sensor is improving as they now realize they need to set a numeric threshold with it.

Table 6: Cluster #3: continuing to think two elements are necessary

Line # Speaker Utterance

199 J Watch I think I know what the problem is the light let’s put it at thirty five cause 
it’s on so now send wait hey hey hey

200 I This is going to be over a foot
201 S It’s going too slow
202 J Oh my g-d no it doesn’t want to go forwards cause there’s no time limit

Table 5: Cluster #2: students realize need to program sensor

Line # Speaker Utterance

95 S It's going forward for a time it's going to step one
96 J Going forward right for one second
97 S Yeah but it has to step for one second right but it has to go and touch the black 

line right yeah cause then the sensor
98 S8 Anybody lose a ring yeah I know
99 S Yeah that's good now let's send it
100 J Wait wait you have to wait now I have to put this is time now I have to 

put this back onto this stupid line
101 S No not that that doesn't really have to oh yea that does yeah no
102 J Yes it does yes wait
103 S Oh look at this
104 J It has to go backwards
105 S Oh it does
106 J Yeah it has to go back it has to hit the light then go backwards
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On line 199, Student J is diagnosing a problem with the robotic device in terms of  the light sensor 
program, he suggests they use a threshold reading of  35 to trigger the next element of  the pro-
gram. However, in line 202 the same student decides that the robot is not moving forward “cause 
there’s no time limit.” Again, we see the confusion of  the role of  the light sensor in solving the 
problem. However, we also see that the students are starting to understand that the light sensor 
is integral to solving the challenge.

In the next excerpt (Table 7), a few minutes later, the students articulate the idea that the robot 
will turn when it “sees” the “black light” and so, one cannot start the program from the “black 
light.” This is the first indication in their discussion that the students understand that the sensor, 
if  programmed correctly, may trigger another event.

On line 280, student J indicates that the group cannot place the robot on the black line as a way 
to initiate the program. In line 282, he indicates that the robot “has to go away from the black 
light,” a comment he reiterates on line 285. Finally, on line 287, student J indicates that the robot 
has to “see the black light and turn.” Taken together, these comments demonstrate that student 
J has begun to understand that a calculation is required, the group cannot start the program on 
the black line because the robot needs to “see” the black line as differentiated from some other 
color (in this case the gray carpet).

After a few more minutes, student J has a more significant breakthrough in understanding how 
the light sensor functions. In Table 8, student J explains the breakthrough to the other students—
pointing to the displayed readings on the sensor, student J calls attention to how fluctuations in 
that number affect the movement of  the motors on the robot. This is the essence of  the sensor as 
a triggering device. At this point, the students are well on their way to solving the robotics chal-
lenge, having constructed an understanding of  the light sensor as a computational device.

Table 7: Cluster #4: sensor as triggering device

Line # Speaker Utterance

280 J You’re not supposed to put it on the black light that’s why
281 S There you go
282 J It has to go away from the black light
283 I It’s gonna follow your
284 S Hello black shoe
285 J It has to start from the you can’t from the black light that’s why it’s not doing it
286 S Black shoe
287 J No let me watch now that’s to get so far then it has to see the black light and turn 

but if  it, it doesn’t do that well then it has to go turn and go backwards

Table 8: Cluster #6: light sensor as computational device

Line # Speaker Utterance

400 J Turn it off  turn it off  turn it off  turn it off  watch see this goes the lower the number 
it goes straight right and then when it changes to forty three it doesn’t try to, forty 
one see if  it does it connect, just hold it in the air see it’s the light it’s too big

401 S It’s going forward
402 J Check the black line check that black line on the on the white paper the one in the middle
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On line 400, student J remarks “the lower the number it goes straight, right? And then when it 
changes to forty-three it doesn’t try to…” In this segment, student J has made the connection 
between the registered light reading (lower than 43) and the triggered action “it goes straight, 
right?” He then notices that when the light sensor reaches the threshold of  43, it no longer moves 
forward. Student J argues that a light reading of  43 is “too big” to trigger movement. While student 
S seems to contest that with her comment that “it’s going forward,” student J appears to have made 
a conceptual breakthrough, he realizes that specific, directional fluctuations in the light readings 
are triggering specific responses in the robotic device—the essence of  the programmed sensor.

In these computationally identified clusters, it is possible to see how the students shifted their 
thinking about the first step of  the problem and the use of  the light sensor in solving the problem. 
Over time, they realize that the light sensor is not just used to sense a different color but can be 
used as a tool to control the movement of  the robotic device. In this way, the students are deepen-
ing their understanding through interaction with the tool itself, and they achieved the goal of  the 
lesson, to learn how to use the light sensor.

Additional observations on the method
While there were a total of  2,627 unique trigrams identified in the overall 30-minute text, only 
115 unique trigrams were mapped to the high-peak clusters observed in the histogram visualiza-
tion. Moreover, of  these 115 unique trigrams, 110 of  them had one of  only 11 (out of  the possible 
36) POS tags in the first position of  the trigram. And, of  these 11, 4 fall into the verb category 
(each of  these four parts of  speech representing a different verb tense and/or a different speaker 
position). These parts of  speech, examples of  the words they denote and the trigrams they initiate, 
are presented in Table 9.

Table 9: First position POS tags most frequently associated with PSCE Codes

Parts of  speech POS tag
Word examples (par-
tial list) Trigram examples (partial list)

Conjunction coordinating CC but, and “but we need,” “but it has,” “but where 
do,” “and then it,” “and what was”

Preposition, subordinate 
conjunction

IN like, of, for, on, over, 
in, with, as

“of  eighty-five,” “like one foot,” “for one 
second,” “on the motor,” “over a foot” 
“with the light,” “in a circle” “as you 
turn”

Adjective comparative JJR higher, more, darker, “higher the shorter,” “more than one,” 
“darker than the”

Noun NN sensor, floor, pro-
gram, problem

“sensor is triggered,” “floor is the,” “pro-
gram that robot,” “problem is the”

Personal pronoun PRP it, I, you, we “it just stopped,” “it goes backward,” “I 
wonder if,” “I need that,” “you think 
that,” “you should use,” “we need to”

Adverb RB backwards, exactly, 
slowly, up,

“backwards a foot,” “exactly a foot,” 
“slowly by one,” “up in the”

Preposition (to) TO to “to the robot,” “to the floor,” “to step 
one”

Verb (various tenses and 
speaker designations)

VB get, need, hit, run, 
got, are, has, is, 
because

“get a ruler,” “need a hand,” “hit the 
back,” “run the program,” “got to 
plug,” “are we going,” “has to be,” 
“has to go” “is going backwards” “be-
cause it says”

VBD
VBP
VBZ
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As can be seen in Table 9, the first position parts of  speech tags that were most generative in terms 
of  the PSCE codes are either words that one may easily associate with reasoning and argumen-
tation—the word “but” may indicate refutation, the word “and” elaboration, the words “higher” 
and “shorter” comparison, the words “is,” and “are” with questions, the word “because” with 
evidence or hypothesis generation—or words that identify an entity—“it” may refer to any of  the 
objects in the problem space, “sensor” and “floor” refer to specific objects in the problem space, “I, 
you, we” refer to people in the problem space. Likewise, the words “backward, forward” refer to 
the movement of  an object in the problem space.

We view this observation as supportive of  our conjecture that speech in specific realms is bounded 
by the structure of  the activity in that realm. In a different, bounded realm of  activity, it might 
be possible to see more than 11 first position POS tags as meaningful, and/or these tags would be 
different to what is meaningful in our context. The physically active, tool rich, multidimensional 
problem space of  robotics learning motivates specific speech acts and affords particular gram-
matical constructions, which then lend themselves to computational exploration.

Discussion
In this paper, we have presented our exploration of  a natural language processing approach to 
assist in the microgenetic analysis of  discourse data. A major issue we confront in our research, 
here, is the highly contextualized, indexical and fragmented nature of  student talk while solv-
ing a robotics problem. The data corpus we worked with was full of  partially expressed thoughts 
and deictic comments that referred to “it,” “that” and “there,” for example. Using computational 
means to analyze such fragmented talk is difficult. Our approach of  analyzing the text at the 
trigram level included creating a trigram based on every word in the sentence except the last 
two (n-2), in this way, we gained full coverage of  student expressions and were able to identify 
meaningful noun and verb groups. Our observation that a particular set of  first position POS tags 
was more generative than other tags is helpful in defining an overall way forward—the mapping 
of  POS tags to annotations, could be streamlined for genres of  activity, such as active, tool-rich, 
multidimensional problem spaces.

Our computational method is not intended to be a fully automated approach, nor is it meant 
to function as a full solution to the problem of  microgenetic analysis. Rather, our approach is a 
powerful aid to the educational researcher who is an expert in her or his chosen area of  study. 
Indeed, the expertise of  the researcher is key to both the development of  the coding scheme that 
POS trigrams would be mapped to (in our case the PSCE coding system) and to the meaningful 
interpretation of  computationally identified segments of  the transcript.

We have developed our method in the context of  a tool-intensive activity, a robotics learning set-
ting. In this way, our approach would transfer well to other, similar settings. But, it is not clear 
how the method would work in less bounded and tool-intensive collaborative problem-solving 
settings. The bounded-ness of  the problem-solving activity is key to our theoretical approach. 
And, we argue, there are many, similarly bounded educational settings, especially when tech-
nology is involved. Therefore, this approach will be useful in a number of  educational research 
studies.
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