Formal Preliminaries, Part 2: Cardinalities, Infinities, and Proof by Induction

(1) Some Key Players

a. **The Natural Numbers** (\mathbb{N})
 • All the whole numbers greater than or equal to 0, \{0, 1, 2, \ldots\}

b. **The Integers** (\mathbb{Z})
 • All the whole numbers (including those less than 0), \{\ldots, -2, -1, 0, 1, 2 \ldots\}

c. **The Rational Numbers** (\mathbb{Q})
 • All the numbers that can be written as a fraction, \{ n/m : n, m \in \mathbb{Z} & m \neq 0 \}

d. **The Real Numbers** (\mathbb{R})
 • All the numbers that can be represented by an infinite decimal expansion
 • All the rational numbers and all the irrational numbers (e.g., π)

Note: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

1. Cardinalities and Infinities

(2) **Cardinality (Informal)**
 \[|A| = \text{‘the cardinality of } A\text{’} \]
 \[= \text{‘the number of elements in } A\text{’} \]

(3) **Cardinality, Injection, and Bijection**

The following statements are intuitively true for finite sets. We’ll therefore assume they are true for all sets (including infinite ones).

a. $|A| \leq |B|$ if and only if there is an injection $f: A \rightarrow B$

b. $|A| = |B|$ if and only if there is a bijection $f: A \rightarrow B$

Note:
• Recall that if f is a bijection, then f^{-1} is a bijection too.
 • Thus, if there is a bijection $f: A \rightarrow B$, then there is also a bijection $f^{-1}: B \rightarrow A$

 o Thus, by the definition in (3b), if $|A| = |B|$, then $|B| = |A|$ (as desired)
 o Also, as you can prove to yourself:
 If $|A| = |B|$ and $|B| = |C|$, then $|A| = |C|$
 For any set A, $|A| = |A|$

1 These notes are based upon the following required readings: Partee et al. (1993), Chapter 4, pp. 192-198.
(4) **Key Consequence: Infinite Sets Can Have Same Cardinality as Proper Subsets**

- Consider the following function: \(f(x) = 2x \)
 \(f = \{ <x, y> : y = 2x \} \)

- This function \(f \) is a bijection from \(\mathbb{N} \) to the set of even numbers!
 - It’s an injection: every \(x \) is mapped to a different even number
 - It’s a surjection: every even number is equal to \(2x \) for some \(x \in \mathbb{N} \)

- Thus, even though \(\{ n : n \in \mathbb{N} \text{ and } n \text{ is even} \} \subset \mathbb{N} \),
 \[|\{ n : n \in \mathbb{N} \text{ and } n \text{ is even} \}| = |\mathbb{N}| \]

- Intuitively, no finite set contains a proper subset of the same cardinality.
 - Thus, we can take this interesting property of \(\mathbb{N} \) as characteristic of ‘infinities’

(5) **Characterization of Non-Finite**
A set \(S \) is infinite *if and only if* there is a proper subset \(S' \subset S \) such that \(|S'| = |S| \)

(6) **Transfinite Cardinals**

- Although it seems sensible to speak of \(|\mathbb{N}| \), there is clearly no finite cardinal number \(n \in \mathbb{N} \) such that \(|\mathbb{N}| = n \).

- It will be useful to introduce new, *transfinite* cardinal numbers to allow us give a name to the cardinality of \(\mathbb{N} \)

- We introduce the special symbol ‘\(\aleph_0 \)’ (aleph null) below to refer to this first transfinite cardinal.
 \(\aleph_0 = |\mathbb{N}| \)

(7) **Countable and Countably Infinite**

a. A set \(S \) is **countably (denumerably) infinite** *iff* \(|S| = \aleph_0 \)

b. A set \(S \) is **countable** *iff* \(S \) is finite or \(S \) is countably infinite.

(8) **Demonstrating that an Infinite Set is Countable, Part 1**

- To show that an infinite set \(S \) is countable, show that there is a bijection from \(S \) to \(\mathbb{N} \)
- After all, this would entail \(|S| = |\mathbb{N}| = \aleph_0 \)
(9) **The Natural Numbers Without Zero \((\mathbb{N} - \{0\})\) are Countable**

Consider the following function: \(f(n) = n - 1\)

a. The function \(f\) is clearly an injection from \(\mathbb{N} - \{0\}\) to \(\mathbb{N}\)
 (each number in \(\mathbb{N} - \{0\}\) is mapped to a different member of \(\mathbb{N}\))

b. The function \(f\) is clearly a surjection from \(\mathbb{N} - \{0\}\) to \(\mathbb{N}\)
 (every member of \(\mathbb{N}\) is equal to \((n-1)\) for some element in \(\mathbb{N} - \{0\}\))

Thus, \(|\mathbb{N} - \{0\}| = |\mathbb{N}| = \aleph_0\)

(10) **The Integers \(\mathbb{Z}\) are Countable**

Consider the function \(f\) defined below:

\[
\begin{align*}
f(x) &= 0 & \text{if } x = 0 \\
 &= 2x - 1 & \text{if } x \text{ is positive} \\
 &= -2x & \text{if } x \text{ is negative}
\end{align*}
\]

Picture of \(f(x)\), from Partee et al. (1993):

\[
\begin{align*}
\mathbb{Z} &= \{0, +1, -1, +2, -2, +3, -3, \ldots\} \\
\mathbb{N} &= \{0, 1, 2, 3, 4, 5, 6, \ldots\}
\end{align*}
\]

a. \(f(x)\) is clearly a function from \(\mathbb{Z}\) to \(\mathbb{N}\)

b. \(f(x)\) is an injection from \(\mathbb{Z}\) to \(\mathbb{N}\)
 - Each positive number is mapped to an odd number
 - Each negative number is mapped to an even number (greater than 0)
 - Only 0 is mapped to 0

c. \(f(x)\) is a surjection from \(\mathbb{Z}\) to \(\mathbb{N}\)
 - 0 is mapped to 0
 - Every positive even number is equal to -2x for some negative integer
 - Every positive odd number is equal to 2x-1 for some positive integer

Therefore, \(f(x)\) is a bijection, and so \(|\mathbb{Z}| = |\mathbb{N}| = \aleph_0\)

(Note, this is despite the fact that \(\mathbb{N} \subset \mathbb{Z}\))
Demonstrating that an Infinite Set is Countable, Part 2

Now that we know that \mathbb{Z} and $\mathbb{N} \setminus \{0\}$ are countable, we can show that S is countable by showing that there is a bijection from S to \mathbb{Z} or from S to $\mathbb{N} \setminus \{0\}$

- After all, this would entail $|S| = |\mathbb{Z}| = \aleph_0$ or $|S| = |\mathbb{N} \setminus \{0\}| = \aleph_0$

The Positive Rationals are Countable

Usually, the following ‘intuitive’ (or ‘visual’) proof is used to show that there is a bijection from $\{ n : n \in \mathbb{Q} \text{ and } n > 0 \}$ to $\mathbb{N} \setminus \{0\}$

a. **Step One:**

We can arrange the set $\{ n : n \in \mathbb{Q} \text{ and } n > 0 \}$ into the following infinite table:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>1/5</td>
<td>1/6</td>
<td>1/7</td>
</tr>
<tr>
<td>2/1</td>
<td>2/2</td>
<td>2/3</td>
<td>2/4</td>
<td>2/5</td>
<td>2/6</td>
<td>2/7</td>
</tr>
<tr>
<td>3/1</td>
<td>3/2</td>
<td>3/3</td>
<td>3/4</td>
<td>3/5</td>
<td>3/6</td>
<td>3/7</td>
</tr>
<tr>
<td>4/1</td>
<td>4/2</td>
<td>4/3</td>
<td>4/4</td>
<td>4/5</td>
<td>4/6</td>
<td>4/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. **Step Two:**

Some rationals appear more than once in this table (e.g., $1/1 = 2/2$). We can fix this by snaking around the grid (infinitely) in the way sketched below. Every time we hit a number that we’ve already passed, we cross it out.

```
1/1 ← 1/2 ← 1/3 ← 1/4 ← 1/5 ← 1/6 ← 1/7 ← ...   
2/1 ← 2/2 ← 2/3 ← 2/4 ← 2/5 ← 2/6 ← 2/7 ← ...   
3/1 ← 3/2 ← 3/3 ← 3/4 ← 3/5 ← 3/6 ← 3/7 ← ...   
4/1 ← 4/2 ← 4/3 ← 4/4 ← 4/5 ← 4/6 ← 4/7 ← ...   
5/1 ← 5/2 ← 5/3 ← 5/4 ← 5/5 ← 5/6 ← 5/7 ← ...   
...   ...   ...   ...   ...   ...   ...   ...
```
Step Three:
We take the augmented grid resulting from Step 2 (where repeated rationals are crossed out), and we snake through it again just as before, mapping the rationals in the grid to $\mathbb{N}-\{0\}$ in the following way:

(i) We map $1/1$ to 1
(ii) We then proceed as follows:

- Suppose that at step m in the ‘snaking’ we’ve just mapped the rational p/q to the natural number n.
- We next examine the rational r/s we come to at step $(m+1)$.
 - If r/s is not crossed off in the grid, we map it to $(n+1)$.
 - If r/s is crossed off, then we proceed to the next step in the snaking…

\[
\begin{array}{cccccccc}
1/1 & 1/2 & 1/3 & 1/4 & 1/5 & 1/6 & 1/7 & \ldots \\
2/1 & 2/2 & 2/3 & 2/4 & 2/5 & 2/6 & 2/7 & \ldots \\
3/1 & 3/2 & 3/3 & 3/4 & 3/5 & 3/6 & 3/7 & \ldots \\
4/1 & 4/2 & 4/3 & 4/4 & 4/5 & 4/6 & 4/7 & \ldots \\
5/1 & 5/2 & 5/3 & 5/4 & 5/5 & 5/6 & 5/7 & \ldots \\
6/1 & 6/2 & 6/3 & 6/4 & 6/5 & 6/6 & 6/7 & \ldots \\
\ldots & \ldots \\
f(1/1) &=& 1 & f(2/3) &=& 7 \\
f(1/2) &=& 2 & f(3/2) &=& 8 \\
f(2/1) &=& 3 & f(4/1) &=& 9 \\
f(3/1) &=& 4 & f(5/1) &=& 10 \\
f(1/3) &=& 5 & f(1/5) &=& 11 \\
f(1/4) &=& 6 & f(1/6) &=& 12 & \ldots \\
\end{array}
\]

Step Four:
The function f defined above is a bijection from \(\{ n : n \in \mathbb{Q} \text{ and } n > 0 \} \) to $\mathbb{N}-\{0\}$

(i) It is an injection:
No two rationals will end up mapped to the same number in $\mathbb{N}-\{0\}$

(ii) It is a surjection:
Since there are infinite number of positive rationals, every number in $\mathbb{N}-\{0\}$ will be equal to $f(x)$ for some rational x.

The Rationals are Countable

- We can use the result in (12) to show that the entire set of rationals \(\mathbb{Q} \) is countable.
- Consider the function \(h \) defined below (where \(f \) is the function in (12))

For all \(n \in \mathbb{Q} \),

\[
\begin{align*}
\text{if } n &= 0 & h(n) &= 0 \\
\text{if } n &> 0 & h(n) &= f(n) \\
\text{if } n &< 0 & h(n) &= -f(-n)
\end{align*}
\]

The function \(h \) above is a bijection from \(\mathbb{Q} \) to \(\mathbb{Z} \)

a. The function \(h \) is clearly an injection
 - Because \(f \) is an injection to \(\mathbb{N} \backslash \{0\} \) every positive rational will be mapped to a different positive integer, and every negative rational will be mapped to a different negative integer.

b. The function is clearly a surjection
 - Because \(f \) is an surjection to \(\mathbb{N} \backslash \{0\} \) every positive integer \(n \) will be equal to \(h(x) (= f(x)) \) for some positive rational.
 - Because \(f \) is an surjection to \(\mathbb{N} \backslash \{0\} \) every negative integer \(n \) will be equal to \(h(x) (= -f(-x)) \) for some negative rational.

Therefore, \(|\mathbb{Q}| = |\mathbb{Z}| = \aleph_0\)

2. Uncountable (Non-denumerable) Sets

So far, we’ve seen that \(|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \aleph_0\), even though \(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \)

- This might lead one to wonder whether, in addition, \(|\mathbb{R}| = \aleph_0\)
- In this section, we’ll see that this is not the case, \(|\mathbb{R}| \neq \aleph_0\)
 - That is, there are some infinities that are uncountable (non-denumerable)

Powersets and Cardinalities

For every set \(S \), \(|S| < |\wp(S)|\)

- Suppose that \(|S| = |\wp(S)|\). There must then be a bijection \(f: S \rightarrow \wp(S) \)
- Now, for any element \(x \in S \), it is clear that either \(x \in f(x) \) or \(x \notin f(x) \)
- Thus, we can define the set \(R = \{ x : x \notin f(x) \} \)
- Now, \(R \) is a subset of \(S \), and so there must be some \(y \in S \) such that \(f(y) = R \)
- Finally, it must be that either \(y \in f(y) \) or \(y \notin f(y) \)
 - Suppose \(y \in f(y) \). But then \(y \notin R \), and so \(y \notin f(y) \). Contradiction.
 - Suppose \(y \notin f(y) \). But then \(y \in R \), and so \(y \in f(y) \). Contradiction.
Key Consequence: \(|\varnothing(\mathbb{N})| > |\mathbb{N}| = \aleph_0 \)

If a set \(S \) is such that \(|S| > \aleph_0 \), then we say that \(S \) is uncountable (non-denumerable).

Key Result: The Real Numbers Between 0 and 1 are Uncountable

a. Key Background Fact:
 Every real number between 0 and 1 can be uniquely represented as a sequence consisting of ‘0.’, followed by an infinitely long number of decimals:

 \[
 0.13456789890989999\ldots \\
 0.57682838494827789\ldots
 \]

 Thus, every real number between 0 and 1 uniquely corresponds to a sequence of the form ‘0.a_{12}a_{34}a_{56} \ldots ’, where each \(a_i \) is a decimal number.

b. The Proof:
 Suppose that \(|\{ n : n \in \mathbb{R} \text{ and } 0 < n < 1 \}| = |\mathbb{N}|\). Then there is a bijection \(f \) from \(\{ n : n \in \mathbb{R} \text{ and } 0 < n < 1 \} \) to \(\mathbb{N} \).

 Given this bijection \(f \), it is possible to write an (infinitely long) list of all the members of \(\{ n : n \in \mathbb{R} \text{ and } 0 < n < 1 \} \). Given the key background fact in (16a), this list will look as follows, where \(a_{nm} \) is the \(m \)th decimal in the \(n \)th real number in the ordering:

 \[
 \begin{align*}
 1 & \quad 0. a_{11} a_{12} a_{13} a_{14} a_{15} \ldots \\
 2 & \quad 0. a_{21} a_{22} a_{23} a_{24} a_{25} \ldots \\
 3 & \quad 0. a_{31} a_{32} a_{33} a_{34} a_{35} \ldots \\
 4 & \quad 0. a_{41} a_{42} a_{43} a_{44} a_{45} \ldots \\
 \ldots
 \end{align*}
 \]

 Now, we can use this list to define a real number \(r \) between 0 and 1 that is not on this list:

 - The integer component of \(r \) is 0
 - The first decimal in \(r \) after 0 is different from \(a_{11} \)
 - The second decimal in \(r \) after 0 is different from \(a_{22} \)
 - The third decimal in \(r \) after 0 is different from \(a_{33} \)
 - (and so on…)

 The real number \(r \) is guaranteed not to appear anywhere on this list.

 After all, for any natural number \(n \), \(r \) will differ from \(f(n) \) in the \(n \)th decimal after 0.

 Therefore, this list doesn’t contain all the real numbers between 0 and 1. Consequently, there is no bijection from \(\{ n : n \in \mathbb{R} \text{ and } 0 < n < 1 \} \) to \(\mathbb{N} \).

 Thus, \(|\{ n : n \in \mathbb{R} \text{ and } 0 < n < 1 \}| \neq |\mathbb{N}|\). Thus, \(|\mathbb{R}| > |\mathbb{N}| = \aleph_0\).
(17) **Additional Transfinite Cardinals**

- For various reasons, it will be helpful to have a name for $|\mathcal{P}(\mathbb{N})|$:
 \[
 2^{\aleph_0}
 \]

 ‘the cardinality of $\mathcal{P}(\mathbb{N})$’

- It is known that $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$

3. **Proof by Mathematical Induction**

(18) **Key Axiom of Number Theory**

Suppose that for some property P, we can show (i) and (ii):

(i) 0 has property P

(ii) For any $n \in \mathbb{N}$, if n has property P, then $(n+1)$ has property P.

Then we can conclude that every $n \in \mathbb{N}$ has property P

(19) **Key Consequence of (18)**

Suppose that for some property P, we can show (i) and (ii):

(i) 0 has property P

(ii) For any $n \in \mathbb{N}$, if every number $m < n$ has property P, then n has P

Then we can conclude that every $n \in \mathbb{N}$ has property P

(20) **Some Terminology**

a. An argument making use of the axiom in (18) is typically referred to as a *proof by (weak) induction*.

b. An argument making use of the consequence in (19) is typically referred to as *proof by strong induction*.

c. In a proof by (weak/strong) induction,

(i) Proving that 0 has property P is called the ‘base step’ (‘base case’)

(ii) Proving either (18ii) or (19ii) is called the ‘induction step’.

Note: If the base case is some numeral $n > 0$, then a proof by induction demonstrates that P holds for all m such that $n \leq m$
(21) **Key Application**

If S is a countable set – that is, if there is a bijection $f: \mathbb{N} \to S$ – then we can use proofs by induction to prove things about S!

(22) **Illustration: Generalized Distributive Law**

Claim:
For all $n \in \mathbb{N}$ such that $2 \leq n$, $A \cup (B_1 \cap \ldots \cap B_n) = (A \cup B_1) \cap \ldots \cap (A \cup B_n)$

Proof by Induction:

a. **Base Step: $n = 2$**

$A \cup (B_1 \cap B_2) = (A \cup B_1) \cap (A \cup B_2)$

This follows from the simple set-theoretic equivalences proven in Chapter 1 of Partee *et al.* (1993).

b. **Induction Step**

Let $n \in \mathbb{N}$ be such that: $A \cup (B_1 \cap \ldots \cap B_n) = (A \cup B_1) \cap \ldots \cap (A \cup B_n)$

- By the associativity of intersection:

 $A \cup (B_1 \cap \ldots \cap B_n \cap B_{n+1}) = A \cup ((B_1 \cap \ldots \cap B_n) \cap B_{n+1})$

- Next, by the base step in (22a):

 $A \cup ((B_1 \cap \ldots \cap B_n) \cap B_{n+1}) = (A \cup (B_1 \cap \ldots \cap B_n)) \cap (A \cup B_{n+1})$

- Next, by the induction assumption for n:

 $(A \cup (B_1 \cap \ldots \cap B_n)) \cap (A \cup B_{n+1}) = ((A \cup B_1) \cap \ldots \cap (A \cup B_n)) \cap (A \cup B_{n+1})$

- Finally, by the associativity of intersection again:

 $((A \cup B_1) \cap \ldots \cap (A \cup B_n)) \cap (A \cup B_{n+1}) = (A \cup B_1) \cap \ldots \cap (A \cup B_n) \cap (A \cup B_{n+1})$

- **Thus**, $A \cup (B_1 \cap \ldots \cap B_n \cap B_{n+1}) = (A \cup B_1) \cap \ldots \cap (A \cup B_n) \cap (A \cup B_{n+1})$

Therefore, by (weak) induction, it follows that for all $n \in \mathbb{N}$ such that $2 \leq n$:

$A \cup (B_1 \cap \ldots \cap B_n) = (A \cup B_1) \cap \ldots \cap (A \cup B_n)$
(23) **Illustration of Strong Induction: Well Ordering Principle**

Claim: If \(S \subseteq \mathbb{N} \) and \(S \neq \emptyset \), then there is an \(a \in S \) such that for all \(s \in S \), \(a \leq s \).

Proof by Strong Induction:

- Suppose that there is an \(S \subseteq \mathbb{N} \) and \(S \neq \emptyset \). For a contradiction, suppose that there is no \(a \in S \) such that for all \(s \in S \), \(a \leq s \).

- By strong induction, we’ll show that for all \(n \in \mathbb{N} \), \(n \notin S \), and so \(S = \emptyset \), contrary to assumption.

a. **Base Step:** \(n = 0 \)
 Clearly, \(0 \notin S \). (After all, for all \(s \in S \), \(0 \leq s \))

b. **Induction Step**
 Let \(n \in \mathbb{N} \) be such that for all \(m < n \), \(m \notin S \). We will show that \(n \notin S \).

 - Suppose that \(s \in S \). Now, clearly \((n-1) < s \). (After all, if \(s \leq (n-1) \), then \(s < n \), and so by the induction assumption \(s \notin S \), contrary to assumption.)

 - Next, since \((n-1) < s \), it follows that \(n \leq s \). Since \(s \) was arbitrary, it follows that for all \(s \in S \), \(n \leq s \).

 - **Consequently, \(n \notin S \)** (After all, by assumption there is no \(a \in S \) such that for all \(s \in S \), \(a \leq s \)).

- **Thus, by strong induction, for all \(n \in \mathbb{N} \), \(n \notin S \), and so \(S = \emptyset \), contrary to assumption.**

- **Therefore, for any \(S \subseteq \mathbb{N} \) and \(S \neq \emptyset \), there is \(a \in S \) such that for all \(s \in S \), \(a \leq s \).**