Number Categories Beyond Singular and Plural

1. Introduction: Some Overarching Questions

Thus far in the term, we’ve explored semantic theories of the categories ‘singular’ and ‘plural’ in the grammar of English and related languages. However...

(1) Fundamental, Often Overlooked Fact

- In their nominal systems (NPs, pronouns, etc.) some languages seem to have inflectional number categories beyond merely singular and plural
- In these notes, we’ll take a look at some of these other number categories, using Corbett (2000) as our empirical guide.

(2) Some Overarching Questions

a. Are these other number categories of the same grammatical status as ‘singular’ and ‘plural’? That is, should these other categories really be treated as part of the same system?...

 - For example, if we assume that ‘singular’ and ‘plural’ correspond to (say) featural values of a functional head (Num), should we also assume the same for categories like ‘dual’, ‘trial’, ‘paucal’?...

b. If we treat these categories are all part of the same system (all possible ‘Num’ heads), then in what ways (if any) should their internal representation differ?

 - That is, should we view ‘singular’, ‘plural’, ‘dual’, ‘trial’, ‘paucal’, etc. as all separate, primitive features?
 - Or, should we employ a more structured featural representation of these categories, perhaps one that can derive their relative markedness relationships (cf. theories of person)

c. How should we treat the semantics of these ‘trans-plural’ categories? How does their semantics differ from that of the more basic categories (sing, plu)?

 - Note that the ‘trans-plural’ categories (dual, trial, paucal, etc.) seem to depend upon the cardinality of the entity in question, and not simply on whether the entity is an atom or not…
 - In that way, they seem semantically quite different form the basic number categories, which raises again the questions in (2a) and (2b)…
2. The Categories

In this section, let us explore some basic facts regarding each of the ‘trans-plural’ categories discussed by Corbett (2000): dual, paucal, trial and quadral...

(3) The Dual

a. Basic Semantics
 A definite DP or pronoun bearing dual number refers to a pair of entities.

b. Example (Slovenian)
 Umij si obé roki-i!
 wash REFL both hand-DUAL
 Wash both hands!

c. Distribution
 Compared to the other ‘trans-plural’ categories, the dual is incredibly common. It was found, for example, in Proto-Indo-European, and remains today in certain IE languages (e.g. Slovenian).

(4) The Paucal

a. Basic Semantics
 A definite DP or pronoun bearing paucal number refers to a plurality with a relatively small cardinality.
 • Like ‘a few’ in English, there is no specific upper-bound (and the lower bound depends upon whether the language has a dual or a trial)

b. Pragmatics of the Paucal
 Given that there is no fixed upper bound for the paucal, languages tend to use it to communicate relative size of two pluralities

(i) Fijian (Corbett 2000: 23)
 In one illustrative example, 1st person plural is used to refer to the entire village (us), while 2nd person paucal is used to refer to parts of the village (even though the parts in question consist of about 20 people…)

(ii) Paamese (Corbett 2000: 24)
 In one illustrative example, plural is used to refer to the entire nation of Vanuatu, while paucal is used to refer to the population of Paama (which numbers about 2,000)

c. Distribution
 The paucal is comparatively rare, but still regularly attested. It is usually found paired with the dual, but this isn’t always so. It’s been found in many Austronean languages and families, but also in:
 (i) North America (Hualapai; Arizona)
 (ii) South America (Pilagu; Argentina) (iii) East Africa (Bayso; Ethiopia)
(5) The Trial

a. Basic Semantics:
 A definite DP or pronoun bearing trial number refers to a plurality with exactly three atoms.

b. Example (Larike)

 Duma hima aridu na’a.
 house that 1.TRIAL own
 We (three) own that house.

c. Distribution
 Very rare. Much less attested than either the dual or the paucal. Mainly described for languages of either either in Indonesia or Australia, but commonplace in neither of those regions…

(6) The Quadrals

a. Basic Semantics:
 A definite DP or pronoun that bore quadrals number would refer to a plurality with exactly four atoms.

b. Existence?
 Corbett (2000) concludes that, contrary to some descriptions, true ‘quadral’ number does not exist…
 o While some grammars report a ‘quadral’, it seems that all such instances are more properly dubbed a ‘paucal’…

(7) Generalization: No ‘Exact’ Numbers After Three

• Given Corbett’s (2000) description of the typological facts, it seems that dual and the trial stand out in being ‘exact’ numbers, in specifying the exact cardinality of the plurality referred to.

• Moreover, it seems there is no such ‘exact’ number greater than the trial. (No language has been reported to have a true ‘quadral’, ‘quintal’, etc.)

• Moreover, it seems that the trial itself is incredibly rare (particularly compared to the dual). Thus, for the most part, the dual is the only allowable ‘exact’ number…
3. The Morphosyntactic Nature of the ‘Trans-Plural’ Categories

(8) Question (Vaguely Stated)

Does the existence of these additional number categories require us to include formal features like ‘DUAL’ or ‘PAUCAL’ in our theory of UG?

• That is, are these number categories actually inflectional in the same way that (e.g.) number in English is…

[Diagram]

• Or, are they more like derivational categories? Could they simply be some form of incorporated or encliticized numeral modifier? (Could trial number ultimately be nothing fundamentally different from modification by the numeral three?)

[Logical Form: Pronounced Form: “N-three”]

(9) One Potential Test: Agreement

• One strong reason for the view that ‘singular’ and ‘plural’ are realizations of inflectional features is the phenomenon of agreement.

• Our theory of agreement essentially requires that if two heads agree with respect to category X, then category X must be encoded as an inflectional feature (which can be in some way ‘passed around’ to the agreeing head.

• So, can we find that there is true agreement for the categories dual, trial, and paucal?
(10) **The Tentative Answer**

An examination of Corbett (2000) reveals the following interesting (tentative) answer:

a. **Agreement for Dual**
 It is unquestionable that verbs and adjectives bear agreement marking specifically to the dual. There are many examples that can be found in Corbett (2000):
 - Slovenian
 - Amele (New Guinea)
 - Athabaskan
 - Kiowa-Tanoan
 - Finno-Ugric

b. **No Agreement for Trial and Paucal**
 I can find no example in Corbett (2000) illustrating verbal or adjectival agreement for either the trial or the paucal.
 - This may be due to the relative paucity of languages exhibiting these categories.
 - However, there is also the interesting case of Bayso (p. 183):
 *Bayso generally exhibits number agreement, but for paucal nouns the agreement form on the verb is simply that of the **plural**...*

c. **Caveat: Murik**
 On page 23, Corbett briefly mentions that the Murik language distinguished ‘paucal’ on agreeing adjectives...

(11) **Another Potential Test: Facultative Number**

a. **Facultative Number**
 A given number category is said to be **facultative** if its use is not required (when referring to an entity that would satisfy its meaning).

b. **Example:**
 In Ngan’gityemerri, you can use the trial if you’d like to include the information that the plurality in question had three atoms. However, if that information is already known (or not important), you can use the plural to refer to that entity.

c. **Observation:** Facultative number seems to have much the same use as just regular numeral modifiers (use them if you want to convey the information)

d. **So, can we determine whether the categories dual, trial and paucal are ever non-facultative?**
(12) **The Tentative Answer**

An examination of Corbett (2000) reveals the following interesting (tentative) answer:

a. **Dual is Not Always Facultative**
 It is unquestionable that in some languages, the dual is not facultative, and is instead required whenever reference is made to some pair.

b. **Trial and Paucal are Always Facultative**
 • Corbett (2000) explicitly hypothesizes that trial number is always facultative
 • Though he doesn’t directly address this question, where the data is present, it seems that every instance of the paucal discussed by Corbett (2000) is also facultative…

(13) **Generalization (and Hypothesis)**

A number category is *facultative* only if there is no agreement morphology specific to that category.

- A strengthened bi-conditional generalization would be irrelevantly falsified by either accidental homophony or syncretism in the agreement system.

- This generalization might be falsified by Slovenian, which some linguists describe as having facultative dual (but see Dvorak & Sauerland 2006).

- This generalization might be falsified by Ancient Greek, which some linguists describe as having facultative dual (but compare to Slovenian).

- This generalization would be predicted by a view where facultative number is not inflectional, but is simply an optional modifier to the noun (akin to modification by a numeral modifier).

(14) **Tentative Conclusion**

The only *true inflectional number categories* are singular, plural and dual.

- That is, it is only SING, PLUR and DUAL that are possible values of the functional ‘Num’ head.

- All other number categories (paucal and trial) are ‘some other kind of beast’, possibly a kind of optional derivational category (semantically and syntactically akin to numeral modification…)
(15) **Question**
If (14) is on the right track, *why is dual distinguished in this way?* Why couldn’t trial be as ‘inflectional’ (and as common) as dual?

- This is made all the more puzzling if the semantics of dual is as in (a) below (Dvorak & Sauerland 2000).

- There doesn’t seem to be anything to distinguish it from the putative ‘inflectional trial’ in (b)…

a. $[[\text{DUAL }]] = [\lambda x . |x| \leq 2 . x]$ (identity function on pairs/atoms)

b. $[[\text{TRIAL }]] = [\lambda x . |x| \leq 3 . x]$ (identity function on triples/pairs/atoms)

(16) **A Highly Speculative Answer**

There does seem to be something that semantically distinguishes dual and plural from ‘trial’: the relative ease in defining their meaning as an operator on sets.

a. **Background: The Plural**

 *(S) = The smallest set such that

 (i) $S \subseteq *S$

 (ii) if $x, y \in *S$, then $x+y \in *S$

b. **Similar Semantics for the Dual**

 DUAL(S) = The smallest set such that

 (i) $S \subseteq $DUAL(S)

 (ii) If $x, y \in S$, then $x+y \in $DUAL(S)

 Under this definition, DUAL(S) would consist of all the entities in S, and all the pairs you could construct from entities in S.

c. **Similar Semantics for the Trial**

 TRIAL(S) = The smallest set such that

 (i) $S \subseteq $TRIAL(S)

 (ii) If $x, y, z \in S$, then $(x+y)+z \in $TRIAL(S)

 Under this semantics, TRIAL(S) would consist of all the entities in S, all of the pairs you could construct from entities in S, and all the triples you could construct from entities in S.

d. **Observation (For What It’s Worth)**

 Given that ‘+’ in our metalanguage is a *binary operator*, its use has to be invoked *twice* in the definition of ‘TRIAL’ in (16c)…

 … and in that sense, the definition in (16c) is a bit less natural looking than those in (16b) and (16a)…
4. **The Number Hierarchy**

(17) **Implicational Relations Between Number Categories**

There are cross-linguistic and language-internal implication relations between the various number categories:

a. **Examples:** Every language with a dual has a plural.
 Every language with a trial has a plural.
 Every language with a trial has a dual…

(18) **The Classic ‘Markedness Hierarchy’ for Number (Greenburg 1963)**

singular > plural > dual > trial

(19) **An Overarching Question**

- What is the source of these implication relations?
- Can a formal, representational explanation be found (*e.g.* as in the case of the ‘person hierarchy’)?

(20) **A Problem for the Classic ‘Markedness Hierarchy’ (Corbett 2000)**

a. **The Problem:** Where do we put ‘paucal’ in this hierarchy?

b. **Why It’s a Problem:**

 - Every language with a paucal has a plural, and so we should place it ‘after’ plural on the scale in (18).
 - However, there are languages with a dual but no paucal, and so we shouldn’t place it ‘before’ dual.
 - And, there are languages with a trial but no paucal, and so we shouldn’t place it ‘before’ trial either.
 - But, there are also languages with a paucal, but no dual or trial, and so we shouldn’t place paucal ‘after’ either dual or trial…
(21) **Corbett’s (2000) Solution**

Rather than represent the number hierarchy linearly, as in (18), Corbett (2000) argues that it should be represented via two-dimensional tree structures.

a. **Part 1:**
The basic number opposition is that between **singular** and **plural**, which will be represented as the following tree structure.

```
  NUM
 /   |
SING  PLUR
```

b. **Part 2:**
Additional number categories should be represented as a further delineation of the category ‘plural’. This begins with the ‘exact’ numbers – dual and trial – which are ordered according to the classic hierarchy in (18)

(i) **Language with Dual**

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

(ii) **Language with Dual and Trial**

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
        /   |
TRIAL  PLUR
```

c. **Part 3:**
Once the determine numbers for the language have been chosen, a final decision is made regarding whether the language has a paucal or not…

… note that this decision is independent of whether dual or trial has been chosen…

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
        /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
        /   |
TRIAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
        /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
DUAL  PLUR
```

```
  NUM
 /   |
SING  PLUR
     /   |
PAUC  PLUR
```
22) **Key Results of this Representation**

a. Under this representation, it’s clear that presence of the category paucal entails presence of the category plural, but it’s also clear that presence of the category paucal is *independent* of the categories dual and trial…

b. This representation also captures an interesting and puzzling fact regarding facultative number…

23) **Facultative Number Leads to Expression of Plural**

If a given number is facultative, then the choice not to express that number leads the speaker to instead use the general category ‘plural’.

- If dual is facultative, then *plural* will be used when dual is not, *regardless of whether or not the language has a paucal*.

- If paucal is facultative, then plural will be used when paucal is not, *regardless of whether or not the language has a (facultative) dual or trial…*

24) **Corbett’s (2000) Representational Solution**

- If a number is facultative, then we may mark a little ‘arc’ between the number and its sister on the tree.

Illustration, facultative dual:

```
  NUM
     /\    \  
    SING  PLUR
       / \   / \  
      DUAL PLUR
```

- This little arc is taken to signify that the distinctions made below the mother node of the number category are only optionally made (and so the speaker may ignore those distinctions if they like)

- Consequently, since every number category in the tree is a ‘refinement’ of plural (*i.e.*, is dominated by the node ‘PLUR’) it follows that the category *plural* will be used in lieu of that category, and not any others…
(25) **Overarching Question**

Is it possible to capture the key results in (22) via a particular syntactic and semantic representation of the number features in question?

... I don’t have a clue as to the answer to (25), but I can sketch out some desiderata for such a theory (as well as challenges for capturing those desiderata...)

(26) **Desideratum 1: Facultative Number Alternates with Plural (23)**

The Challenge for a Syntactic/Semantic Theory:

In a language that has both dual and paucal, why not use paucal in lieu of a (facultative) dual? It would seem that a pair of entities would (prima facie) satisfy the semantics of paucal...

(27) **Desideratum 2: Paucal Implies Plural (20)**

The Challenge for a Syntactic/Semantic Theory:

Why couldn’t a language fail to overtly distinguish plurals, but have overt, specialized morphology for paucals?

(28) **Desideratum 3: Trial Implies Dual**

The Challenge for a Syntactic/Semantic Theory:

Again, why couldn’t a language fail to overtly distinguish duals, but have overt, specialized morphology for trials?

5. **The Category of ‘General Number’**

The categories discussed above are all ones that languages use *in addition* to the more basic distinction between *singular* and *plural*...

...However, some languages also possess a form that is underspecified as to number...

(29) **General Number (Corbett 2000)**

In a language exhibiting a singular/plural distinction, *general number* is a form that

a. **Basic Semantics**

 A definite DP or pronoun bearing *general number* may refer to either an atomic individual or a strict plurality.

b. **Example (Japanese)**

 Kooen ni wa inu ga iru rasii.

 park in TOP dog/dogs NOM be seems

 It seems there is a dog / are dogs in the park.

c. **Distribution**

 Incredibly common system across the world.

d. **Pragmatics**

 In many languages, general number tends to be used with *nonspecific indefinites*
(30) **A Note on the Morphological Expression of ‘General Number’**

- In most languages exhibiting ‘general number’, there is a binary morphological opposition between the ‘general number’ form and a form specific to the plural.

- However, there are some languages that have a three-way morphological opposition between (i) a form that is unambiguously singular, (ii) a form that is unambiguously plural, and (iii) a form that is unambiguously plural.

 - Bayso (Cushitic; Ethiopia) **[fully regular system]**
 - Fula (Sierra Leone) **[but only for some nouns]**
 - Arabic **[but only for some nouns]**

- No language seems to exhibit a (fully productive) binary morphological opposition between ‘general number’ and a form specific to the singular

Side-Note:
The third generalization under (30) seems like a challenge to the semantic theory of Sauerland (2003) etc.

(31) **Question:**
Why not simply analyze ‘general number’ as cases where ‘plural’ is facultative (optional)?

(32) **Answers:**

- There are some cases where there is a three-way opposition between singular/plural/general.

- If the view of a language like Japanese is that plural is facultative (optional), then we must still assume that the unmarked form is underspecified for number…
 Which is to say that it’s not really **singular**, but **general**…

(33) **Question:**
Are there any languages that completely lack any morpho-syntactic means for ‘marking number’ (for disambiguating between atomic and plural reference)?

(34) **Answer:**

- No. There are allegedly languages that lack a marker used *specifically* to indicate plurality (Piraha, Old Javanese, Classical Chinese)…

- …But even these languages can disambiguate between singular and plural reference via the use of certain independent modifiers (e.g. quantifiers like ‘all’ or ‘one’).
(35) **Important Note**

- As in many typological studies of this sort, Corbett’s (2000) descriptions of the various linguistic systems are rather shallow and superficial.

- Due to this superficial treatment of the semantics of number, he seems to view ‘plural’ in languages with ‘general number’ – like Japanese and Chinese – as if it were the same category as ‘plural’ in a language like English.

- However, as in-depth formal semantic study has shown, the semantics of the optional plural markers in these languages seems to differ significantly from the semantics of plural in English (Li 1999, Nakanishi & Tomioka 2004).

- If this contrast is robust, it is certainly something we would want a formal typology to explain.

6. **The Question of ‘Greater Plurals’**

Although the data is rather spotty (Corbett 2000), some languages seem to distinguish between a ‘regular plural’ and a ‘greater plural’.

(36) **Greater Plural (Corbett 2000)**

a. **Basic Semantics**
A ‘greater plural’ is often used to either signal an ‘abundant amount’ of the entities in question, or else some kind of universal quantification or ‘domain widening’

b. **Difference From Pacual / Plural Distinction**
The ‘normal plural’ can be used to refer to pluralities of any size, while the ‘greater plural’ has the special meanings indicated above.

c. **Distribution:**
This kind of a system is rather rare, and the descriptions to date are rather spotty. Some case studies are discussed below.

(37) **Overarching Question**

Given how spotty the data description here is, one might wonder whether these aren’t simply paucal/plural systems, particularly given the typical ‘contrastive’ pragmatics of the paucal discussed under (4)...

Below are some particular ‘case studies’, taken from Corbett (2000).
(38) **Banyun (Corbett 2000: 31)**
Nouns contrast in singular, plural and a third category called ‘unlimited’. The ‘unlimited number’ is understood to mean more entities than a mere plural, and usually indicates that it is a number beyond counting (or where counting is irrelevant/pointless).

a. bu-sumal *snake* (SING)
b. i-sumal *snakes* (PLUR)
c. *ti-sumal* ‘*snakes beyond counting*’ (UNLIM)

NOTE:
Given the sketchiness of the description, it’s worth asking whether this ‘unlimited number’ category is simply ‘general number’.

(39) **Fula (Corbett 2000: 31)**
Nouns contrast in singular, plural, and ‘greater plural’. Simple ‘plural’ is understood to denote a ‘normal number’ of the entities in question, whereas ‘greater plural’ is used to denote a very large number entities.

a. ngesa *field* (SING)
b. gese *fields* (PLUR)
c. *geseeli* *large number of fields* (G.PLUR)

NOTE:
Corbett (2000) notes that here the data are insufficient to really tell whether we don’t just have a pacual / plural distinction…

(40) **Hamer (Corbett 2000: 32-33)**
Nouns contrast between general, singular, plural, and ‘global plural’. The latter is used to denote ‘all instances’ of the category in question.

a. k’uli *goat(s)* (GEN)
b. k’ulta/o *goat* (SING)
c. k’ulla *goats* (PLUR)
d. k’ultono *all goats* (GL.PLUR)

Note:
- Corbett (2000) notes that the data here are insufficient to decide whether this is really a number distinction, or something to do with definiteness (or quantification).
- It’s also worth wondering whether the semantics of the ‘global plural’ is something akin to the domain widening effects of NPIs like *any*

Corbett (2000) also discusses a few other cases, but they aren’t significantly different (or better described) than those above…
7. The Question of ‘Composed Numbers’

(41) The General Phenomenon

- Intriguingly, some languages allow non-vacuous stacking of number morphology.

- As shown below, the semantic effect varies, but seems in some cases to involve reference to pluralities of pluralities (or groups of different groups)

(42) Breton (Corbett 2000: 36)

Breton allows Ns to bear both dual and plural morphology. The resulting N seems to refer to multiple pairs of the entities in question.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>lagad</td>
</tr>
<tr>
<td>b.</td>
<td>daou-lagad</td>
</tr>
<tr>
<td>c.</td>
<td>daou-lagad-ou</td>
</tr>
</tbody>
</table>

Also, for Ns with irregular plural morphology, Breton allows the N to bear both irregular and regular plural morphology simultaneously. The resulting N seems to refer to multiple groups of the entities in question.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>bugel</td>
</tr>
<tr>
<td>f.</td>
<td>bugal-e</td>
</tr>
<tr>
<td>g.</td>
<td>bual-e-ou</td>
</tr>
</tbody>
</table>

(43) Finnish (Corbett 2000: 36)

Typically, a numeral in Finnish combines with a singular form of the N. However, the language also allows both the numeral and the N to be simultaneously pluralized. The resulting NP seems to involve numerical quantification over groups of the entities in question.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>kolme suka</td>
</tr>
<tr>
<td>b.</td>
<td>kolme-t suka-t</td>
</tr>
</tbody>
</table>

(44) Warekena (Corbett 2000: 37)

Warekena has both a ‘normal plural’ and a ‘greater plural’. It allows Ns to bear both plurals simultaneously. The semantic effect seems to be to further amplify the number of entities in question.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>abida</td>
</tr>
<tr>
<td>b.</td>
<td>abida-pe</td>
</tr>
<tr>
<td>c.</td>
<td>abida-nawi</td>
</tr>
<tr>
<td>d.</td>
<td>abida-pe-nawi</td>
</tr>
</tbody>
</table>
Some Commentary

- The semantics of ‘composed numbers’ seems to challenge the common view that ‘pluralization of plurals’ is (or should be) semantically vacuous (or semantically anomalous).

- For this reason, the semantics of ‘composed numbers’ in Breton and Finnish seems to suggest an ontology involving ‘groups’, in the sense of Landman (2000).

- The semantics of pluralized numbers in Finnish seems to be what one would obtain by combining the classic GQ semantics of the numeral with the pluralized NP (see the handout “The Basics of Plurals, Part 2”)

 - It’s worth wondering, then, if perhaps numerals in languages like Finnish simply have classic GQ semantics…
 - …This might explain why those numerals typically combine with singular NPs (see “The Basics of Plurals, Part 2”)