Deriving the Diversity of Contrastive Topic Realizations

Noah Constant
University of Massachusetts, Amherst
constant@linguist.umass.edu

MIT
March 20, 2013
Big Picture

- Cross-linguistically, information structure has wide range of effects on shape and pronunciation of sentences.

- How should we understand this variation?

- **Big Questions:**
 - How is the structure of discourse represented in mind and in grammar?
 - What kinds of discourse-sensitive meanings do languages express? Are there common structural mechanisms underlying these expressions?
 - Can the reflexes of information structure tell us something about the architecture of grammar?
 - How are prosody and meaning related?
 - What S-side material is accessible to the phonology?
Today

• Looking at contrastive topic (CT) constructions

(1) Only a few words account for the overwhelming bulk of words used in a language. [...] This is, of course, a welcome situation for getting one’s feet wet in a language. But the second consequence of Zipf’s law is troubling for those who would master the reading of languages.

— Ernest Blum, American Scholar 77(4)

• We find CT marked by word order, intonation, and/or particles

• **Goal**: A unified theory of CT that…
 ○ captures its meaning
 ○ can derive all these realizations
Methodology

- Typologically driven:
 - Analysis of one language informs analysis of another
 - e.g. discourse particles in one language can inform possible analyses of intonation contours in another

- Cross-subfield, with emphasis on interfaces:
 - Semantic account informs phonological account and vice versa
Roadmap

1. What is contrastive topic?
2. Büring’s theory of CT
3. Topic Abstraction theory of CT
4. Reflexes of CT structure
What is Contrastive Topic?
Contrastive Topic and Exhaustive Focus

(2) A: What about Persephone and Antonio?
 What did they bring?

 B: [Persephone]_{CT} \ldots \text{ brought } [\text{the gazpacho}]_{Exh}.

 \begin{align*}
 &L+H^* \quad L-H^% \\
 &H^* \quad L-L^%
 \end{align*}

- Exhaustive Focus (Exh) answers a question
- Contrastive Topic (CT) is what current question is about, implies other question(s) about different topic(s)
CT+Exh, Exh+CT and Lone CT

(2) A: What about Persephone and Antonio? What did they bring?

B: \([Persephone]_{CT} \ldots \) brought \([the \ gazpacho]_{Exh} \).

CT+Exh

L+H* \ L-H%

H* \ L-L%

(3) A: What about the gazpacho and the salad? Who brought those?

B: \([Persephone]_{Exh} \) brought \([the \ gazpacho]_{CT} \ldots \).

Exh+CT

H* \ L-

L+H* \ L-H%

(4) A: What about Persephone and Antonio? Did they bring anything?

B: \([Persephone]_{CT} \) brought something \ldots \)

Lone CT

L+H* \ L-H%
Lone CT

- Can “Lone CT” be covered under a general theory of CT?
 - Yes? (Jackendoff 1972, Büring 2003, Constant in prep.)
 - No? (Wagner 2012, Constant 2012a)
- Treat these examples separately as “Rise-Fall-Rise”
- Answer for today: Yes
CT Realizations

• **Prosody**
 - English (Jackendoff 1972)
 - German (Büring 1997)

• **Discourse Particle**
 - Japanese (Tomioka 2010b)
 - Korean (Lee 2003)
 - Mandarin (Constant 2011)
 - Paraguayan Guaraní (Tonhauser 2012)
 - Russian (Lee 2003)
 - Dholuo (Constant 2009)

• **Word Order**
 - Hungarian (Gyuris 2002)
 - Czech (Sturgeon 2006)
 - Italian (Frascarelli and Hinterhölzl 2007)
German Bridge Contour

- Rise on CT (L* H)
- Fall on Exh (H* L)
- High plateau in between

(5) (And Fred? What did he eat?)

/Fred hat die bohnen\ gegessen.
Fred has the beans eaten
‘[Fred]_{CT} ate [the beans]_{Exh}.’

(6) (And the beans? Who ate those?)

a. #Fred hat die bohnen gegessen.
Fred has the beans eaten

b. Die /bohnen hat Fred\ gegessen.
the beans has Fred eaten
‘[The beans]_{CT}, [Fred]_{Exh} ate.’

(Wagner 2012) CT+Exh

(Wagner 2012) #Exh+CT
Mandarin CT - *ne*

- **Positions of CT -ne**
 - Directly following topicalized CT phrases
 - Sentence-final when CT remains in situ (Constant 2011)

(7) 妈妈 每天 晚上 很 晚 才 回家。
Māma měi-tiān wǎnshàng hěn wǎn cái huí-jiā.

'Every day mom doesn’t come home until late. (Shao 1989: 174)

[Dad]_{CT NE} [doesn’t even come back at all]_{Exh}.'
Czech CT Position

- CT moves to fixed position in left periphery (Sturgeon 2006)

(8) Svůj sešit jsem ztratil,
 self’s notebook ACC AUX.1SG.CL lost
 ale svou učebnici ještě mám.
 but self’s textbook ACC still have

 ‘[My notebook]_{CT}, I [lost]_{Exh}, but [my textbook]_{CT}, I [still have]_{Exh}.’

- Below aboutness topic, above focus
- Optionally resumed by a pronoun
- CT or resumptive usually receives rising intonation
Büring 2003
CT- and F- Marks

- $[\cdot]_{CT}$ and $[\cdot]_F$ marks in the syntax

(9) $[Fred]_{CT}$... ate $[the\ beans]_F$.

- Realization

$$[\cdot]_F \rightarrow H^* L\ L^\%$$
$$[\cdot]_{CT} \rightarrow L+H^* L\ H^\%$$
Discourse Trees

- Roberts’ (1996) question under discussion (QUD) stack model of discourse

(10)

“The Big Question”

What do you like? Wanna go for coffee?

What foods do you like? Do you like rainy days?

You like beets? You like goat? Cold rainy days? Warm rainy days?

No, yuck! Never had it. No! Yes!

- “Strategy”: a set of sub-questions addressing a common larger question
CT Meaning

• CT Congruence (informal):
 1. Replace F-marked phrases with variables \rightarrow a question
 2. Replace CT-marked phrases with variables \rightarrow a set of questions
 3. Discourse contains strategy of ≥ 2 questions from this set
 4. We’re answering one question from this strategy, but others are salient

(11) a. $[\text{Fred}]_{CT}$ ate $[\text{the beans}]_F$.
 b. $[\text{Fred}]_{CT}$ ate x. \rightarrow What did Fred eat?

(12) Who ate what?
 \begin{align*}
 \text{What did Fred eat?} & \quad \text{What did Mary eat?} \\
 | & \\
 \text{Fred ate beans.} & \quad \text{Mary ate pasta.}
 \end{align*}
Semantic Problems (1/2)

- Predicts no CT in questions

- But CT is attested in questions in…
 - Czech (Sturgeon 2006)
 - Japanese (Tomioka 2010a)
 - Mandarin (Constant 2012b)
 - Turkish (Kamali and Büring 2011)

(13) 去 德国 怕 受 瓜田之嫌，
Qù Déguó pà shòu guātiánzhīxián,
去 Germany 怕 受 瓜田之嫌，
go Germany fear receive suspicion

那么 别的 国家 行不行 呢?
nàme biéde guójiā xíng-bù-xíng ne?
then other country okay-not-okay CT

‘If going to Germany would arouse suspicion, would [other countries]_{CT} be okay NE?’
Semantic Problems (2/2)

- Requires a new dimension of meaning $[\cdot]^{ct}$ with an independent set of composition rules.

- Since CT is interpreted in-situ, doesn’t capture the limited island-sensitivity of CT.

(14) (What about Mary? Which of her drawings was the best?)

?? The drawing that $[Mary]_{CT} \ldots$ did of $[Fred]_{Exh}$ was the best.

- Makes the wrong predictions about sentences containing multiple CT’s.

(15) $[On\ Sundays]_{CT} \ldots [Fred]_{CT} \ldots [stays\ home]_{Exh}$.
Interface Problems (1/2)

- **Realization**

 \[
 \begin{align*}
 \text{[\cdot]}_F & \rightarrow \text{H}^* \text{ L- L}\% \\
 \text{[\cdot]}_{CT} & \rightarrow \text{L+H}^* \text{ L- H}\%
 \end{align*}
 \]

- Stipulative mapping, bypasses standard views of syntax-phonology interface

- What determines position of rising CT boundary tone (L-H%)?
- CT-marking “realized by a boundary tone on the constituents so marked”.
Interface Problems (2/2)

- But the L-H% boundary doesn’t track the CT:

(16) (What about the Fred and Mary? Did they bring anything?)

\[\text{[Mary]}_{\text{CT}} \text{ brought something } \begin{array}{ll}
\text{L+H*} & \text{L-H%} \\
\end{array} \]

(17) (What about Fred and Mary? Did they bring anything tasty?)

a. The dish that \[\text{[Mary]}_{\text{CT}} \text{ brought } \begin{array}{ll}
\text{L+H*} & \text{L-H%} \\
\end{array} \text{ was } \text{[superb]}_{\text{Exh}}. \\

b. *The dish that \[\text{[Mary]}_{\text{CT}} \text{ brought } \begin{array}{ll}
\text{L+H*} & \text{L-H%} \\
\end{array} \text{ was } \text{[superb]}_{\text{Exh}}. \\

- Similarly, CT particles don’t always track or robustly identify CT phrase:
 - Japanese (Davis 2010)
 - Mandarin (Constant 2011)
 - Paraguayan Guaraní (Tonhauser 2012)
The Topic Abstraction Account
Configurational Theories (1/3)

- Recent theories of CT aim to do without $[\cdot]_{CT}$ marks
- **Idea**: CTs are just F-marked phrases in specific configurations

- $[\cdot]_{F}$ marks alternative-generating focus (Rooth 1985)
- Focus-sensitive operators can use alternatives to different effects

(18) a. David only wears a bow-tie when $[teaching]_{F}$. (Beaver & Clark ’08)

 b. David only wears $[a \ bow-tie]_{F}$ when teaching.

(19) David even wears $[a \ bow-tie]_{F}$ when teaching.
• F-marking has general reflexes in phonology (Selkirk 1984 et seq.; Truckenbrodt 1995, 1999; Schwarzschild 1999, many others...)

• Focus Interpretation (Rooth 1996)
 ○ Compute focus values $\left[\cdot \right]^f$ by substituting in F-marked positions
 ○ Squiggle (\sim) operator relates focus values to discourse antecedents

\[\left[[\text{Ede}]_F \text{ wants coffee.} \right]^f \]
\[= \{ \text{Ann wants coffee, Bob wants coffee, ...} \} \]
\[= \text{“Who wants coffee?”} \]

• Squiggle will require the context contain a question “Who wants coffee?”
Configurational Theories (3/3)

(21) $CT_{1,2}$

Assert

Exh$_3$

$[Fred]_{F_1}$ ate $[the\ beans]_{F_{2,3}}$

Tomioka 2010b

(22) λ_1

FOCUS

λ_2

FOCUS

$[Fred]_F$ ate $[the\ beans]_F$

Wagner 2012
But how do these structures get mapped onto CT realizations?
Topic Abstraction

- CT phrase interpreted at CT operator position
- CT operator creates “set of question” meanings

\[
\left[\text{Fred}_F \ \text{CT}_3 \ t_3 \ \text{ate the beans}_F \right]^f = \begin{cases}
\text{What did Ann eat?} \\
\text{What did Bob eat,} \\
\ldots
\end{cases}
\]

- Rooth’s squiggle (\sim) relates these meanings to discourse anaphors
Advantages of Topic Abstraction Semantics

- **Conceptual**
 - Capitalizes on existing models of focus
 - Does without CT-marks and CT congruence condition

- **Empirical**
 - Extends to CT marking in questions
 - Captures asymmetries in multiple CT
 - Predicts limited island sensitivity of CT

- But how does this structure get spelled out?
Reflexes of CT Structure
CT Movement

- If movement to CT operator is overt, we predict languages with fixed CT position
- Czech, Italian, Hungarian are “CT movement” languages
- English and German allow “CT in-situ”
The Challenge

(23) a. \(\text{CT I gave } [\text{Fred}]_F [\text{the beans}]_F\)

\[\text{CT+Exh}\]

b. \(\text{CT I gave } [\text{Fred}]_F [\text{the beans}]_F\)

\[\text{Exh+CT}\]

\[\downarrow\]

(24) a. \(\text{I gave } [\text{Fred}]_{\text{CT}} \ldots [\text{the beans}]_{\text{Exh}}\)
\(\text{L+H* L-H%} \quad \text{H* L-L%}\)

b. \(\text{I gave } [\text{Fred}]_{\text{Exh}} [\text{the beans}]_{\text{CT}} \ldots\)
\(\text{H* L-} \quad \text{L+H* L-H%}\)

- Phrase associating with CT \(\rightarrow\) \(\text{L+H* L-H%} \quad ??\)
Pronouncing the CT Operator

- **Idea**: CT operator lexicalized as particle (e.g. Mandarin -ne)

- If CT movement is overt...

\[(25) \begin{array}{ll}
[Fred]_F & \text{CT } t_1 \text{ ate } [\text{the beans}]_F \\
\end{array}
\]

 \[\text{CT}+\text{Exh}\]

- Sentence-final CT via clause-movement:

\[(26) \begin{array}{ll}
[\begin{array}{l}
[Fred]_F \text{ ate the beans}
\end{array}]_\text{IP} & \text{CT } t_1 \\
\end{array}
\]

 \[\text{Lone CT}\]

- Known approach to deriving sentence-final particles
 (see e.g. Sybesma 1999, Li 2006)

- Topic abstraction semantics are insensitive to pied-piping extra material
Dissociating CT Operator from CT Phrase

• If CT movement is covert…

• Paraguayan Guaraní = katu (Tonhauser 2012)
 - Second position clitic = katu marks utterance containing CT
 - Word order does not determine which phrase is CT

(27) A: Juana was born in Argentina. Where was Bob born?
 B: *Bob* = katu o-nasẽ *Estado Unido*-pe.
 Bob=CT A3-born America-in
 ‘*[Bob]_{CT} was born in *[the US]_{Exh}.’

(28) A: Juana was born in Argentina. Who was born in the US?
 B: *Bob* = katu o-nasẽ *Estado Unido*-pe.
 Bob=CT A3-born America-in
 ‘*[Bob]_{Exh} was born in *[the US]_{CT}.’
English CT as IntP Clitic

- Edge Tones \approx Discourse Particles (Hyman 1990, Selkirk 1995, Yip 2002)

- **Claim**: English CT operator $=$ L-H%

- Clitics subcategorize for specific prosodic domain (Inkelas 1991)
 - e.g. mora, syllable, foot, word, phonological phrase, intonational phrase

- Clitics to PhonP: Hausa, Kivunjo Chaga (Inkelas 1991)
- Clitics to IntP: Tzotzil (Aissen 1992), Kinande, Gokana (Hyman 1990)

- English L-H% selects to encliticize to IntP
- But what controls the location of the IntP edge?
Positioning the CT Boundary

- **Option #1**: L-H% induces IntP break locally

(29) a. [the beans]$_F$ CT [Fred]$_F$ ate t_4

\[\begin{array}{c}
\text{Overt CT-Movement} \\
\hline
\end{array} \]

\[\begin{array}{c}
\text{Choice} \\
\hline
\end{array} \]

b. [The beans]$_{CT}$... [Fred]$_{Exh}$ ate.

\[\begin{array}{c}
L+H^* \quad L-H% \\
H^* \quad L-L% \\
\end{array} \]

(30) a. CT I gave [Fred]$_F$ [the beans]$_F$

\[\begin{array}{c}
\text{Covert CT-Movement} \\
\hline
\end{array} \]

\[\begin{array}{c}
\text{Choice} \\
\hline
\end{array} \]

b. I gave [Fred]$_{CT}$... [the beans]$_{Exh}$.

\[\begin{array}{c}
L+H^* \quad L-H% \\
H^* \quad L-L% \\
\end{array} \]

- **Conclusion**: Other factors control location of IntP breaks
Other Factors on Boundary Position (1/2)

- **Option #2**: Derive phrasing from syntax-prosody interface constraints

- Syntax-Phonology Interface (Selkirk 2011)
 - Correspondence: MATCH-CLAUSE, MATCH-XP, MATCH-WORD
 - Markedness: e.g. *INTP, *RECURSIVITY, MINBIN, ...

(31) MATCH-CLAUSE
 A clause in syntax is matched by a corresponding IntP in phonology.

(32) *INTP
 No intonational phrase. (Each incurs a penalty)

- Constraints on Focus Phrasing

(33) FOCUS-PROMINENCE (FP)
 A focus (XP_F) contains the maximal prominence within its domain.
Other Factors on Boundary Position (2/2)

- But none of these constraints distinguish (34a) from (34b)!

(34) a. CT I gave [Fred]_F [the beans]_F \[CT+Exh\]

\[\text{Diagram of CT I gave [Fred]_F [the beans]_F}\]

b. CT I gave [Fred]_F [the beans]_F \[Exh+CT\]

(35) \text{Lexicon} \quad \text{Inverted Y model}

\[\text{Diagram of Lexicon}\]

(36) \textbf{Copy Theory} (e.g. Bobaljik 2002)

a. [Fred]_F CT I gave [Fred]_F [the beans]_F

b. [the beans]_F CT I gave [Fred]_F [the beans]_F
Scope-Prosody Correspondence (1/3)

• **Option #3**

• **Observation**: CT operator and associate occur within one IntP

(37) **Scope-Prosody Correspondence** (SPC)

CT operator and phrase it associates with are realized in one IntP.

• Hirotani 2005: Japanese SPC effects (wh-, quantifiers, NPIs, reflexives)

• Richards 2010: SPC could help explain typology of wh- movement and wh- prosody
Scope-Prosody Correspondence (2/3)

Overview

What is CT?

Büring '03

Topic Abstraction

Reflexes

Appendix

Scope-Prosody Correspondence (2/3)

<table>
<thead>
<tr>
<th>(38)</th>
<th>CT</th>
<th>I gave [Fred]${CT}$ [the beans]${Exh}$</th>
<th>SPC</th>
<th>FP</th>
<th>*INTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(</td>
<td>x</td>
<td>) (</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>x</td>
<td>)</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>b.</td>
<td>(</td>
<td>x</td>
<td>) (</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>x</td>
<td>)</td>
<td>x</td>
<td>)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(39)</th>
<th>CT</th>
<th>I gave [Fred]${Exh}$ [the beans]${CT}$</th>
<th>SPC</th>
<th>FP</th>
<th>*INTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(</td>
<td>x</td>
<td>) (</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>x</td>
<td>)</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>b.</td>
<td>(</td>
<td>x</td>
<td>) (</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>x</td>
<td>)</td>
<td>x</td>
<td>)</td>
</tr>
</tbody>
</table>
Scope-Prosody Correspondence (3/3)

- Moving CT over Exh satisfies FOCUS-PROMINENCE:

(40)
<table>
<thead>
<tr>
<th>[The beans]_{CT} CT</th>
<th>I gave [Fred]_{Exh}</th>
<th>SPC</th>
<th>FP</th>
<th>*INTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (x)</td>
<td>()</td>
<td>x</td>
<td>x</td>
<td>*!</td>
</tr>
<tr>
<td>(x)</td>
<td>()</td>
<td>x</td>
<td>x</td>
<td>**</td>
</tr>
</tbody>
</table>

- Exh+CT dispreferred when topicalization available?

- Natural examples of Exh+CT often can’t topicalize:

(41) [Nobody]_{Exh} said you [had]_{CT} to do it…
Phrasing Asymmetry?

- SPC-based account predicts more than where CT boundary goes
- It predicts interactions of CT-marking and phrasing
- **Prediction:** CT+Exh phrased separately, Exh+CT phrased together
- Transcriptions in the theoretical literature vary
- Quick Test:

 (A) **NOBODY**\textsubscript{Exh} ... got **ALL**\textsubscript{CT} the answers right!

 (B) **SOMEBODY**\textsubscript{CT} ... got **ALL**\textsubscript{Exh} the answers right!
Conclusions

- **Topic abstraction account:**
 - provides an attractive semantics for CT
 - has potential to derive diverse realizations from unified structure

- **The account can accommodate:**
 - dedicated CT positions
 - CT particles at a distance from CT phrase

- **English CT intonation and phrasing derived using:**
 - standard syntax-phonology interface mechanics
 - ... plus a scope-prosody correspondence constraint

- Comparing languages that realize a common meaning in vastly different ways can lead to a better understanding of the linguistic structure underlying that meaning
Remaining Questions around CT

- To what degree do CT constructions convey a unitary meaning cross-linguistically?
- What are the interactions of CT marking and scope?
- Why does CT so often affect prosody cross-linguistically?
Larger Questions

- We didn’t say a lot about Exh today
- How should we analyze Exh when it occurs by itself?
- What other language processes are sensitive to discourse structuring?
- And what discourse models are sufficient to explain these sensitivities?
Acknowledgments

• Thank you for listening!

• And thank you to the following people for discussion of this material:

 Seth Cable, Aoju Chen, Chris Davis, Emily Elfner, Mitcho Yoshitaka Erlewine, Tom Ernst, Lyn Frazier, Chloe Gu, Jim Huang, Kyle Johnson, Angelika Kratzer, Barbara Partee, Chris Potts, Roger Schwarzchild, Lisa Selkirk, Radek Šimík, Maziar Toosarvandani, Michael Wagner, Kristine Yu, and Bitian Zhang.
Appendix
Topic Abstraction Semantics

(42) **CT Operator Semantics**

a. \[CT_i \alpha]_g^o = \lambda x. [\alpha]_{g[i \rightarrow x]}^o \]
b. \[CT_i \alpha]_g^f = \{ \lambda x. [\alpha]_{g[i \rightarrow x]}^f \}

Ordinary Semantic Value

Focus Semantic Value

“\([Fred]_{CT} \text{ ate } [\text{the beans}]_{Exh}\)”

(43)

```
\sim
```

```
_3

Fred_F

CT_7

_2

\[ t_7 \]

\[ \text{ate} \]

\[ [\text{the beans}]_F \]
```

(44) \[[1]_g^f = \{ g(7) \text{ ate the beans}, g(7) \text{ ate the pasta}, \ldots \} \]

\[[2]_g^f = \{ \lambda x. \{ x \text{ ate the beans, } x \text{ ate the pasta, } \ldots \} \} \]

\[[3]_g^f = \{ \{ \text{Fred ate beans, Fred ate pasta, } \ldots \}, \{ \text{Mary ate beans, Mary ate pasta, } \ldots \}, \ldots \} \]
Island Effects (1/2)

- CT occurs within islands:

 (45) a. \([Fred]_{CT}\) and Mary … would be \([good]_{Exh}\) teammates.

 b. The drawing that \([Mary]_{CT}\) drew of Fred … was \([spectacular]_{Exh}\).

- Topic abstraction is insensitive to whether more than CT raises…
 … as long as the moving phrase doesn’t contain an Exh focus!

- Analyze (45) as pied-piping the whole island to the CT operator position

- Japanese CT -wa marks edges of islands containing CT (Davis 2010)
Island Effects (2/2)

Prediction: CT and Exh can’t co-occur in an island

(46) (What about Mary? Which of her drawings was the best?)

a. ?? The drawing that \([Mary]_{CT}\) … did of \([Fred]_{Exh}\) was the best.
b. The best drawing \([Mary]_{CT}\) did … was the one of \([Fred]_{Exh}\).

(47) (What about Mary? Who should we pair her with?)

a. ?? \([Mary]_{CT}\) … and \([Fred]_{Exh}\) would be good teammates.
b. \([Mary]_{CT}\) … would be a good teammate for \([Fred]_{Exh}\).
Multiple CT (1/3)

- Multiple CT sentences can give rise to richly structured strategies

(48) a. For each day of the week, tell me what everyone does on that day.
 b. For each person, tell me what they do on each day of the week.

(49) a. On $[\text{Sundays}]_{\text{CT}}$... $[\text{Fred}]_{\text{CT}}$... $[\text{rests}]_{\text{Exh}}$.
 \[
 \begin{align*}
 &L+H^* \quad L-H^% \\
 &L+H^* \quad L-H^% \\
 &H^* \quad L-L^% \\
 \end{align*}
 \]
 \[
 \{ \text{But Mary works (on Sundays).} \}
 \{
 \text{But on Mondays, he works.}
 \}\]

b. $[\text{Fred}]_{\text{CT}}$... on $[\text{Sundays}]_{\text{CT}}$... he $[\text{rests}]_{\text{Exh}}$.
 \[
 \begin{align*}
 &L+H^* \quad L-H^% \\
 &L+H^* \quad L-H^% \\
 &H^* \quad L-L^% \\
 \end{align*}
 \]
 \[
 \{ \text{But on Mondays, he works.} \}
 \{
 \text{But Mary works (on Sundays).}
 \}\]
Multiple CT (2/3)

• Büring 2003 collapses all CTs to a single level of structure:

\[
\begin{align*}
(50) \quad \text{on [Sundays]}_{CT} \ [Fred]_{CT} \ [\text{rests}]_{F} \rightleftharpoons ^{ct} &= \\
\quad \text{[Fred]}_{CT} \text{ on [Sundays]}_{CT} \ [\text{rests}]_{F} \rightleftharpoons ^{ct} &= \\
\quad \left\{ \text{Fred rests on Sundays, Fred works on Sundays, } \ldots \right\}, \\
\quad \left\{ \text{Mary rests on Fridays, Mary works on Fridays, } \ldots \right\}, \\
\quad \ldots \\
\quad = \text{‘For each day/person pair, what does that person do on that day?’}
\end{align*}
\]

• Topic abstraction can create arbitrarily nested focus values:

\[
\begin{align*}
(51) \quad \text{a. [On Sundays]}_{CT} \ldots \ [Fred]_{CT} \ldots \ [\text{rests}]_{\text{Exh}}. \\
\quad \text{b. [on Sundays}_{F} \ CT_{2} \ Fred_{F} \ CT_{1} \ [t_{1} \ \text{rests}_{F} \ t_{2}] \rightleftharpoons ^{f} \\
\quad = \text{‘For each day... [For each person, what do they do?]’}
\end{align*}
\]
Multiple CT (3/3)

- Multiple CT particles attested in Japanese (Yabushita 2008), Dholuo
- Position of multiple CTs in Dholuo appears to reflect their relative scope:

(52) A: Which seller’s vegetables do you like the best? Constant 2009
B: Buth Ochieng mit ahinya, to apodhe to ok mit. pumpkin.POSS Ochieng tasty very but okra.POSS CT not tasty
Awiti to odiende to a-hero, to omboke to ok
Awiti CT cactus.POSS CT 1SG-like but amaranth.POSS CT not a-hero.
1SG-like

‘Ochieng’s *pumpkin* is delicious, but his *okra* is not good.
[Awiti]_{CT}, [her *cactus*]_{CT}, I like, but her *amaranth* I don’t.’
References

References II

References III

References IV

References V