Overview of Chapter 20

Electrochemistry
- Oxidation/Reduction (Redox) Reactions
- Electrochemical Cells
- \(E^\circ \) and \(E \)
- \(E^\circ \) and \(K \)
- \(E^\circ \) and \(\Delta G \)

Today’s Topics:
- Electrochemical cells
- Calculating Voltage
- Voltage at non standard conditions

Today’s Demos:

- \(\text{Cu}^{2+}(aq) + \text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu}(s) \) reaction
 - direct reaction
 - indirect reaction: Voltaic cell
 - With 1M concentrations of ions
 - With 0.1M concentration of \(\text{Cu}^{2+} \)

- Electrolysis of \(\text{H}_2\text{O} \)

Electrochemical Cells
- A redox reaction where electrons are transferred through an external connector.
- If a product favored reaction:
 - voltaic or galvanic cell
 - electric current produced
- If a reactant favored reaction:
 - electrolytic cell
 - electric current used to cause chemical change

- Batteries are voltaic cells

Electrochemistry

- Oxidation: \(\text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2\text{e}^- \)
- Reduction: \(\text{Cu}^{2+}(aq) + 2\text{e}^- \rightarrow \text{Cu}(s) \)
- \(\text{Cu}^{2+}(aq) + \text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu}(s) \)

Electrochemical Cells
- To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs through an external wire.
- This is accomplished in a **galvanic** or **voltaic** cell.
- A group of such cells is called a **battery**.
Electrochemical Cells

• Electrons travel through external wire.
• Salt bridge allows anions and cations to move between electrode compartments.

Zn \rightarrow Zn$^{2+}$ + 2e$^-$ \hspace{1cm} Cu$^{2+}$ + 2e$^-$ \rightarrow Cu

Oxidation \hspace{1cm} Reduction
Anode \hspace{1cm} Cathode
Negative \hspace{1cm} Positive

\[E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} \]

where E_{cathode} and E_{anode} are the standard reduction potentials.