Complement Selection and the Structure of the VP

1 C-selection, S-selection, and L-selection

1.1 Categorial Selection

(1) C-selection: categorial selection - certain heads impose particular demands on the category of the XP they combine with. These demands are referred to as c-selection.

Some things we could code using c-selection:

(2) *know can take NPs, indicatives S’s, and interrogative S’s.
 a. John knows [NP the time].
 b. John knows [S that the world is full of noises].
 c. John knows [S what the time is].

(3) *ask can take NPs and interrogative S’s, but not indicative S’s.
 a. John asked me [NP the time].
 b. *John asked me [S that the world was full of noises].
 c. John asked me [S what the time was].

(4) wonder can only take interrogative S’s, not NPs or indicative S’s.
 a. *Paul wonders [NP the time].
 b. *Paul wonders [S that the world is full of noises].
 c. Paul wonders [S what the time is].

 PP: *fond of the tall student, NP: *fond the tall student, AP: *fond tall
 PP: queen of the blue isle, NP: *queen the blue isle, N: *queen blue isle, AP: *queen blue
 c. P: prepositions typically require NP complements.
 NP: on the brown table, N: *on brown table, AP: *on brown, PP: *on below the brown table

We can build c-selection into our system by adding uninterpretable categorial features on heads. A head which c-selects (= subcategorizes) for an XP will have an uninterpretable X categorial feature, indicated as [uX]. For a syntactic derivation to succeed (i.e. converge), all the uninterpretable features must be deleted by a matching categorial feature on its complement.

1.2 Semantic Selection

Semantic selection is the idea that predicates impose selectional constraints on their complements by imposing constraints on the semantics of the complement. For example, for the verbs in (4), we could have something like the following:
a. know: complement must be a question or a proposition
b. ask, wonder: complement must be a question

S-selection seems particularly helpful in cases where an argument of a particular sort is needed, but its category is not fixed.

put selects for a location:

b. Bill put the book under the table.
c. Bill put the book there.
d. Bill put the book away.
e. *Bill put the book.

One can imagine theories that only have c-selection, theories that only have s-selection, and also theories that have both c-selection and s-selection (cf. Grimshaw (1979)).

Certain authors have argued that s-selection is the most basic form of selection and that certain aspects of c-selection can be derived from the semantic properties of the relevant head. Theories that attempt to eliminate c-selection in favor of s-selection need (and have) explanations for contrasts between ask and wonder which have similar s-selectional needs:

a. John asked me the time.
b. *John wondered the time.

1.3 Lexical Selection

Sometimes particular heads will select for particular lexical items, not just particular categories. This is called L(lexical)-selection by Pesetsky (1991).

verbs:

i. depend, rely - on
ii. hope - for
iii. toy - with

nouns:

i. love - for, of
ii. desire - for, *of

adjectives:

i. proud, ashamed - of
ii. similar - to
iii. different - from
iv. consistent - with

L-selection displays considerable idiosyncrasy. Lexical items that are semantically close can l-select different prepositions. There is also unpredictable crosslinguistic variation in this domain. L-selection is also found with clausal complements.
The consensus in the literature seems to be that we need s-selection augmented with l-selection. What would traditionally be put under c-selection can be derived from s-selection, certain principles that govern how certain meanings are canonically realized syntactically, and other independent properties of the lexical item (See Pesetsky (1991) for details).

2 S in X'-theory

2.1 VP in X'-theory

In (12), the NP the city is the complement of the verb destroy.

(12) The Romans \([v_P \text{ destroyed } [n_P \text{ the city}]] \).

What goes into the [Spec, VP] position?

Let us consider the case of nominalizations:

(13) The Romans’ destruction of the city

![Diagram of the tree structure for (13)]

In (13), we see that all the arguments of N occur within its own phrase (maximal projection). A natural idea, within the spirit of cross-categorial symmetry, is to extend the idea that all the arguments of a head should occur within its own phrase (maximal projection). This gives us the tree in (15) for (14).

(14) The Romans destroyed the city.
But there is no *The Romans* inside the VP?
Yes, there isn’t because now it is in the [Spec, XP].

Questions:
1. What is XP?
2. Why does the NP move from [Spec, VP] to [Spec, XP]?
We will answer Question 1 in this section and Question 2 in the next.

What about vP?

Several authors have argued that what we have treated above as a VP:

(16) \[[v_P \text{ [The Romans]} [v_P \text{ destroy [the city]}]] \]

has additional structure, and involves another head called *v* (pronounced ‘little v’):

(17) \[[v_P \text{ [The Romans]} [v_P^0 \text{ [v_P destroy [the city]]}]] \]

The \(v^0 \) head is taken to introduce the ‘external argument’ - the argument that comes in at the end, and tends to be interpreted as an agent (see Kratzer (1996) for arguments in support of this position).

For our current purposes, the difference between (16) and (17) will not be relevant. So in the rest of this handout, when I will say \(vP \), it will actually correspond to what is often called \(vP \).

When we start talking about passivization and unaccusativity, the difference will become more substantive and the relevance of the decomposition of the VP will become clear.

2.2 What is XP?

\(XP = S \)

However, if \(XP = S \), what is \(X^0 \), the head of \(XP = S \)?

We know from our discussion of \(X' \) theory that every \(XP \) has to have a head of the same kind i.e. \(XP \) cannot be headed by \(Y^0 \). This property is know as *endocentricity*.

Now let us consider how we have been analyzing cases like (18).
Mark believes that Laetitia should kiss Ophelia.

Neither S nor S’ are endocentric. How can we reformulate S and S’ so that they are endocentric and fit within the X’-schema?

From their distributions, we know that VP \neq S. So V0 should not be the head of S.

Approach 1: The element which we have labeled ‘Modal’ could be head of S. This is the most natural approach because:

(i) heads are atmost lexical items (there may be heads that are smaller than words).

(ii) Out of the immediate constituents of S, ‘Modal’ is the only lexical item

What then about cases which don’t have a modal such as (19a, b)?

a. Mark believes that Laetitia is kissing Ophelia (right now).

b. Mark believes that Laetitia kissed Ophelia (yesterday).

(19a) is easier to take care of. We can just create a class of Auxiliary verbs which includes all modal verbs, be and one kind of have. But cases like (19b) pose a greater challenge. One option is to say what we have been saying up until now i.e. the following structure:

The immediate problem for this representation is that there is no candidate for the head of S. The immediate constituents of S are NP and VP and neither of them are heads. So we seem to be stuck.

At this point we should look back to cases of VP-preposing (VP-topicalization). We had seen there that some kinds of VPs could be preposed but others couldn’t:

(21) a. $[_{VP}\text{ Kiss Ophelia}], \text{ Laetitia did.}$

b. $[^{_{VP}\text{ Kissed Ophelia}], \text{ Laetitia.}$
c. *[VP Kissed Ophelia], Laetitia did.

What distinguishes the grammatical (21b) from the ungrammatical (21a)?

The grammatical case involve a VP without tense/person/number marking. The verb appears in its bare form. The VP in the ungrammatical case involves a verb marked for tense/person/number marking. In the case at hand, the verb kissed is marked for Past Tense.

We want to distinguish between these two kinds of VPs and yet also retain a link between them.

• **Approach 2**: We postulate node **Inflection** where the tense/inflectional information associated with a verb could be stored. This node Inflection will head a phrase Inflection Phrase (IP) which will be equivalent to an S. IP is also often referred to as the Tense Phrase (TP).

(22) Laetitia kissed Ophelia.

(23)

```
IP
  NP Laetitia
  I' VP
    I0 -ed
    NPspecifier Laetitia
    V NPcomplement
      V kiss
      NP Ophelia
```

• Clearly, there has to be a way for the -ed suffix under I0 and the verb kiss to combine. **Inflection Proposal**: An I0 and a V0 that heads the complement VP of the I0 combine in the phonological output.

i.e. when you try to pronounce the above tree, the I0 node and the V0 node combine and are pronounced together.

Cases like (21b) are bad because they would involve topicalization of an I and only full phrases can be moved around. (21c) is bad because there are two sets of tense/agreement markings floating around while there is only one I0 to supply the information.

2.3 X’ rules for IP

Since we have adopted X’-theory, the form of the rules will be quite familiar:

(24) a. \(I'' \rightarrow NP_{specifier} \ I'\)

b. \(I' \rightarrow I \ VP_{complement}\)

We can now give a new definition of the notion ‘subject of a sentence’:

The ‘subject of a sentence’ is the NP that occurs in the [Spec, IP].

In English (and many other languages), the subject of a sentence agrees with the verb. What it means for a subject to agree with its verb is illustrated in (25).
This relationship between the verb and its subject can be stated extremely locally within our new system as the reflex if the Specifier-head relationship.

(26) **Agreement Rule**: Copy the person-number features of the NP in [Spec, IP] on the I⁰.

The person-number features of an NP are also referred to as its φ-features (phi-features). The φ-features of some pronouns are shown below:

(27) a. I = [+1st person, +singular]
b. we = [+1st person, +plural]
c. you = [+2nd person]
d. s/he = [+3rd person, +singular]
e. they = [+3rd person, +plural]

In English, gender is not part of the verbal agreement system, so *she and *he can be taken to have the same φ-features but in languages where they are part of the agreement system, they would also need to be represented.

2.4 What can go under I⁰?

In sentences without any auxiliary element, the inflection is all there is in P. However, other elements can also appear under P⁰.

(28) a. I must/should/could [eat some waffles]. (Modals)
b. I am [eating some waffles]. (be)
c. I have [eaten some waffles today]. (auxiliary have)
d. I did [not eat the waffles]. (auxiliary do)
e. I want to [eat waffles]. (infixival to)

Earlier we saw two syntactic processes - VP Topicalization and pseudocleft formation - which were sensitive to the presence of inflection. Another grammatical process that is sensitive to the presence of inflection is VP Ellipsis. VP Ellipsis in English involves a silent tenseless VP together with an overt realization of I⁰.

(29) a. Jerry shouldn’t leave town. Bill should [Vₚ leave town].
b. Tyrone isn’t eating waffles today, but Ken is [Vₚ is eating apples].
c. Max hasn’t finished his homework, but Jose has [Vₚ finished his homework].
d. Ana doesn’t want to leave, but Mona wants to [Vₚ leave].
e. Chunghye doesn’t like unicorns, but Maribel does [Vₚ like unicorns].

(*Chunghye doesn’t like unicorns, but Maribel [Vₚ likes unicorns].)

Each of the elements in (28) has distinct properties. Let us consider them individually. To provide contrast, we will start by looking at one verbal element that cannot occur in P⁰, namely a main verb.
2.4.1 Main Verbs

Main verbs have non-tensed forms: past participles, present participles, and infinitival forms.

(30) a. Talvin ate the pizza.
 b. Talvin has eaten the pizza. (past participle)
 c. Talvin is eating the pizza. (present participle)
 d. Talvin wants to eat the pizza. (infinitival form)

When negated or questioned, a form of the verb *do* is needed. Otherwise, the sentence is ungrammatical.

(31) a. Talvin didn’t eat the pizza.
 b. *Talvin eatn’t the pizza.
 c. Did Talvin eat the pizza?
 d. *Eat Talvin the pizza?
 e. Why did Talvin eat the pizza?
 f. *Why ate Talvin the pizza?

Cases such as these can be explained by noting that the presence of the negation disrupts the local relationship needed by the I and the V in order to combine together. Crucially main verbs stay in V and do not move to I.

The verb *do* comes in and saves the day by giving a realization to the suffix in I, which could not have been pronounced on its own. This process is called *do support*.

2.4.2 Modals

Modals are set apart by the fact that they can never occur in non-tensed environments.

(32) a. *Talvin wants to must/should/could win this game.
 b. *[To must/should/could play baseball] is fun.

Modals *invert* in questions and precede negation.

(33) a. Must/should/could Talvin win this game?
 b. Why must/should/could Talvin win this game?
 c. Talvin must/should/could not win this game.

The facts follow if we assume that Modal verbs are always generated in a [+Tensed] I. Since modal verbs are generated in I, they can realize whatever features I has and the I does not need to be ‘close’ to V.

1The structure is something like [I [Negation [VP]]]. Where do adverbs go?
2In fact, *do-support is not a possibility here.*
2.4.3 Auxiliaries: be and haveper·fect

Unlike Modals, auxiliaries can occur in non-finite environments.

(34) a. Talvin wants to be popular.
 b. Talvin wants to have been popular.

However, like modals, auxiliaries invert in questions and precede negation. 3

(35) a. Is Talvin winning this game?
 b. Has Talvin won this game?
 c. Why is Talvin winning this game?
 d. Why has Talvin won this game?
 e. Talvin isn’t winning this game.
 f. Talvin hasn’t won this game.

The above examples suggest that the auxiliaries have/be are generated in V0 (like main verbs) but can move up to P0 (unlike main verbs). 4

• to: only occurs in [-tense] P0.
• do: only occurs in [+tense] P0 when the P0 is unable to combine locally with V0. 5

2.5 S′ in X′ theory

S′ as it stands is an exocentric projection i.e. it is not headed by a head of its own category. Actually, things are even worse. It is quite unclear whether S′ has a head.

(36)

\[
S' \quad \leftarrow \quad \text{Comp} \quad \text{that} \quad S \\
\text{Tim is nuts}
\]

A neat solution, and one that is compatible with X′-theory is to take Comp as the head of S′. In fact this solution is forced upon us since the only potential head among the immediate constituents of S′ is Comp. We cannot look inside the S/IP for a head because the IP is a complete phrase by itself.

Assuming the IP to be a complement of Comp, we have the following tree.

(37)

\[
\begin{align*}
&\text{CP} \\
&\quad \text{Specifier} \\
&\quad C' \\
&\quad \text{Comp} \quad \text{that} \quad IP \\
&\quad \text{Tim is nuts}
\end{align*}
\]

3Do-support is not a possibility here either. Consider what happens with have to, possessive have.

4What does the tree look like now?

5What about the other do?
What goes into the [Spec, CP]? We will answer this question when we discuss {\textit{wh}}-movement (questions, relative clauses etc.).

We now move to discuss why the NP in [Spec, VP] moves to [Spec, IP]. The answer lies in the domain of Case Theory and A-Movement.

References

