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1 Introduction

This paper is an attempt to determine the underpinnings of Optimality Theory
(henceforth OT; Prince and Smolensky, 1993; McCarthy and Prince, 1993), and
what logic might have to do with it.1 This is important because, without this kind
of work, very strange misunderstandings of the theory crop up. The work reported
here is preliminary, but nothing of this sort has previously been attempted for
OT, even though the theory has been around since 1993 and is the predominant
framework for phonological research in North America.

The goals of the paper are as follows. First, I develop a logical statement of
Optimality Theory. Next, I go on to prove some theorems. Third, I go on to show
how the framework allows us to reason about partial derivations, and provides
promise as the basis of a theory of acquisition and a theory of parsing.

The organization of the paper is as follows. First, I provide a review of OT.
Next, I introduce the basic logical formulation for a pruned-down version of OT
with only one constraint. In the following section, I extend the formulation to treat
real OT, where there is more than one constraint. I go on in the next section to
prove several theorems. Some of these are simply to show that the formalization is
doing the right thing, but some of these are quite important in their own right. Fi-
nally, I go on to show how the formalization allows us to reason about derivations
given incomplete information.

There are a number of results of this paper, but one real important one is that I
establish that OT allows for multiple winners. That is, a tableau can have several
winning candidates. This may seem obvious to the reader familiar with OT, but
many presentations of OT imply or even state that this isn’t so. For example:

As mentioned before, for each underlying form (inputi) there is a
surface form (outputi) which is the candidate from the set

(candidate1, candidate2, . . . ,candidaten)
that best satisfies the constraint ranking (Rosenthall (1994); p.10).

Likewise:

This set of candidate forms is then submitted in parallel to a hierarchy
of constraints for evaluation, and the candidate form which ‘best sat-



isfies’ the hierarchy emerges as the optimal form. The optimal form
is the output form, and vice versa.

Eval{cand1, cand2, . . .} → candk(the output, given inputi)
(Hung (1994); p.2)

Finally, Tesar (1995) is most explicit:

The idea is that by examining the marks assigned by the universal
constraints to all the candidate outputs for a given input, there is one
which is least marked, or optimal: this is theone and only(my em-
phasis: MH) well-formed description that may be assigned to the
input by the grammar (Tesar (1995); p.3).

My point in citing these authors is not to take them to task. Rather, my point is to
demonstrate that this understanding of OT is widespread. Thus, a formalization
that demonstrates the falsity of this position is of even more use.

For the reader not familiar with logic, the formalism used here may appear quite
daunting. However, the basic ideas are rather straightforward. Moreover, I will in
all cases recast formal statements in ordinary language.

2 Optimality Theory

Let’s take phonology, or any component of grammar, as exhibiting a “tension”.
What I mean by this is that there are two forces that conflict in generating the
observed phonology of a language.

Basically, each word needs to be different, but there are generalizations that tie
together the expressions of a language. For example, in English, syllable-initial
voiceless stops are aspirated. For example:tack[thæk],cat [khæt], andpat [phæt].

Optimality Theory is one way of accounting for this relation. What are the basic
claims of OT? It is actually not altogether clear. One could answer this in terms
of what Prince and Smolensky thought they were proposing, but it is surely more
meaningful to understand this in terms of what linguists have actually concluded.2

There are three central claims. First, all phonological generalizations can be
modeled with constraints. Second, constraints can interact only by strict ranking.
Third, all constraints are universal. Prince and Smolensky actually maintain that
they only really propose the second, but things have turned out differently. I go
through each of these below.

There are three central components to the theory:GEN, CON, andEVAL . The
idea is that any lexical representation can be mapped to any pronouncible thing.



This general mapping is performed byGEN. The correct output for some form is
achieved by constraints. These constraints govern what is a well-formed mapping.
For example, an input form like /kæt/ forcat would undergoGEN as follows.3

/kæt/→ {[kæt], [khæt], [dOg], [karandaS], [khItn
"
], etc.}(1)

Lexical entries are mapped to surface forms in every imaginable way (GEN) and
constraints (CON) limit the set of acceptable mappings. According to Prince and
Smolensky, the constraints are finite and universal, but this is all that is known.
The process whereby the correct candidate is chosen is calledEVAL .

Consider now how the system works with a simple example. Let’s go through
some of what is required to get aspiration in English to come out correctly.4 The
first thing we need is a constraint to enforce the inertia of lexical representations:
FAITH . This constraint penalizes any candidate that differs from the input.

FAITH

Input and output should be identical.
(2)

If this were all there were to it, the lexical representation would win, as exempli-
fied below. OT “derivations” are presented in constraint tableaux. The input is
given in the upper left. Candidates are given along the left side and constraints
along the top. Constraint violations are given as asterisks and the winning candi-
date is indicated with a pointing hand. Here, the form [kæt] wins.

(3)
/kæt/ FAITH

☞ [kæt]
[khæt] *!
[dOg] *!

[karandaS] *!
[khItn

"
] *!

This is, of course, incorrect. The initial consonant must surface as aspirated. We
need a constraint that expresses this generalization about English. Presumably,
this can be expressed in more general terms and is a reflection of some more
general phonetic tendency regarding laryngeal gestures, but I won’t attempt this
here.

ASPIRATION

Word-initial voiceless stops are aspirated.
(4)

The ASPIRATION constraint is exemplified in the following tableau. Notice how
this constraint also fails to pick out the correct candidate. Instead, it allows any



candidate that satisfies the constraint, including those candidates that are other-
wise unfaithful to the input.

(5)
/kæt/ ASPIRATION

[kæt] *!
☞ [khæt]
☞ [dOg]

[karandaS] *!
☞ [khItn

"
]

To get the right results, we need both constraints. However, simply having both
constraints fails, since there is no candidate which passes both. We need both
constraints plus the notion of “strict ranking”. Strict ranking says that constraints
are ordered and violations of higher constraints are more important than violations
of lower constraints. In this case, theASPIRATION constraint outranks theFAITH

constraint. This is written as follows.

ASPIRATION� FAITH(6)

This can be exemplified in the following tableau. Ranking is indicated with left-
to-right ordering of constraints. The interaction of constraints via strict ranking
selects the correct candidate.

(7)
/kæt/ ASP FAITH

☞ [khæt] *
[kæt] *!
[dOg] **!*

There are several things to notice about this. First, notice that the winning candi-
date need not be perfect. For example, [khæt] wins, but violatesFAITH . Second,
ranking is strict. This means that a single violation of a higher constraint overpow-
ers any number of violations of a lower constraint. Finally, notice that there will
always beat leastone winning candidate. In the logical formalization I propose
below, these properties will follow.

A clear example of how the ranking is strict is given in the following hypotheti-
cal tableau. Notice that candidate [y] wins even though it has more total violations
and more violations of constraint B than either of the other candidates.



(8)
/X/ A B

☞ [y] * ***
[z] **! *
[w] **!

Notice also that there may be more than one winning candidate given the system
as presented. A tableau showing how this works is given below. The two winners
tie on all constraints, neither violating the higher constraint and both violating the
lower constraint. I’ll return to this below.5

(9)
/X/ A B

☞ [y] *
☞ [z] *

[w] *!

The review of OT presented here has necessarily focused on the issues of rel-
evance to this paper. In addition, I have not discussed any of the phonological
substance of the model. For further detail, see Prince and Smolensky (1993), Mc-
Carthy and Prince (1993), or Archangeli and Langendoen (1997).

3 Logic

Let’s now consider how this might be expressed in terms of first order logic. There
have been various attempts to treat phonology in terms of logic before. See, for
example, Bird (1995), Calder and Bird (1991), and Oehrle (1991). There have as
yet been no attempts to do this for OT. The only discussion of logic in the con-
text of OT is with regard to “constraint conjunction”, e.g. Smolensky (1993) and
Crowhurst and Hewitt (1997). These papers treat the question of whether indepen-
dent constraints can be combined into a new constraint using logical conjunction
or disjunction; they do not treat the larger question of a logical interpretation of
constraint interaction.

The key move in the formulation I propose is to define winning candidates as
true with respect to a predicate we can think of as “is a winner”.

Truth
The candidates that win with respect to a constraint, or a ranked set of
constraints, are true with respect to the predicate “is a winner”.

(10)

In what follows, I will sympolize this predicate as “☞”.



We now define a language in which we can talk about constraints, candidates,
ranking, and violations. The basic ideas here are mostly quite straightforward.
First, we want to have the power of first order logic so we can prove things. Sec-
ond, we want to define terms and syntax for ranking and violations.

First, we need the usual logical connectives.

→,∧,∨,¬,↔, ∃, ∀(11)

These have their usual interpretations: implication, conjunction, disjunction, ne-
gation, bidirectional implication, and the existential and universal quantifiers. In
addition, we’ll need some additional connectives which will be defined below.
These allow us to formalize the comparison of violations and ranking.

=, >,≡,�,☞(12)

Finally, I’ll use lowercase greek letters,α, β, γ, etc., to refer to cells in a tableau,
and capital greek letters,A,B, Γ , etc., to refer to candidates.

Let’s now consider the auxilliary predicates of (12). First, we use the normal
“�” symbol to indicate a difference in ranking, but we also need something to
refer to two cells that have the same ranking: “≡”. We write α � β if α andβ
are cells for the same candidate (but different constraints) andα outranksβ. We
writeα ≡ β if α andβ are cells for the same constraint (but different candidates).

These relations have the expected properties. The “≡” relation is symmetric,
reflexive, and transitive.

a. α ≡ α.
b. If α ≡ β, thenβ ≡ α.
c. If α ≡ β andβ ≡ γ, thenα ≡ γ.

(13)

The “�” relation is transitive, but not symmetric, and not reflexive.

a. ¬(α� α)
b. ¬((α� β) ∧ (β � α))
c. If α� β andβ � γ, thenα� γ.

(14)

We need to compare violations numerically, and the simplest way to do that
is with successor notation: we define0, 0′, 0′′, 0′′′, . . ., where0 = 0, 0′ = 1,
0′′ = 2, 0′′′ = 3, etc. The “>” and “=” relations are straightforward. Using
successor notation, “>” relation is defined recursively. The “=” relation can then
be defined in terms of “>”. Let x, y, z be numbers in successor notation.

x > y if x is y′ or if (x > z) ∧ (z > y).(15)



x = y if ¬(x > y) ∧ ¬(y > x).(16)

All the other comparisons can then be defined in terms of these. The key point
here is that we can do the necessary math within the formalization proposed.

The other numerical comparisons can be treated as abbreviations.

abbreviation stands for
α < β β > α
α ≥ β (α > β) ∨ (α = β)
α ≤ β (α < β) ∨ (α = β)

(17)

Here’s a tableau so we can see how these can be used. I’ve marked individual
cells with specific greek letters.

(18)
input constraint A constraint B

candidate 1 κ: * λ: ***
candidate 2 µ: ** ν: *

The ranking relations we want are:κ ≡ µ, λ ≡ ν andκ � λ, µ � ν. The
numerical comparisons from the tableau above are:κ = ν, µ > κ, λ > κ, µ > ν,
λ > ν, λ > µ.

The logical properties of the “☞” operator are obviously key, and are treated
in the next sections. For the moment, let “☞” be a unary operator that should be
interpreted as “is a winner”, or “is true”.

The essential points of the formalization given so far can be easily summarized
in general terms. First, cells can be compared in terms of ranking relations. Sec-
ond, cells can be compared in terms of the number of violations they exhibit. Let’s
now consider how this works. I’ll do this in two passes. First, I’ll show what we
would need if there were only one constraint. Then we enrich the system to deal
with normal OT where there is more than one constraint.

4 One Constraint

For a single constraint, the idea is simple: the candidate or candidates exhibiting
the fewest violations win. This can be expressed formally as follows.

☞α↔ ¬∃β((β ≡ α) ∧ (β < α))(19)

This can be expressed straightforwardly in normal language as well. This says
that some cellα is interpreted as true if and only if there does not exist some other



cell β that has fewer violations, whereα andβ are cells for the same constraint.
This can also be expressed as follows.

☞α↔ ∀β((β ≡ α)→ (β ≥ α))(20)

Let’s look at an example. Here the first and third candidates have the fewest
violations and so they are both winners or “true with respect to☞”. In tableaux, I
will mark cells that are true with a> and cells that are false with⊥.

(21)
a. /kæt/ ASP b. /kæt/ ASP

[khæt] [khæt] >
[kæt] *! [kæt] ⊥
[dOg] [dOg] >

Recall that the winners aren’t necessarily perfect. The formalization covers this
case as well. Here’s a sample tableau showing how this works. The key move is
that the logical formulation looks for the cells with the fewest violations, not for
cells with no violations. Here the first cell has the fewest violations and is thus
true.6

(22)
a. /X/ A b. /X/ A

[y] * [y] >
[z] **! [z] ⊥
[w] **! [w] ⊥

Recall that there can be more than one winner and the schema captures these
cases as well. This is exemplified in the following tableau. Here the first and sec-
ond cells satisfy the requirement that there is no other cell for the same constraint
that has fewer violations. They are then both true.

(23)
a. /X/ A b. /X/ A

[y] [y] >
[z] [z] >
[w] *! [w] ⊥

What happens if all candidates tie? The theory says that in such a case, all the
candidates win. Here is a tableau showing how this looks. All cells satisfy the
requirement that there is no other cell that has fewer violations. Hence all are true.



(24)
a. /X/ A b. /X/ A
☞ [y] * ☞ [y] >
☞ [z] * ☞ [z] >
☞ [w] * ☞ [w] >

5 More than One Constraint

Let’s now consider full OT where there is more than one constraint. The key
move here is to restrict the choice of winning/true candidates with respect to some
constraint to only those candidates that are true with respect to higher constraints

This can be put in prose as follows: when a constraint is ranked below other
constraints, the truth values of its cells are a function of the truth values of higher-
ranked constraints. Putting this in formal terms is a little complex, so I’ve broken
it into two parts. The following general statement says that a cellα is true if two
conditions hold.

☞α↔ (A ∧ B)(25)

The first condition says thatα is true if and only if there is noβ whereβ has fewer
violations thanα, andα andβ are with respect to the same constraint, and all cells
that outrankβ are true.

A: ¬∃β((β < α) ∧ (β ≡ α) ∧ ∀δ((δ � β)→☞δ))(26)

The second condition says that all cells that outrankα must also be true.

B: ∀γ((γ � α)→☞γ)(27)

Both of these can be cast in prose as well. Condition A is true if and only if
there is no cellβ such that i)β has fewer violations thanα, ii) β is for the same
constraint asα, and iii) all cells dominatingβ are true. Condition B is true if and
only if all cells dominatingα are true.

Notice that the one-constraint case is handled successfully by this more com-
plex statement as well. There are no higher-ranked cells so the conditions on them
are vacuously satisfied. If a constraint is top-ranked, then there are no higher-
ranked cells. In this case, the conditions on higher-ranked cells are vacuously
satisfied.

Let’s go through a case.



(28)
a. /kæt/ ASP FAITH

☞ [khæt] *
[kæt] *!
[dOg] **!*

The higher-ranked constraint is straightforward; The first and third candidates win
because they have the fewest violations. Turning to the second constraint, the
second candidate is false because it fails to satisfy condition B.

(29)
b. /kæt/ ASP FAITH

[khæt] > *
[kæt] ⊥ ⊥
[dOg] > **!*

Both the first and third candidates satisfy condition B, but the third candidate does
not satisfy condition A because the third candidate has more violations. Hence,
the third candidate is false for the second constraint.

(30)
c. /kæt/ ASP FAITH

☞ [khæt] > >
[kæt] ⊥ ⊥
[dOg] > ⊥

This is pretty straightforward and suggests that the truth of a candidate in toto
can be seen as the conjunction of the truth values of its cells. In other words, a
candidate is true if and only if all its cells are true. This is given formally below.

☞Ω ↔ (
m∧
n=1

☞αn)(31)

A candidateΩ is a winner if and only if all of its cells are assigned>.

6 Consequences

Let’s now look at the consequences of all this. The basic idea will be to show
that with this relatively simple formulation we can prove some important results
about OT. I do this by proving several theorems.7 The general idea is what is most



important here. If we understand the logic of OT, we can understand the properties
of OT more clearly. Consider first a relatively simple idea: all inputs have at least
one output.

Theorem 1 All inputs have at least one output.

This can be proved relatively easily by mathematical induction. In the case at
hand, the proof comes from the observation that given some set of positive inte-
gers, there will always be some subset that contains the elements that are smaller
than all the rest. Moreover, the effect of constraint ranking, as defined here, is to
narrow that further, but not to eliminate all candidates.

Proof:
• Assume that the candidate set has at least one candidate and all candi-
dates exhibit some finite number of constraint violations.
• If there is only one constraint, then there will be a set of cells,
{α1, . . . , αn}, representing constraint violations for the different can-
didates. The relation “<” will always pick out a set of at least one cell,
{αi, . . . , αk} where all members have the same number of violations,
but where no other cells have as few. Hence there will be at least one
winner in the case of a single constraint.
• Assume this is true for a system withn constraints.
• We must now show that it is true for a system withn + 1 constraints.
Let us assume that the system withn constraints has resulted in a set
{α1, . . . , αn} of winners. We add another constraint C, such that all
the other constraints outrank C. Constraint C assigns violations to all
candidates. The schema entails that we only need to consider those can-
didates that are within the set of winners determined by the topmostn
constraints. Among these, we again apply the relation “<” to pick out a
set of cells that satisfy the same conditions. Though this only applies to
the reduced set of winners{α1, . . . , αn}, it will still be the case that this
set contains at least one cell with a minimum number of violations.
• Therefore a system withn+1 constraints will have at least one winner.
2

Notice that this might seem to create problems for cases where phonologists
want to rule out any output. For example, McCarthy and Prince (1993) discuss the
case of Yidiny where prosodic constraints interact so that in some morphological
categories no output results. McCarthy and Prince get around this by allowing
the candidate set to include the null parse. The distribution of such a candidate is



limited by a constraintM-PARSE, judiciously ranked. Thus even in cases where
the facts tell us there is no output, the theory has been constructed so that the
derivation results in a “null” output. Even when the winning candidate is one that
violates a constraint likeM-PARSE (McCarthy and Prince, 1993), there is still a
winning candidate; it is simply a candidate that has no pronunciation.

Let’s do another theorem. This is simply to show that the formalization as
presented gives us strict ranking, as desired.

Theorem 2 Constraint ranking is strict.

Recall that strict ranking is the claim that no number of violations of a lower-
ranked constraint is sufficient to overpower a single violation of a higher-ranked
constraint. This is exemplified in the following tableau.

(32)
/X/ A B

☞ [y] ***
[z] *!

The theorem follows from the fact that the two conditions A and B are conjoined.

Proof:
• Consider the case of two constraints, referring to the tableau above.
For a candidate to win, its cells must be assigned> for all constraints. If
some cellα has fewer violations than some cellβ for some constraint A,
then☞β will be assigned⊥. Because the condition that all higher-ranked
cells must be assigned> must generally hold, it follows that no number
of violations for a lower-ranked constraint will have an effect.
• Assume that it is true for two constraints in a system ofn constraints
with lots of other irrelevant constraints ranked above and below the key
constraints.
• For these other constraints to be irrelevant, they must assign> to both
of the candidates in question.
• Increasing the constraint set ton+ 1 by adding another such constraint
does not alter the conclusion.2

Here is a trivial one. This theorem is simply the expression of the fact that
numerical comparison defined over the numbers allowed by the successor notation
we’ve adopted will always select a cell with no violations as a winner.

Theorem 3 If a candidate violates no constraints, it is a winning candidate.



Proof:
• If CON has only a single constraint, then the smallest number of viola-
tions a candidate can have is 0. Such a candidate will be assigned> and
will therefore be in the set of winning candidates.
• Assume this is true whenCON hasn constraints. That is, if there are
n constraints and some candidate [x] violates none of them, it will be in
the winning set.
• Now add one more constraint Z and assign [x] no violations of it. With
no loss of generality, we can assume that Z is bottom-ranked. If [x]
has no violations of Z, then [x] will be assigned> for Z, since 0 is the
smallest number of possible violations.
• Because candidate [x] was a winner when there were onlyn con-
straints, it must have had been assigned> for all n constraints. With
n + 1 constraints, it is still assigned> in all cells. Hence [x] is in the
winning set.2

Here is the most interesting case. Interestingly, the proof is the simplest.

Theorem 4 There can be multiple winners.

Proof:
• Nothing in the formal system prevents some constraint A from assign-
ing violations to all but 2 candidates (∃α∃β(α = β = 0)).
• Assume this is true forn constraints. That is, the first constraint rules
out all but two and none of then−1 remaining constraints distinguish the
two surviving candidates (((γ ≡ δ)∧((α� γ)∧(β � δ)))→ (γ = δ)).
• To complete the induction, we simply add one more constraint that
does not distinguish the two candidates.2

The proof of this one relies on the existence of at least two candidates that are
not distinguished by any constraints.

This may seem unlikely, but notice that this intuition (which I actually share!)
is an intuition about the kinds of constraints inCON. The theory simply says that
these are universal and finite. Nothing about OT as it stands forces us one way or
the other with regard to this situation.

7 Partial Information

Let’s now consider the question of partial information. The idea here is to think
about whether the formulation might help us in other domains, e.g. parsing and



acqiusition. The idea is that if a speaker is confronted with partial information
about some phonological pattern in parsing an utterance or in determining the na-
ture of their phonology, the logic of OT can help. The system we have developed
here will allow us to reason about tableaux with partial information.

Let’s consider the problem with a partially filled-in tableau. Imagine that all we
know is that there are three constraints ranked A� B� C. Moreover we know
that input /X/ is pronounced [y].

(33)
/X/ A B C

☞ [y]
[z]
[w]

What do we know in such cases? We know that [y] must be true for all cells. I put
letters in each cell so we can refer to individual cells. We immediately know that
all the cells of candidate [y] must be assigned>.

(34)
/X/ A B C

☞ [y] >a >b >c
[z] d e f
[w] g h i

We also know that at least one cell of [z] and [w] is assigned false. We also know
that a false cell will never outrank a true cell. The former is given formally below.

¬(☞d ∧☞e ∧☞f) ∧ ¬(☞g ∧☞h ∧☞i)(35)

If we want to think about the number of violations that occurs in each cell, we
can reason further. For example: imagine we know that celle has fewer violations
than cellb. It follows that cella must have fewer violations than celld.

This follows because we know all cells for [y] are assigned>. Hence if candi-
date [z] were assigned a> in cell d for constraint A, the fact that celle has fewer
violations than cellb would entail that [y] cannot be in the winning set. Therefore
[z] cannot be assigned a> in cell d for constraint A. Since A is the topmost con-
straint, the fact that [y] is true and [z] is false must follow from a different number
of violations. Hence, if celle has fewer violations of B than cellb, then cella
must have fewer violations of A then celld.

Reasoning about partial information is a very important result because it paves
the way for OT-based theories of acquisition and parsing.



In acquisition, the idea would be that the child is confronted with partial infor-
mation and must learn other information. The logical structure proposed provides
a means to do that.

In parsing, a similar problem obtains. The listener is confronted with partial in-
formation and must deduce(!) additional information. Again, the logical structure
proposed provides one possible mechanism by which a parser might proceed.

8 Conclusion

I’ve tried to develop a formulation of at least some aspects of OT in terms of first
order logic. Essentially, a cellα is true if all higher-ranked cells are true and there
is no other cellβ for the same constraint where i) all cells dominatingβ are true,
and ii) β has fewer violations thanα. This formulation is surely naive in some
regards, but it is the first attempt at this in the literature.

The formulation has allowed us to state and prove several theorems. First, all
inputs have at least one output. Second, constraint ranking is strict. Third, if a
candidate violates no constraints, it is a winning candidate. Finally, there can be
multiple winners.

The most interesting theorem is the last as this is a domain where there has been
some misunderstandings in the literature. Notice that there are a variety of ways
one could respond to this.

One possibility that I pursued in earlier work Hammond (1994) was to show
that one needs multiple winners to handle variation. This would put the issue on
satisfyingly familiar empirical grounds.

The other possibility would be to revise the theory of constraints so that we
guarantee that there will be no more than one winner in any particular case. This,
in fact, is what the practice of most phonologists has been, but it would be really
nice to put some theoretical teeth to this.

Finally, the framework proposed has implications for how we might view acqui-
sition and parsing, where the subject is confronted with partial information about
phonological representations.

I want to reiterate that the formalization is only partial, but I hope to have
demonstrated that there are some useful consequences to this kind of work and
hopefully this will encourage others to continue this kind of work.



9 Notes

1This paper is for my former colleague Dick Oehrle, who recently left Arizona for greener pastures.
Thanks also to Colleen Fitzgerald, James Myers, Diane Ohala, and the audience at WECOL for useful
discussion. All errors are my own.

2It is also, of course, exceedingly difficult to know what the authors thought!
3I assume Correspondence theory here (McCarthy and Prince, 1995).
4There’s much more required than this; see Hammond (1999) for more details.
5I addressed the issue of whether there is empirical support for allowing OT derivations to result in

more than one candidate in an earlier unpublished paper (Hammond, 1994). See also Idsardi (1992).
6Of course, as we will see later on, a cell with no violations is necessarily in the set of cells with

the fewest violations.
7The theorems are a compromise in terms of the degree of formality. I’ve done this for readability.
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