Homework 5: pp.51-3, #4,5

Answers

(4) Faulty reasoning:
A relation R is reflexive if for all $x \in \text{dom}(R)$, $<x,x> \in R$.
The reasoning does not allow for the case that there is some $x \in \text{dom}(R)$ s.t. for all $y \in \text{range}(R)$, $<x,y> \notin R$ (i.e. x bears no relation in R).
For example,
- S is the set of humans
- R is a relation defined on S such that aRb iff a and b have the same parents and those parents have at least two children.
For an only child x, x does not bear any relation to any other human, including him/herself. Therefore R is not reflexive, though it is symmetric and transitive.

(5)
(a) $R = \{ <1,1>, <2,2>, <3,3>, <5,5>, <6,6>, <10,10>, <15,15>, <30,30>,$
 $<1,2>, <1,3>, <1,5>, <1,6>, <1,10>, <1,15>, <1,30>,$
 $<2,6>, <2,10>, <2,30>,$
 $<3,6>, <3,15>, <3,30>,$
 $<5,10>, <5,15>, <5,30>,$
 $<6,30>, <10,30>, <15,30> \}$
- R is a weak order if it is reflexive and antisymmetric.
 (i) R is reflexive: for all $x \in \text{dom}(R)$, $<x,y> \in R$
 (ii) R is antisymmetric: for all $<x,y> \in R$ where $x \neq y$, $<y,x> \in R$.
- R is a partial order if it is unconnected.
 (i) R is connected if for every two distinct x,y, $<x,y> \in R$ or $<y,x> \in R$.
 $<3,10> \notin R$, $<10,3> \notin R$.
(b) 1 is minimal and least.
 - No element precedes 1.
 - 1 precedes all other elements.
30 is maximal and greatest.
 - No element follows 30
 - 30 follows all other elements.

PTO for diagrams…
Here is a predecessor diagram.

Note: the book actually asked for an immediate predecessor diagram. Such a diagram looks like this:

Immediate predecessors of \(x \) are all \(y \) s.t. there is no \(z \) s.t. \(y < z < x \).
For example, 1 is not an immediate predecessor of 30 because \(1 < 10 < 30 \).
Note that no element can be an immediate predecessor of itself.

(c) Do the same for the set \(\mathcal{P}(\{a,b,c\}) \) and the relation “is a subset of”.

(i) \(\mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,b\}, \{b,c\}, \{a,b,c\}\} \)
(ii) \(R = \{\langle \emptyset, \emptyset \rangle, \langle \emptyset, \{a\}\rangle, \langle \emptyset, \{b\}\rangle, \langle \emptyset, \{c\}\rangle, \langle \emptyset, \{a,c\}\rangle, \langle \emptyset, \{a,b\}\rangle, \langle \emptyset, \{b,c\}\rangle, \langle \emptyset, \{a,b,c\}\rangle, \langle \{a\}, \{a\}\rangle, \langle \{a\}, \{a,c\}\rangle, \langle \{a\}, \{a,b\}\rangle, \langle \{a\}, \{a,b,c\}\rangle, \langle \{b\}, \{b\}\rangle, \langle \{b\}, \{b,c\}\rangle, \langle \{b\}, \{a,b\}\rangle, \langle \{b\}, \{a,b,c\}\rangle, \langle \{c\}, \{c\}\rangle, \langle \{c\}, \{a,c\}\rangle, \langle \{c\}, \{a,c\}\rangle, \langle \{c\}, \{a,b,c\}\rangle, \langle \{a,b\}, \{a,b\}\rangle, \langle \{a,b\}, \{a,b,c\}\rangle, \langle \{a,c\}, \{a,c\}\rangle, \langle \{a,c\}, \{a,b,c\}\rangle, \langle \{b,c\}, \{b,c\}\rangle, \langle \{b,c\}, \{a,b,c\}\rangle, \langle \{a,b,c\}, \{a,b,c\}\rangle \} \)

- \(R \) is a weak order if it is reflexive and antisymmetric.
 (i) \(R \) is reflexive: for all \(x \in \text{dom}(R) \), \(\langle x, y \rangle \in R \)
 (ii) \(R \) is antisymmetric: for all \(\langle x, y \rangle \in R \) where \(x \neq y \), \(\langle y, x \rangle \in R \).
- R is a partial order if it is unconnected.

 (i) R is connected if for every two distinct x, y, \(x,y \in R \) or \(y,x \in R \).

 \(\{b\}, \{a,c\} \not\in R \), \(\{a,c\}, \{b\} \not\in R \).