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Parallel Random Access Machine

PRAM *Polynomially many
processors connected to

- «— Controller a global memory.

()
Processors Processors run

synchronously.

*Any processor
communicates with any
memory cell in a single

time step.
Global Memory



Boolean Circuit Family
< width ——

e(Gates are evaluated one
OUTPUT| [OUTPUT|

level at a time from input to
output.
*One circuit in the family

for each problem size.

*Equivalent to PRAM

" Depth=number of
levels~parallel time
= Width=maximum number

< ypdop —

of gates in a level~number of
pProcessors
» Work=total number of gates
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Parallel Computing

Adding n numbers can be carried out in O(log n) steps
using O(n) processors.
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Monte Carlo Simulations and
Depth

[ Typical System States }

< ypdop —

Random Bits

*MC simulations convert
random bits into typical
system states.

*Depth of a system 1is the
depth of the shallowest circuit
(running time of the fastest
PRAM program) that
generates typical states.
*Depth measures intrinsic
history dependence.



Percolation

Occupy sites with probability p Identify clusters




Connected Components

Find the connected
components (clusters) of a

Solution can be found
graph.

in O(log d) parallel time
where d 1s the diameter

of the graph. The
diameter is the longest

shortest path.
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Growing Networks

Barabasi and Albert, Science 286, 509 (1999)
Krapivsky, Redner, Leyvraz, PRL 85, 4629 (2000)

Add nodes one at a time, connecting new nodes to old nodes
according to a “rich get richer” preferential attachment rule:

Prob{t connects to i<t} o k(1)*

where k(t) 1s the number of connection to node i at time .
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Behavior of Growing Networks

Random Scale Free
P(k) ~ exp(-k) PR}~k Gel Node
‘/ P(k) ~ exp(-kP) l /
0 1
a

P(k) 1s the degree distribution



Fast Parallel Algorithm

For the “high temperature” phase 0 <= <1
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Complexity of Growing
Networks

depth / log N
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Conclusions

*Phase transitions in complexity often
coincide with structural phase transitions.

*Depth or parallel time rather than
computational work 1s the appropriate
way to see many complexity transitions.



