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Parallel Random Access Machine
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Global Memory

Processors

PRAM •Polynomially many
processors connected to
a global memory.

•Processors run
synchronously.

•Any processor
communicates with any
memory cell in a single
time step.



Boolean Circuit Family
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•Gates are evaluated one
level at a time from input to
output.
•One circuit in the family
for each problem size.
•Equivalent to PRAM

Depth=number of
levels~parallel time
Width=maximum number
of gates in a level~number of
processors
Work=total number of gates



Parallel Computing
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Adding n numbers can be carried out in O(log n) steps
using O(n) processors.
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Monte Carlo Simulations and
Depth
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Typical System States
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•MC simulations convert
random bits into typical
system states.
•Depth of a system is the
depth of the shallowest circuit
(running time of the fastest
PRAM  program) that
generates typical states.
•Depth measures intrinsic
history dependence.Random Bits



Percolation
Occupy sites with probability p Identify clusters



Connected Components
Find the connected
components  (clusters) of a
graph. Solution can be found

in O(log d) parallel time
where d is the diameter
of the graph.  The
diameter is the longest
shortest path.



Complexity of Percolation

depth~log L   at   p=pc
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Growing Networks
Barabasi and Albert, Science 286, 509 (1999)
Krapivsky, Redner, Leyvraz, PRL 85, 4629 (2000)

Prob{t connects to i<t} ∝ ki(t)α

Add nodes one at a time, connecting new nodes to old nodes
according to a “rich get richer” preferential attachment rule:

where ki(t)  is the number of connection to node i at time t.
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Behavior of Growing Networks

α
0 1

Random
P(k) ~ exp(-k)

P(k) ~ exp(-kβ)

Scale Free
P(k) ~ k−ν Gel Node

P(k) is the degree distribution



Fast Parallel Algorithm
For the “high temperature” phase
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Complexity of Growing
Networks
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Conclusions

•Phase transitions in complexity often
coincide with structural phase transitions.

•Depth or parallel time rather than
computational work is the appropriate
way to see many complexity transitions.


