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• Overview and motivation:  What aspect of natural 
complexity are we trying to formalize?

• Background: statistical physics and parallel 
computational complexity.

• Depth: a useful proxy for complexity? 

• Examples: the simple and complex in statistical 
physics

• Conclusions
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Ising Model

• A more tractable example from statistical 
physics.

• System states described by “spins”              
on a lattice.  

• Probability of system states described by 
the Gibbs distribution

si = ±1
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The Ising Critical Point

• Long range correlations

• Fractal clusters of like 
spins

• Structure on all length 
scales.

• Difficult to simulate 
numerically and analyze 
theoretically.
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• Question:   What makes the Earth more 
complex than the Sun and the Ising critical 
point more complex than its high or low 
temperature phases?



• Question:   What makes the Earth more 
complex than the Sun and the Ising critical 
point more complex than its high or low 
temperature phases?

• One answer:   A long history.
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• The emergence of a complex system from simple 
initial conditions requires a long history.
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• The Earth and the Sun are both 4.5 billions years 
old...



• The Earth and the Sun are both 4.5 billions years 
old...

• ...but, the present state of the Sun does not 
remember the full 4.5 billion year history (except 
via conserved quantities) while the present state 
of the Earth (biosphere) is contingent on a very 
long evolutionary process.  The Earth does 
remember its past.  



• High and low temperature 
states of the Ising model 
can be sampled using 
small number of sweeps of 
a Monte Carlo algorithm.

• The critical state of the 
Ising model requires a 
number of sweeps of  MC 
algorithm that scales as a 
power of the system size 
(critical slowing down).
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History and Complexity

• The emergence of a complex system from simple 
initial conditions requires a long history.

• History can be quantified in terms of the 
computational complexity (running time) of 
simulating states of the system.

Charles Bennett
–in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)



What computational complexity measure best 
measures physical complexity?

• Complexity emerges from interactions, not 
from signal propagation ➔ discount 
communication.

• Size alone should not contribute to physical 
complexity ➔ discount hardware.

• These considerations suggest parallel time 
as the appropriate computational 
complexity measure.



History and Complexity



History and Complexity

• The emergence of a complex system from simple 
initial conditions requires a long history.



History and Complexity

• The emergence of a complex system from simple 
initial conditions requires a long history.

• History can be quantified in terms of the 
computational complexity of simulating states of 
the system.



History and Complexity

• The emergence of a complex system from simple 
initial conditions requires a long history.

• History can be quantified in terms of the 
computational complexity of simulating states of 
the system.

• The appropriate computational measure of history 
is parallel time.
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Parallel Random Access 
Machine

1 2 3 m

Controller

Global Memory

Processors

PRAM
•Each processor runs the 
same program but has a 
distinct label 

•Each processor 
communicates with any 
memory cell in a single time 
step.

•Primary resources:
Parallel time

Number of processors



Boolean Circuit Family

NOR NOR
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NOR NOR

INPUT INPUT INPUT

OUTPUT OUTPUT

width

depth

•Gates evaluated one level 
at a time from input to 
output with no feedback.
•One hardwired circuit for 
each problem size.
•Primary resources

Depth=number of levels 
≈ parallel time

Width=maximum number of 
gates in a level

≈number of processors
Work=total number of gates



Parallel Computing
Adding n numbers can be carried out in O(log n) steps 

using O(n) processors.  
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Connected components of a graph can be found in 
O(log2 n) time using polynomially many processors.



Complexity Classes and 
P-completeness

•P is the class of feasible problems: solvable with 

polynomial work.

•NC is the class of problems efficiently solved in parallel 

(polylog depth and polynomial work, NC ⊆ P).

•Are there feasible problems that cannot be solved 

efficiently in parallel (P≠NC)?

•P-complete problems are the hardest problems in P to 

solve in parallel. It is believed they are inherently 

sequential: not solvable in polylog depth.

•The Circuit Value Problem is P-complete.
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Sampling Complexity

•Monte Carlo simulations 
convert random bits into 
descriptions of a typical 
system states.
•What is the depth of the 
shallowest feasible circuit 
(running time of the fastest 
PRAM  program) that 
generates typical states?
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Sampling Complexity

•Monte Carlo simulations 
convert random bits into 
descriptions of a typical 
system states.
•What is the depth of the 
shallowest feasible circuit 
(running time of the fastest 
PRAM  program) that 
generates typical states?
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Depth is a property of systems in statistical physics



The depth of a natural system is the 
time complexity of the fastest 
parallel  Monte Carlo algorithm 
(PRAM or Boolean circuit family 
with random inputs) that generates 
typical system states (or histories) 
with polynomial hardware.

Depth of Natural Systems
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• A natural system should not be called complex 
because it emerges slowly via an inefficient 
process.

- Many systems that appear to have a long history do not, 
in fact, have much depth.



Comments on fastest

• A natural system should not be called complex 
because it emerges slowly via an inefficient 
process.

- Many systems that appear to have a long history do not, 
in fact, have much depth.

• Depth is uncomputable.  Upper bounds can be 
found by demonstrating specific parallel sampling 
algorithms but lower bounds are difficult to 
establish. 

- A necessary feature, not a bug!



Maximal Property of Depth

Follows immediately from parallelism.

For a system AB composed of independent subsystems A and 
B, the depth of the whole is the maximum over subsystems:
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Maximal Property of Depth

Follows immediately from parallelism.

For a system AB composed of independent subsystems A and 
B, the depth of the whole is the maximum over subsystems:

≈

Depth is intensive (nearly 
independent of size) for 
homogeneous systems with short 
range correlations.



Examples from statistical physics

• Random walks

• Preferential attachment networks

• The Ising model

• Diffusion limited aggregation
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•There is apparent history in the 
random walk since its position at 
time t+1 is obtained from the 
position at time t by adding a 
random step.
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Random Walks

•There is apparent history in the 
random walk since its position at 
time t+1 is obtained from the 
position at time t by adding a 
random step.
•Since addition can be carried 
out in log parallel time, a 
random walk of length t has log t 
depth.

from wikipedia



Examples from statistical physics

• Random walks

• Preferential attachment networks

• The Ising model

• Diffusion limited aggregation



Preferential Attachment Networks
Barabasi, Albert, Science 286, 509 (1999)
Krapivsky, Redner, Leyvraz, PRL 85, 4629 (2000)

Add nodes one at a time, connecting new nodes to old nodes 
according to a “rich get richer” preferential attachment rule:

where kn(t)  is the degree of node n at time t.

1/3 1/31/9 1/9 1/9



Behavior of Growing Networks

α0 1

Random
P(k) ~ exp(-k)

P(k) ~ exp(-kβ)

Scale Free
P(k) ~ k−ν Gel Node

P(k) is the degree distribution

Discontinuous structural transition at α=1



Redirection

33

I. Generate a random sequential network.

II. With probability r, color edge R (redirect) and with 
probability 1-r color edge T (terminal). 

III. New links obtained by tracing R edges and stopping 
after traversing a T edge.

Krapivsky, Redner, Leyvraz, PRE 63, 066123 (2001)



Parallel Algorithm for Scale Free Networks

• Redirection provides a fast parallel 
algorithm for the scale free case.  

• The longest redirected path ~log N
• Tracing such a path in parallel ~log log N
• Depth of scale free networks ~log log N

34



Depth of PA Networks
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Examples from statistical physics

• Random walks

• Preferential attachment networks

• The Ising model

• Diffusion limited aggregation



z ≈ 0.5 at T = Tc

z = 0(log) for T != Tc

Ising model

The best known parallel algorithm for the (3D) 
Ising model (the Swendsen-Wang algorithm) 
equilibrates at the critical point in a time that 
scales as a small power of the system size.  



z ≈ 0.5 at T = Tc

z = 0(log) for T != Tc

Ising model

The best known parallel algorithm for the (3D) 
Ising model (the Swendsen-Wang algorithm) 
equilibrates at the critical point in a time that 
scales as a small power of the system size.  

More generally, depth tends to be a maximum at  transitions between ordered 
and disordered states.



Examples from statistical physics

• Random walks

• Preferential attachment networks

• The Ising model

• Diffusion limited aggregation



Diffusion Limited Aggregation

•Particles added one at a time 
with sticking probabilities given 
by the solution of Laplace’s 
equation.
•Self-organized fractal object

df=1.715…  (2D)
•Physical systems:

Fluid flow in porous media
Electrodeposition
Bacterial colonies

Witten and Sander, PRL 47, 1400 (1981)
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Depth of DLA
Theorem: Determining the shape of an aggregate from the 
random walks of the constituent particles is a P-complete 
problem.
Proof sketch:  Reduce the Circuit Value Problem to DLA dynamics.

Caveats:
1. P≠NC not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics

a b c

input 1 input 2

power

output

d



1
32

tentative cluster, step N tentative cluster, step N+1

1. Start with seed particle at the origin and N walk trajectories
2. In parallel move all particles along their trajectories to tentative sticking 

points on tentative cluster, which is initially the seed particle at the origin.
3. New tentative cluster obtained by removing all particles that interfere with 

earlier particles.
4. Continue until all particles are correctly placed.

Parallel Algorithm for DLA
D. Tillberg and JM, PRE 69, 051403 (2004)

2 1



Efficiency of the Algorithm
•DLA is a tree whose 
structural depth, Ds scales as 
the radius of the cluster.
•The running time, T of the 
algorithm is asymptotically 
proportional to the structural 
depth.

D
s/T

     T



Summary

• Depth (parallel time complexity of 
sampling distributions) is a property of any 
natural system described in the framework 
of statistical physics. 

• Depth captures some salient features of the 
intuitive notion of complexity. 


