Complexity, Parallel Computation and Statistical Physics
 Jon Machta

Measures of Complexity workshop
Santa Fe Institute
January 13, 201I

Outline

- Overview and motivation: What aspect of natural complexity are we trying to formalize?
- Background: statistical physics and parallel computational complexity.
- Depth: a useful proxy for complexity?
- Examples: the simple and complex in statistical physics
- Conclusions

Collaborators

- Ray Greenlaw
- Cris Moore
- Dan Tillberg
- Ben Machta
- Ken Moriaty
- Xuenan Li

What's the difference?

from NASA

What's the difference?

- Mass
- Temperature
- Entropy
- Entropy production

What's the difference?

- Mass
- Temperature
- Entropy
- Entropy production

What's the difference?

- Complexity

What's the difference?

- Complexity

What's the difference?

- Complexity

Ising Model

- A more tractable example from statistical physics.
- System states described by "spins" $s_{i}= \pm 1$ on a lattice.
- Probability of system states described by the Gibbs distribution

Ising Model

$$
\begin{gathered}
\mathcal{H}=-\sum_{(i, j)} s_{i} s_{j} \\
P[\mathbf{s}]=e^{-\mathcal{H}[\mathbf{s}] / k T} / Z
\end{gathered}
$$

Gibbs Distribution

Ising Model

$$
\begin{gathered}
\mathcal{H}=-\sum_{(i, j)} s_{i} s_{j} \\
P[\mathbf{s}]=e^{-\mathcal{H}[\mathbf{s}] / k T} / Z
\end{gathered}
$$

Gibbs Distribution

$$
T=0
$$

$$
T=T_{c}
$$

$$
T=\infty
$$

Ising Model

$$
\begin{gathered}
\mathcal{H}=-\sum_{(i, j)} s_{i} s_{j} \\
P[\mathbf{s}]=e^{-\mathcal{H}[\mathbf{s}] / k T} / Z
\end{gathered}
$$

Critical point

$$
T=\infty
$$

The Ising Critical Point

- Long range correlations
- Fractal clusters of like spins
- Structure on all length scales.
- Difficult to simulate numerically and analyze theoretically.

Ising Model

Temperature

$T=0$
$T=T_{c}$
$T=\infty$

Ising Model

Temperature

Entropy

completely ordered
completely disordered

Ising Model

Temperature Entropy

Complexity

- Question: What makes the Earth more complex than the Sun and the Ising critical point more complex than its high or low temperature phases?
- Question: What makes the Earth more complex than the Sun and the Ising critical point more complex than its high or low temperature phases?
- One answer: A long history.

History and Complexity

Charles Bennett

-in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

History and Complexity

Charles Bennett
-in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

- The emergence of a complex system from simple initial conditions requires a long history.
- The Earth and the Sun are both 4.5 billions years old...
- The Earth and the Sun are both 4.5 billions years old...
- ...but, the present state of the Sun does not remember the full 4.5 billion year history (except via conserved quantities) while the present state of the Earth (biosphere) is contingent on a very long evolutionary process. The Earth does remember its past.
- High and low temperature states of the Ising model can be sampled using small number of sweeps of a Monte Carlo algorithm.
- The critical state of the Ising model requires a number of sweeps of MC algorithm that scales as a power of the system size (critical slowing down).

History and Complexity

Charles Bennett

-in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

History and Complexity

Charles Bennett
-in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

- The emergence of a complex system from simple initial conditions requires a long history.

History ano anondexity

Charles Bennett
-in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

- The emergence of a complex system from simple initial conditions requires a long history.
- History can be quantified in terms of the computational complexity (running time) of simulating states of the system.

What computational complexity measure best measures physical complexity?

- Complexity emerges from interactions, not from signal propagation \rightarrow discount communication.
- Size alone should not contribute to physical complexity \rightarrow discount hardware.
- These considerations suggest parallel time as the appropriate computational complexity measure.

History and Complexity

History and Complexity

- The emergence of a complex system from simple initial conditions requires a long history.

History zno

- The emergence of a complex system from simple initial conditions requires a long history.
- History can be quantified in terms of the computational complexity of simulating states of the system.

History and Complexity

- The emergence of a complex system from simple initial conditions requires a long history.
- History can be quantified in terms of the computational complexity of simulating states of the system.
- The appropriate computational measure of history is parallel time.

Models of Computation

Polynomial		Parallel Random Access Machine (PRAM)
	Cellular Automata	
One	Turing Machine	Random Access Machine (RAM)
	Local	Global

Models of Computation

Parallel Random Access Machine

PRAM

- Each processor runs the same program but has a distinct label
-Each processor communicates with any memory cell in a single time step.
-Primary resources:
- Parallel time
- Number of processors

Boolean Circuit Family

-Gates evaluated one level at a time from input to output with no feedback.

- One hardwired circuit for each problem size.
- Primary resources
-Depth=number of levels
₹ parallel time
- Width=maximum number of gates in a level

चnumber of processors

- Work=total number of gates

Parallel Computing

Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

Parallel Computing

Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

Connected components of a graph can be found in $O\left(\log ^{2} n\right)$ time using polynomially many processors.

Complexity Classes and P-completeness

-P is the class of feasible problems: solvable with polynomial work.

- $\mathbf{N C}$ is the class of problems efficiently solved in parallel (polylog depth and polynomial work, $\mathbf{N C} \subseteq \mathbf{P}$).
-Are there feasible problems that cannot be solved efficiently in parallel ($\mathbf{P} \neq \mathbf{N C}$) ?
$\bullet \mathbf{P}$-complete problems are the hardest problems in \mathbf{P} to solve in parallel. It is believed they are inherently sequential: not solvable in polylog depth.
-The Circuit Value Problem is \mathbf{P}-complete.

Complexity Classes and P-completeness

-P is the class of feasible problems: solvable with polynomial work.

- $\mathbf{N C}$ is the class of problems efficiently solved in parallel (polylog depth and polynomial work, $\mathbf{N C} \subseteq \mathbf{P}$).
-Are there feasible problems that cannot be solved efficiently in parallel $(\mathbf{P} \neq \mathbf{N C})$?
$\bullet \mathbf{P}$-complete problems are the hardest problems in \mathbf{P} to solve in parallel. It is believed they are inherently sequential: not solvable in polylog depth.

-The Circuit Value Problem is \mathbf{P}-complete.

Sampling Complexity

-Monte Carlo simulations convert random bits into descriptions of a typical system states.
-What is the depth of the shallowest feasible circuit (running time of the fastest PRAM program) that generates typical states?

Sampling Complexity

- Monte Carlo simulations convert random bits into descriptions of a typical system states.
-What is the depth of the shallowest feasible circuit (running time of the fastest PRAM program) that generates typical states?

Depth is a property of systems in statistical physics

Depth of Natural Systems

The depth of a natural system is the time complexity of the fastest parallel Monte Carlo algorithm (PRAM or Boolean circuit family with random inputs) that generates typical system states (or histories) with polynomial hardware.

Comments on fastest

Comments on fastest

- A natural system should not be called complex because it emerges slowly via an inefficient process.
- Many systems that appear to have a long history do not, in fact, have much depth.

Comments on fastest

- A natural system should not be called complex because it emerges slowly via an inefficient process.
- Many systems that appear to have a long history do not, in fact, have much depth.
- Depth is uncomputable. Upper bounds can be found by demonstrating specific parallel sampling algorithms but lower bounds are difficult to establish.
- A necessary feature, not a bug!

Maximal Property of Depth

For a system $A B$ composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$
\mathcal{D}(A B)=\max \{\mathcal{D}(A), \mathcal{D}(B)\}
$$

Follows immediately from parallelism.

Maximal Property of Depth

For a system $A B$ composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$
\mathcal{D}(A B)=\max \{\mathcal{D}(A), \mathcal{D}(B)\}
$$

Follows immediately from parallelism.

Maximal Property of Depth

For a system $A B$ composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$
\mathcal{D}(A B)=\max \{\mathcal{D}(A), \mathcal{D}(B)\}
$$

Follows immediately from parallelism.

Depth is intensive (nearly independent of size) for homogeneous systems with short range correlations.

Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation

Random Walks

from wikipedia

Random Walks

-There is apparent history in the random walk since its position at time $t+1$ is obtained from the position at time t by adding a random step.

from wikipedia

Random Walks

-There is apparent history in the random walk since its position at time $t+l$ is obtained from the position at time t by adding a random step.

- Since addition can be carried out in log parallel time, a random walk of length t has $\log t$ depth.

from wikipedia

Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation

Preferential Attachment Networks

Barabasi, Albert, Science 286, 509 (1999)
Krapivsky, Redner, Leyvraz, PRL 85, 4629 (2000)
Add nodes one at a time, connecting new nodes to old nodes according to a "rich get richer" preferential attachment rule:

$$
\pi_{n}(t)=\operatorname{Prob}[t \text { connects to } n] \propto k_{n}(t)^{\alpha}
$$

where $k_{n}(t)$ is the degree of node n at time t.

Behavior of Growing Networks

$$
\pi_{n}(t)=\operatorname{Prob}[t \text { connects to } n] \propto k_{n}(t)^{\alpha}
$$

$P(k)$ is the degree distribution
Discontinuous structural transition at $\alpha=1$

Redirection

Krapivsky, Redner, Leyvraz, PRE 63, 066123 (2001)
I. Generate a random sequential network.

II. With probability r, color edge R (redirect) and with probability $1-r$ color edge \mathbf{T} (terminal).

III. New links obtained by tracing R edges and stopping after traversing a \mathbf{T} edge.

Parallel Algorithm for Scale Free Networks

- Redirection provides a fast parallel algorithm for the scale free case.
- The longest redirected path $\sim \log N$
- Tracing such a path in parallel $\sim \log \log N$
- Depth of scale free networks $\sim \log \log N$

Depth of PA Networks

Depth of PA Networks

Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation

Ising model

The best known parallel algorithm for the (3D) Ising model (the Swendsen-Wang algorithm) equilibrates at the critical point in a time that scales as a small power of the system size.

$$
\begin{aligned}
& z \approx 0.5 \text { at } T=T_{c} \\
& z=0(\log) \text { for } T \neq T_{c}
\end{aligned}
$$

Ising model

The best known parallel algorithm for the (3D) Ising model (the Swendsen-Wang algorithm) equilibrates at the critical point in a time that scales as a small power of the system size.

$$
\begin{aligned}
& z \approx 0.5 \text { at } T=T_{c} \\
& z=0(\log) \text { for } T \neq T_{c}
\end{aligned}
$$

More generally, depth tends to be a maximum at transitions between ordered and disordered states.

Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation

Diffusion Limited Aggregation

Witten and Sander, PRL 47, 1400 (1981)

-Particles added one at a time with sticking probabilities given by the solution of Laplace's equation.

- Self-organized fractal object

$$
d_{f}=1.715 \ldots \text { (2D) }
$$

-Physical systems:
Fluid flow in porous media
Electrodeposition
Bacterial colonies

Random Walk Dynamics for DLA

Random Walk Dynamics for DLA

Random Walk Dynamics for DLA

Random Walk Dynamics for DLA

Random Walk Dynamics for DLA

Random Walk Dynamics for DLA ○

Random Walk Dynamics for DLA

Depth of DLA

Theorem: Determining the shape of an aggregate from the random walks of the constituent particles is a \mathbf{P}-complete problem.

Proof sketch: Reduce the Circuit Value Problem to DLA dynamics.

Caveats:

1. $\mathbf{P} \neq \mathbf{N C}$ not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics

Parallel Algorithm for DLA

D. Tillberg and JM, PRE 69, 051403 (2004)

1. Start with seed particle at the origin and N walk trajectories
2. In parallel move all particles along their trajectories to tentative sticking points on tentative cluster, which is initially the seed particle at the origin.
3. New tentative cluster obtained by removing all particles that interfere with earlier particles.
4. Continue until all particles are correctly placed.

Efficiency of the Algorithm

- DLA is a tree whose structural depth, D_{s} scales as the radius of the cluster.
\bullet The running time, T of the algorithm is asymptotically proportional to the structural depth.

$$
T \sim D_{s} \sim N^{1 / d_{f}}
$$

Summary

- Depth (parallel time complexity of sampling distributions) is a property of any natural system described in the framework of statistical physics.
- Depth captures some salient features of the intuitive notion of complexity.

