Physics and phase transitions in parallel computational complexity

Jon Machta

University of Massachusetts Amherst
and
Santa Fe Institute

Physics of Algorithms
August 31, 2009

Collaborators

- Ray Greenlaw, Armstrong Atlantic University
- Cris Moore, University of New Mexico, SFI
- Stephan Mertens, Otto-von-Guericke University Magdeburg, SFI
- Students:
- Ken Moriarty
- Xuenan Li
- Ben Machta
- Dan Tillberg

Outline

- Parallel computing and computational complexity
- Parallel complexity of models in statistical physical
- Random circuit value problem: complexity of solving and sampling

Parallel Random Access Machine

PRAM

- Each processor runs the same program but has a distinct label
-Each processor communicates with any memory cell in a single time step.
-Primary resources:
- Parallel time
- Number of processors

Parallel Computing

Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

Connected components of a graph can be found in $O\left(\log ^{2} n\right)$ steps using n^{2} processors.

Complexity Classes and P-completeness

$\bullet \mathbf{P}$ is the class of feasible problems: solvable with polynomial work.

- NC is the class of problems efficiently solved in parallel (polylog time and polynomial work, $\mathbf{N C} \subseteq \mathbf{P}$). -Are there feasible problems that cannot be solved efficiently in parallel $(\mathbf{P} \neq \mathbf{N C})$?
-P-complete problems are the hardest problems in \mathbf{P} to solve in parallel. It is believed they are inherently sequential: not solvable in polylog time.

\bullet The Circuit Value Problem is \mathbf{P}-complete.

Complexity Classes and P-completeness

-P is the class of feasible problems: solvable with polynomial work.

- NC is the class of problems efficiently solved in parallel (polylog time and polynomial work, $\mathbf{N C} \subseteq \mathbf{P}$). -Are there feasible problems that cannot be solved efficiently in parallel $(\mathbf{P} \neq \mathbf{N C})$?
-P-complete problems are the hardest problems in \mathbf{P} to solve in parallel. It is believed they are inherently sequential: not solvable in polylog time.

\bullet The Circuit Value Problem is \mathbf{P}-complete.

Sampling Complexity

- Models and algorithms in statistical physics convert random bits into typical system states.

Diffusion Limited Aggregation

Witten and Sander, PRL 47, 1400 (1981)

-Particles added one at a time with sticking probabilities given by the solution of Laplace's equation.

- Self-organized fractal object
$d_{f}=1.715 \ldots$ (2D)
-Physical systems:
Fluid flow in porous media
Electrodeposition
Bacterial colonies

Random Walk Dynamics for DLA

The Problem with Parallelizing DLA

Parallel dynamics ignores interference between 1 and 3

Sequential dynamics

Complexity of DLA

Theorem: Determining the shape of an aggregate from the random walks of the constituent particles is a \mathbf{P}-hard problem.

Proof idea: Reduce the Circuit Value Problem to DLA dynamics.

Gadet for NOR gate

Caveats:

1. $\quad \mathbf{P} \neq \mathbf{N C}$ not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics for sampling DLA

Sequential models with polylog parallel complexity

-Eden growth
-Invasion percolation - Scale free networks

- Ballistic deposition
-Bak-Sneppen model - Internal DLA

Scale free network

Eden growth

Invasion percolation

Internal DLA

Particles start at the origin, random walk and stick where they first leaves the cluster.

- Shape approaches a circle with logarithmic fluctuations.
$\bullet \mathrm{P}$-completeness proof fails. (However, IDLA is CC-complete)

Parallel Algorithm for IDLA

C. Moore and JM, J. Stat. Phys. 99, 661 (2000)

1. Start with seed particle at the origin and N walk trajectories
2. Place particles at expected positions along their trajectories.
3. Iteratively move particles until holes and multiple occupancies are eliminated

Average parallel time polylogarthmic or possibly a small power in N.

Cluster of 2500 particles made in 6 parallel steps.

Random Monotone CVP

-Circuit arranged in levels with W gates on a level and D levels.

- $\tau_{0}=$ fraction of TRUE inputs.
- p =fraction of OR gates.
-Gates at level $n+1$ randomly take k inputs from gates at level n (with replacement).

Monotone CVP is P-complete but how hard is it on average to evaluate the circuit in parallel?

Recursion relations, $k=2$

- Let τ_{n} be the expected fraction of gates evaluating to TRUE at level n.

$$
\tau_{n+1}=p\left(1-\left(1-\tau_{n}\right)^{2}\right)+(1-p) \tau_{n}^{2}
$$

Absorbing fixed points at $\tau=0$ and $\tau=1$.

Recursion relations, $k=2$

- Let τ_{n} be the expected fraction of gates evaluating to TRUE at level n.

$$
\tau_{n+1}=p\left(1-\left(1-\tau_{n}\right)^{2}\right)+(1-p) \tau_{n}^{2}
$$

$$
0 \longleftarrow \longleftarrow \tau_{n} \longleftarrow 1 \quad p<1 / 2 \quad \text { mainly } A N D
$$

Linearize around fixed points

Near the $\tau=0$ fixed point for $p<1 / 2$ the linearized recursion relations are:

$$
\tau_{n+1}=2 p \tau_{n}+\mathcal{O}\left(\tau_{n}^{2}\right)
$$

Let T be the time to saturation to all FALSE,

$$
\begin{gathered}
\tau_{T} \approx 1 / W \\
T \sim \frac{\ln W}{-\ln (2 p)}
\end{gathered}
$$

Time to saturation T as a function of circuit width W for various fractions p of OR gates.

Slope of the logarithmic scaling of the saturation time vs. p. The solid line is the prediction, $-1 / \ln (2(1-p))$.

Critical point at $p=1 / 2$

The number of gates, X_{n} evaluating to TRUE at level n obeys a stochastic recursion relation,

$$
X_{n+1}=\mathcal{B}\left(W, X_{n} / W\right)
$$

Here $\mathcal{B}(n, p)$ is a binomial random variable.

After taking the continuum limit, one obtains a diffusion process with absorbing endpoints and a diffusion coefficient that vanishes at the endpoints.

Critical Saturation Time

Using known results for mean first passage times with the spatially non-uniform diffusion coefficient

$$
D(x)=\frac{x}{2}\left(1-\frac{x}{W}\right)
$$

we obtain a linear saturation time:

$$
T=-2 \underline{W}\left[\tau_{0} \ln \tau_{0}+\left(1-\tau_{0}\right) \ln \left(1-\tau_{0}\right)\right]
$$

Slope of the linear scaling of the saturation time vs. W.

Summary for two input gates

- For $\quad p \neq 1 / 2$

Circuit evaluation easy

$$
T \sim \ln W
$$

- For $\quad p=1 / 2$

Circuit evaluation hard

$$
T \sim W
$$

$k>2$

- For $p<1 / k$ or $p>1-1 / k$ have $T \sim \ln W \rightarrow$ Fast circuit evaluation.
- For $1 / k<p<1-1 / k$ have non-trivial fixed point:

$$
0<\tau^{*}<1
$$

Circuit does not saturate to a single value except via a large deviation \rightarrow Slow circuit evaluation.

Generating Circuit+Solution Pairs

- Q: How difficult is it to simultaneously generate an instance of random monotone CVP together with its evaluation?

- A: For any values of the parameters, a random instance chosen from the correct distribution and its evaluation can be generated in polylog parallel time on a PRAM.

Fast Parallel Sampling of Circuit +Evaluation Pairs

- Idea: In parallel generate an instance of each level-gates and their inputs and outputs--then put the levels together into a complete circuit+evaluation.
- Difficulty: Inputs to layer $n+1$ are not known until layer n is evaluated.
- Solution: The number of TRUE inputs is all that is required to generate a random level. In parallel construct $W+1$ instances of each level, one for each number of TRUE inputs.

Construct one level

Given: 2 TRUE, 1 FALSE

T

F

F

Attaching levels into a circuit+evaluation

Wiring the circuit

Conclusion

- Parallel computational complexity provides a unique perspective on models in statistical physics.
- Simple methods yield interesting results for random ensembles of CVP revealing phase transitions in complexity.
- Although CVP is hard to solve in parallel, it is easy to generate random instances and solutions simultaneously.

