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Outline

• Parallel computing and computational complexity
• Diffusion limited aggregation
• Growing networks
• Physical complexity and computational complexity



Computational Complexity
•How do computational resources scale with the size of
the problem?

Time
Hardware

•Equivalent results independent of the model of
computation.

Turing machine
Parallel random access machine
Boolean circuit family
Formal logic



Boolean Circuit Family
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•Gates evaluated one level
at a time from input to
output with no feedback.
•One hardwired circuit for
each problem size.
•Primary resources

Depth=number of levels, Dc
Width=maximum number
of gates in a level
Work=total number of gates



Parallel Computing
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Adding n numbers can be carried out in O(log n) steps
using O(n) processors.

log n



Parallel Random Access
Machine
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Processors

PRAM
•Each processor runs the
same program but has a
distinct label

•Each processor
communicates with any
memory cell in a single
time step.

•Primary resources:
Parallel time ~ depth

Number of processors~width



Complexity Classes and
P-completeness

•P is the class of feasible problems: solvable with
polynomial work.
•NC is the class of problems efficiently solved in
parallel (polylog depth and polynomial work, NC ⊆ P).

•Are there feasible problems that cannot be solved
efficiently in parallel (P≠NC)?

•P-complete problems are the hardest problems in P to
solve in parallel. It is believed they are inherently
sequential: not solvable in polylog depth.
•The Circuit Value Problem is P-complete.
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Sampling Complexity
•Monte Carlo simulations
convert random bits into
descriptions of a typical
system states.
•What is the depth of the
shallowest circuit (running
time of the fastest PRAM
program) that generates
typical states?
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Diffusion Limited Aggregation

•Particles added one at a time
with sticking probabilities
given by the solution of
Laplace’s equation.
•Self-organized critical object

df=1.715…  (2D)
•Physical systems:

Fluid flow in porous media
Electrodeposition
Bacterial colonies

Witten and Sander, PRL 47, 1400 (1981)



Random Walk Dynamics for DLA
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Parallel dynamics ignores
interference between 1 and 3

Sequential dynamics

The Problem with Parallelizing DLA
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semi-secure cluster, step N semi-secure cluster, step N+1

1. Start with seed particle at the origin and N walk trajectories
2. In parallel move all particles along their trajectories to tentative sticking

points on the existing semi-secure cluster, which is initially the seed
particle at the origin.

3. New semi-secure cluster obtained by removing all particles that interfere
with earlier particles.

4. Continue until all particles are correctly placed.

Parallel Algorithm for DLA
D. Tillberg and JM, PRE 69, 051403 (2004)
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Efficiency of the Algorithm
•DLA is a tree whose
structural depth , Ds scales
as the radius of the cluster.
•The running time, T of the
algorithm is asymptotically
proportional to the structural
depth.
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Depth of DLA
Theorem: Determining the shape of an aggregate from the
random walks of the constituent particles is a P-complete
problem.
Proof sketch:  Reduce the Circuit Value Problem to DLA dynamics.

Caveats:
1. P≠NC not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be easier than random walk dynamics

Conjecture:



Growing Networks
Barabasi and Albert, Science 286, 509 (1999)
Krapivsky, Redner, Leyvraz, PRL 85, 4629 (2000)

Add nodes one at a time, connecting new nodes to old
nodes according to a “rich get richer” preferential
attachment rule:

where kn(t)  is the number of connection to node n at time t.
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Behavior of Growing Networks

α
0 1

Random
P(k) ~ exp(-k)

P(k) ~ exp(-kβ)

Scale Free
P(k) ~ k−ν Gel Node

P(k) is the degree distribution

Discontinuous transition at α=1



Parallel Algorithm for Networks
For the “high temperature” phase

! 

0 "# "1
B. Machta and JM, cond-mat/0408372

2
G •New connection are

made according to bounds
on connection probabilities
computed from existing
node degrees.

1 G •Initially all nodes are
connected to a “ghost
node.”

3
tn

•Until all connections are
determined.



Bound on step S of probability of node t connecting to node n:

Conditional probability of node t connecting to node n
on step S given it was previously connected to g:



Depth of Growing Networks
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For the “low temperature” phase
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What is Physical Complexity?

• “I shall not today attempt further to define the kinds
of  material I understand to be embraced with that
shorthand description. ...  But I know it when I see it.”
– Justice Potter Stewart on pornography
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History and Complexity

• The emergence of a complex system from
simple initial conditions requires a long history.

• History can be quantified in terms of the
computational complexity of simulating states
of the system.

–Charles Bennett



What Model of Computation?



Discount Hardware
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Complexity of a system composed of nearly
independent subsystem is given by the most complex
subsystem.



Discount Communication

≈

Complexity emerges from interactions, not
from signal propagation.



Choose the Fastest Algorithm

≈

1 sec 1 yr

≈

Swendsen-Wang Metropolis



The depth of a physical system  is
the depth of a Boolean circuit (or
parallel time on a PRAM) to
simulate a typical system state
using the most efficient algorithm.

Depth of Physical Systems



Hierarchy of  Depth

Mandelbrot percolation
Growing network α>1
T>Tc Ising

Invasion percolation
Growing network α≤1
Eden growth
Ballistic deposition
Bak-Sneppen model
Internal DLA

DLA
T=Tc Ising

constant polylog polynomial



Conclusions
Computational complexity theory provides interesting perspectives on
physical systems.
DLA has power law depth.
Growing networks display a complexity transition from logarithmic to
constant depth at α=1.
Depth, defined as the minimum number of parallel steps needed to
simulate a system, is correlated with intuitive notions of physical
complexity.


