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Granular Materials

Macroscopic particle systems with dissipative
iInteractions

Ubiquitous in nature and industry

— Astrophysical structure
— Geophysics; sand,gravel
— Hopper flow, fluidized beds,...

Different and richer phenomenology than

elastic gases

— Clustering,jamming,non-Maxwellian velocities, violations of
equipartition, Maxwell’'s demons...



Spontaneous Order

Clustering Instability Maxwell's Demon
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Goldhirsch & Zannetti Eggers PRL 83, 5322 (1999)
PRL 70, 1619 (1993)

The dense get denser



Driven Granular Gas

Spheres d =1.6 mm
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Amplitude: 1.5 -2.5 4
Frequency: 40 — 70 Hz

Acceleration: 40 — 60 g |

Rouyer & Menon, PRL 85, 3676 (2000)



Non-Maxwellian Distributions

. *Distribution independent
of material, frequency,
10" £ amplitude, density, shape
: of boundary
P(v) | *Reasonably fit by

P(v,) ~ exp [-(v,/0)"]

f=60 hzz. A T=43g
o r-z00 where o =1.55+0.1
0°E / rome o restg =3/2 predicted bv kineti
o - 19 «a=3/2 predicted by kinetic

theory (asymptotically).
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Inelastic Collisions

vig=ujp+t (1l —p)(uz —u;)nn
0<p<1/2
AE = p(1—p)|(uy — up) - A1)

r = 1 — 2p restitution coeflicient



Boltzmann Equation

1,
9 v —
By f(v)
X
uq >
f(V) = probability density for - T
velocity v " Vo

A=1 hard spheres, A=1-2(d—-1)/s
A=0 Maxwell molecules Vi(r)~1/r®



Stationary States of the
Boltzmann Equation

0= /dﬁ duy dus|(u; — ug) -0 f(uy) f(uz)[6(v — vi) — (v — uy)]

exp[—(v/vg)?]  elastic

o(v) inelastic



Stationary States:
1D Maxwell Molecules

0= /du1 dus f(u1) f(uz) [0(v —v1) — 0(v — u1)]
| vy =puy +quy p+qg=1

Convolution

Fourier transform
\ 4

1 1 .

f(v) = o 1 4+ (v/vg)? v

Cauchy Distribution: infinite energy and dissipation



Linearized Boltzmann Egn

In the tail, dominant collision between
fast (tail) particles and slow particles:

0= /du u| f (w) [0(v—pu) +5(v—qu) —(v—u)]
| fw)~ue

) = p—l—)\—l—a + q—l—)\—i—a 1

o=+ 2




Velocity Cascade
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Stationary States d>1

0= / diduy duy|(u; —ug) - A f(uy) f(u2)[6(v — vi) — 6(v — uy)]

1—2F1 (d-l—é—c?'j )\_Qi_la d—|2-)\j 1 _p2) _ F(G—gil)r(%i)\)
(1 —p)o=a=2 L($)T(*3)

Characteristic exponent O

vs restitution coefficient r
for d=2 and d=3.
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Summary

The Boltzmann equation for
inelastic gases has non-trivial

stationary states with power f(v) ~

law tails and infinite
dissipation.

These states have an infinite
velocity cascade from high
to low velocity.

Do these states have any
physical significance?

How can decreasing energy
solution be stationary?



Driven Steady States

te y to initiate cascade.

=injection rate
=typical velocity

=cut-off velocity

Ipation =injection=

v~ VAV vg)4°




Simulation of Driven Gas

Hard spheres (A=1) in 1D 10"
(top) and 2D (bottom). 10

Dotted line is theory for 19
o. z 10"

Next: Experiments and

— — - theory
—— simulation

more realistic simulations



Decaying States

 What happens to steady state

when energy injection 1s tur
off?

e (Cut-off decreases without
modifying the rest of the
distribution. (A>0)




Cut-off vs. Time

energy decrease due to moving cut-off = dissipation

Stationary is not forever even for  1/(0) — oo



Cut-off Function
d=1,p=q=1/2,A=1

Plug ansatz for cut-off into Boltzmann Equation:

f(v,t) >~ fs(v)o (?V))

¢ (z) = 2[6(27) — 6(2)]



Cut-off Function

1 — ¢(x) ~ exp [—A (In :c)Q]
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¢'(x) = 2[p(2x) — ()]
o(xz) = Z a, exp(—2"x)
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Long Time Behavior

When V() ~ v, there 1s a crossover to the known,
single parameter freely cooling solution with
stretched exponential large velocity behavior:

t))(1+)\/‘2)

F(v) ~ vo(t) " de= A/ vol

see, e.g Ernst and Brito, cond-mat/0304608



Other Driving Mechanisms

*White Noise:

F(0) ~ v de=AWw/o0) N/

»

see, e.g Ernst and Brito, cond-mat/0304608

*The tail of the velocity distribution appears to depends
on the ratio of collision frequency to the injection

frequency.
van Zon & MacKintosh, PRL 93,038001 (2004)



Summary

Stationary states of the inelastic Boltzmann
exist with power law tails and energy
cascades.

Driven steady states with cut-off, power law
tails can be maintained by rare but energetic
injection.

Decaying states are initially described by a
single moving cut-off.

Next: Experiments and more realistic
simulations



