Graphical Representations and the Phase Transition of the Ising Spin Glass

Jon Machta
University of Massachusetts Amherst

with
Chuck Newman and Dan Stein
New York University

Supported by the National Science Foundation
Outline

- Graphical representations
- Spin Glasses
- Graphical representations for spin glasses
Graphical Representations

- Tool for rigorous results on spin systems
- Basis for very efficient Monte Carlo algorithms
- Source of geometrical insights into phase transitions

Fortuin & Kastelyn
Coniglio & Klein
Swendsen & Wang
Joint Spin-Bond Distribution

\[\mathcal{W}(\sigma, \omega; p) = p^{|\omega|} (1 - p)^{N_b - |\omega|} \Delta(\sigma, \omega) \]

\[\Delta(\sigma, \omega) = \begin{cases}
1 & \text{if for every } (ij) \ \omega_{ij} = 1 \rightarrow \sigma_i = \sigma_j \\
0 & \text{otherwise}
\end{cases} \]

Every occupied bond is satisfied
Marginals

\[W(\sigma, \omega; p) = p^{\omega}(1 - p)^{N_b - \omega} \Delta(\sigma, \omega) \]

\[W_{\text{bond}}(\omega; p) = p^{\omega}(1 - p)^{N_b - \omega} 2^{C(\omega)} \]

Fortuin-Kastelyn random cluster model

\[W_{\text{spin}}(\sigma; p = 1 - e^{-2\beta J}) = e^{\beta J} \sum_{(i,j)} \sigma_i \sigma_j \]

Ising model
Swendsen-Wang Algorithm

- Occupy satisfied bonds with probability $p = 1 - e^{-2\beta J}$
- Identify clusters of occupied bonds
- Randomly flip clusters of spins with probability 1/2.
Connectivity and Correlation

\[\langle \sigma_i \sigma_j \rangle = \text{Prob}\{i \text{ and } j \text{ connected}\} \]

- Criticality \[\leftrightarrow\] Percolation
Ising Spin Glass

\[\mathcal{H} = - \sum_{(ij)} J_{ij} \sigma_i \sigma_j \]

\[J_{ij} = \pm 1 \quad \text{independent, quenched random couplings} \]

Edwards-Anderson order parameter

\[q_i = \sigma_i^{(1)} \sigma_i^{(2)} \]

(1) and (2) are independent replicas
Two Replica Graphical Representation

\[\sigma_i = 1 \]
\[\tau_i = 1 \]
\[\omega_{ij} = 1 \]
\[\eta_{ij} = 1 \]
Spin Bond Distribution

\[\mathcal{W}(\sigma, \tau, \omega, \eta; \beta, J) \]

\[= B_{2\beta}(\omega)B_{\beta}(\eta)\Delta(\sigma, \tau, \omega; J)\Gamma(\sigma, \tau, \eta) \]

\[B_{\beta}(\eta) = \prod_{(ij)}(1 - e^{-2\beta})^{\eta_{ij}}(e^{-2\beta})^{1-\eta_{ij}} \]

Bernoulli factors for bonds

\[\Delta(\sigma, \tau, \omega; J) = \begin{cases} 1 & \text{if for every } (ij) \omega_{ij} = 1 \rightarrow J_{ij}\sigma_i\sigma_j > 0 \text{ and } J_{ij}\tau_i\tau_j > 0 \\ 0 & \text{otherwise} \end{cases} \]

\[\Gamma(\sigma, \tau, \eta) = \begin{cases} 1 & \text{if for every } (ij) \eta_{ij} = 1 \rightarrow \sigma_i\sigma_j\tau_i\tau_j < 0 \\ 0 & \text{otherwise} \end{cases} \]

spin bond constraints
Spin Bond Constraints

• If bonds satisfied in both replicas then
 \[\omega_{ij} = 1 \]
 with probability \[p = 1 - e^{-4\beta} \]

• If bonds satisfied in only one replica then
 \[\eta_{ij} = 1 \]
 with probability \[p = 1 - e^{-2\beta} \]

Red cluster have same \(q \)
\(q \) flips across green bonds
Some nice properties

• Correlation function of EA order parameter and connectivity

\[\langle q_i q_j \rangle = \]

\[-\text{Prob}\{ i \text{ and } j \text{ are connected by a path of occupied bonds with an \textit{even} number of green bonds}\}

\[-\text{Prob}\{ i \text{ and } j \text{ are connected by a path of occupied bonds with an \textit{odd} number of green bonds}\}

• Spin marginal is two independent Ising spin glasses

\[\mathcal{W}_{\text{spin}}(\sigma, \tau; \beta, J) = \text{const} \times \exp \left[\beta \sum_{(ij)} J_{ij} (\sigma_i \sigma_j + \tau_i \tau_j) \right] \]
Simulations

8^3 system

Size of first, second largest cluster red cluster and sum of both vs β

Number of wrapping red cluster vs β
Conclusions