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Granular Materials

Macroscopic particle systems with dissipative
Interactions

Ubiquitous in nature and industry

— Astrophysical structure

— Geophysics; sand,gravel

— Hopper flow, fluidized beds,...

Different and richer phenomenology than

elastic gases

— Clustering,jamming,non-Maxwellian velocities, violations of
equipartition, Maxwell’'s demons...



Spontaneous Order

Clustering Instability Maxwell’'s Demon
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Driven Granular Gas
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Non-Maxwellian Distributions

- *Distribution independent
of material, frequency,
10" £ amplitude, density, shape
: of boundary
P(v) | *Reasonably fit by

P(v,) ~ exp [-(v,/0)"]

f=60hz. A TI=43g
o oo where o =1.55+0.1
103k . f=60 hz. [ F=5i1’>g . . .
= . f=70hz. * TI=5 -
| s *0.=3/2 predicted by kinetic

theory (asymptotically).

Circular cage ‘
— Fit to exp[-(V/0)"] . ee




Inelastic Collisions

Vi = U1 2 =T (1 — P)(uz — ul)’ﬁﬁ
0<p<1/2

r = 1 — 2p restitution coefficient



Boltzmann Equation

f(V) = probability density of o . V1
velocity v \&
uz

A=1 hard spheres, A=0 Maxwell molecules



Stationary States of the
Boltzmann Equation

0= / dn duy duz|(uy — uz) - 0| f(ur) f(u) [5(v — vi) — 6(v — uy)]
exp[—(v/vg)?]  elastic

flv) =

o(v) inelastic



Stationary States:
1D Maxwell Molecules

0= /dul duz f(u1) f(uz) [0(v —v1) — (v — uy)]
| vy =pup+quy p+qg=1

Convolution

Fourier transform

1 1 i

fv) = g 1+ (v/vg)? ~ v

v

Cauchy Distribution: infinite energy and dissipation



Linearized Boltzmann Eqgn

In the tail, dominant collision between
fast (tail) particles and slow particles:

0= /du | f (w) [§(v—pu) +5(v—qu) —6(v—u)]
l flu) ~u=°

0 =p l- Mo 4 gm1- Mo _

o=\+2




Velocity Cascade



Stationary States d>1

0= /dﬁdu1 dus|(uy — uz) - 0 f(ur) f(u2)[6(v — vi) — 6(v — uy)]

1—2F1 (d+)\ UvA;l?d+A 1 — pQ) _F(%) ( : )
(1 =p)7—a=2 (e

Characteristic exponent O

vs restitution coefficient r
for d=2 and d=3.
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Summary

e The Boltzmann equation for
inelastic gases has non-
trivial stationary states with
power law tails and infinite
dissipation.

* These states have an infinite
velocity cascade from high
to low velocity.

* Do these states have any
physical significance?



Driven Steady States

te y to initiate cascade.

=injection rate
=typical velocity

=cut-off velocity

Ipation =injection=

v~ VAV /vp)?7




Simulation of Driven Gas

Hard spheres (A=1) in 10'21 . S
1D (top) and 2D L
(bottom). Dotted line is 107
theory for o. 2 10_:
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Next: Experiments and o

more realistic simulations v



Decaying States

* What happens to steady state

when energy injection is tur
off?

e (Cut-off decreases without
modifying the rest of the
distribution.




Cut-off vs. Time

energy decrease due to moving cut-off = dissipation

Stationary is not forever even for V' (0) — oo



Cut-off Function

Plug ansatz for cut-off into Boltzmann Equation:

f(v,t) ~ fo(v)o (%)

d=1,p=q=1/2,A=1



Cut-off Function

1 — ¢(x) ~ exp [—A (In 33)2}

I ———

0.8F \

flo.t) = f,(0)0 ()
¢'(x) = 2[p(22) — d(x)]
¢(x) = ian exp(—2"x)
fn = _g(na—gl_ 1
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Summary

Stationary states of the inelastic Boltzmann
exist with power law tails and energy
cascades.

Driven steady states with cut-off, power law
tails can be maintained by rare but energetic
Injection.

Decaying states are described by a single
moving cut-off.

Next: Experiments and more realistic stmulations



