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Random field Ising model
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•   si =  ± 1
•   hi  quenched Gaussian variables, mean zero and variance one
•   3D cubic lattice



Phase transition
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disorder, ∆temperature
bond energy, eenergy
energy,free energy

On large length scales thermal
fluctuations are irrelevant.  The
transition results from a
competition between random
fields and couplings.

Zero Temperature Fixed Point
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Specific heat exponent at T=0
Hartmann&Young PRB 64, 214419 (2001)

€ 

α = −0.63± 0.07
€ 

Cmax = a1 − a2L
α /ν

but modifed hyperscaling predicts

€ 

α = 2 − (d −θ)ν
θ ≈ 3/2,ν ≈ 4 /3⇒α ≈ 0

€ 

C =
δe
δΔ



Specific heat exponent at T=0
Middleton&Fisher PRB 65 134411 (2002)

€ 

α = −0.12 ± 0.16
€ 

e(Δ c ) = a1 − a2L
(α−1)/ν

€ 

(1−α) /ν = 0.82 ± 0.02



Ground states in the H-∆ plane

H

∆

0

2.26

Degenerate ground states
are separated by a line
(point) across which one
(two) domain(s) is (are)
flipped.
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The finite size critical region

H

Hypothesis: The singularities
in the finite size critical region
are concentrated on a small
number of “first-order” lines
and points.
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δe* = (e0 − e−)(e0 − e+)
€ 

L−1/ν



Specific heat at T=0
Dukovski&Machta PRB 67, 0144XX (2003)

€ 

(1−α) /ν = 0.80 ± 0.03

€ 

δe* ~ L(α−1)/ν

Scaling of the bond energy
jump at the finite size
transition:

€ 

Δ* = Δ c + cL−1/ν

€ 

ν =1.1± 0.1



Specific heat at T=0
Contributions of biggest jump and all
other jumps.

H=0



T > 0

Qualitative features of the zero
temperature transition should be
seen in the T>0 transition for
sufficiently large systems or strong
disorder.  For example, there should
be points in the H-T plane for fixed
∆ where three “phases” coexist.
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Machta, Newman and Chayes PRE 62, 8782 (2000)

243 at ∆ =1.31, T and
H fine-tuned
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Conclusion/Conjectures
• The finite size critical region of the 3D

Gaussian RFIM is not self-averaging and is
controlled by a few first-order like points
(both a T=0 and T>0).

• The singularities at these points are
described by exponents obeying modified
hyperscaling.

• Measurements of these singularities
provides a way to extract critical exponents
from finite size scaling.
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δe* ~L−(1−α ) /ν


