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1. Introduction

As mentioned earlier, in proving the major theorem, we proceed in small steps. First, we prove
that AS1+Q is complete for Classica Predicate Logic (CPL), then we prove that it is complete for
Classica Quantifier Logic (CQL). After that, we consider an axiom system for Classical First-Order
Logic, and show that it is complete for CFOL.

In proving completeness of AS1+Q for CPL, we proceed in a manner fairly smilar to, but not
exactly like, our proof that AS1 is complete for CSL.

(1)  We provethat every (deductively) consistent set can be extended to amaximal consistent
set. The CPL-construction is dightly different from the SL-construction.

(2)  We prove that the maximal consistent set constructed in the manner specified in Part 1 is
verifiable (semantically consistent).

(3)  Weemploy the two negation theorems— NT1 and NT2 —to prove that every CPL-valid
argument is AS1+Q-valid [meaning that its conclusion can be derived from its premises
using the rules of AS1].

2. The Construction of the Sequence &G, G, ...M

Let L bethe official language of CPL. Let &, e, ...fbe an enumeration of the closed formulas of
L. Let &4, C,, ...Aibe an enumeration of the constants of L. Suppose additionally that both enumerations
are one-to-one, meaning thet e = g only if i=j, and ¢; = ¢ only if i=j.

Supposethat Gis a consistent set of closed formulas of L ; further suppose that G does not contain
any constants (recall Simplification #3).

The congtruction of &, G,, ...figoes as follows.

v G = G
2 if G E {e} i+
then: .
Gn = G E{ey}
if  GE{e}r
then:
if e,isnotauniversal formulafi.e., e " vf,forany v, f]
then: .
G = GE {Nen}
if €, iIsauniversal formula,
then:

e="vf (forsomev,f), and
Gu = G E{~"vf} E{~f[c/V]}
where cisthe* first constant (relative to &, ¢,, ...f) not occurring in G,.
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*By hypothesis, G contains no constants. Given the definition of &5, G, ...AA G, has
finitely-many formulas notin G, and each formula has finitely-many symbols, so at most
finitely-many constants appear in G,. It follows, by ST, that thereis afirst constant not in
G,. Thus, the description ‘thefirst constant not in G, isreferentially proper.

3. Informal Account and Justification of the Construction

As the reader can see, he congtruction of &5, G, ...fiin Section 2 is very similar to the SL-
construction. The only differenceisthe “extra’ formula— ~f [c/v] — added in the third case.

Theintuition isfairly straightforward. Everytime oneaddsa ~" formulato the expanding set, one
adds a “corroborating” formula (also called a “witness’). This maneuver corresponds to the natural
deduction rule ~" O. Recall how thisruleisformulated.

~" vf

~f[clv] where ¢ does not appear earlier in the derivation [i.e., cis“new”]

So what we are doing in adding the extra formula is applying the rule ~" O. Notice that the constant ¢
substituted for vin f is specified to be the first constant not appearing in G, —in other words, cis“new”.

One might returally ask why this extra step is required. Why don’t we just construct &5, G,, ...M
and W[= U{G, G, ...}] the sameway we do in SL? Then the proof would exactly paralel the proof for
SL. We show Giscontained in W, and W is verifiable, so Gis verifiable, then apply NT1 and NT2 to
show compl eteness.

The answer isthat the particular construction we choose makes showing that Wis verifiable easier
to accomplish. Asit turns out, some maximal consistent sets are easier to show verifiable than others.
4, Every G in &G,, G,, ...fiis Consistent

Having congtructed &5, G,, ...fl we next show every G, is consistent, which is accomplished by
(smple, weak) math induction.

(1) SHeW: " nMG] MI [n>1]
Base Case:

(2)  SHOW: G 34,IL

3 G=G Def &G, G, ...7A

(4 G+ by hypothesis
Inductive Case:

(5) SHOW:" n{G# ® Gt} uCD

(6) G+ As

(7 SHOW: Gyt SC

Given the definition of G,;1 interms of G, there are two cases to consider, the second of
which divides into two cases.

(8) cl: G E {e} As
(9) Gh+1:GhE{en} 8,Def£lan,ﬁ
(10) Gl 6,9,IL
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(11) | 2 G E{e)} - As
(12 c2.1: e, isnot auniversa As
(13) Gn=GE {~e} 11, Def &G, G, ...
(14) G E{~e} i+ 11,earlier result about AS1f

§ AS1+Q contains the full deductive apparatus of AS1, so results about AS1 can simply be
transferred to AS1+Q.

(15) || Gt 13,14,1L
(16) c2.2: e,isauniversa As
a7) e, =" vf 16,def(is auniversal),$0
(18) let ¢ = thefirst constant not in G, Hsee Section 2 for justification
(29) G = GE{~"vf} E{~f[c/V]} 16,17,18,Def &, G,, ...A

given 19, in order to show G, -, the following suffices:

(20) SHOW: G, E {~" vf} E {~f [c/V]} ID
(21 G E{~"vf} E{~f[c]} + As
(22 SHOW: X 6,29,SL
(23) G F ~& 11,NT1
(24) G ~"f 17,23,IL
(25) G E {~" vf} Ff[cIV] 20,NT1
(26) G+ fcv] 24,25,GenTh(-)
(27) cl *G, 18, description logic
(28) G F"vf 26,27,UDT
(29) G+ 24,28, earlier result about AS1

5. The Construction of W, and Proof that it is Consistent

Next, given &5, G, ...N as defined above, we define W as follows.

w = U{G, G, ...}
The proof that Wis consistent duplicates the result for AS1, which we summarize here.
D SHOW: Wi+ DD
(2) W=U{G, G, ...} Def of W
(3) "n{Gl Gy} LO3
(4) WG, G, ...} 3,L01,L02,QL
C) W 2,4,IL

Subordinate Lemmas:

LOL: " nGH]

proven above

LO2: "G Gul & "NGH] ® U{G, G, ..} 0

Thisresult, proven earlier about AS1, transfersto AS1+Q.
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LO3: " n{G,I Gy}

This result, proven earlier about AS1, transfersto AS1+Q.

6. Proof that Wis Maximal Consistent w.r.t. Closed Formulas

Next, we prove that W is maximal consistent w.r.t. closed formulas, which may be defined as
follows.
MCIW =4 W+ & "afclosedla] ® {al W® . WE {a} }}

We have dready shown the first conjunct —that W is consistent. The second conjunct is proven like the
analogous result about AS1, which is reproduced here.

(1) sHew: " a{closedla] ® {al W® . WE {a} }} UCCD
2 closed[a] As
(3) al W As
(4) SHOW: WE {a} DD
(5) ~al W 3,L04,QL
(6) Wi ~a 5,GenTh(+)
(7) WE {a} + ~a 6,GenTh(+-)
(8) WE {a} + a GenTh(+)
9) WE {a} + 7,8, result about AS1
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LOA4:

"af{al W xor ~al W}

(0) " afclosedja] ® {al W xor ~al W}} UCD
(@) closed[a] A As
2 SHOW: al W xor ~al W 3,16,Def(xor)
3 SHOW: al W or ~al W 5,10,SL
(4) $nfa =¢g)] 1, Def &y, &, ...0
(5) a=e, A 5%$0
(6) sHoW: GE{e}r ® al w CD
(7 GE{en} - As
(8) SHoW: a |l W 5,10,IL
(20) el W A 9,Def W,ST
(12) SHowW: GE{e}+ ® ~al W CD
(12) GE{e}+ As
(13) SHOW: ~al W 5,15,IL
(14) G = GE{~en} 10, Def &G, G, ... 1
(15) ~e, 1 W 14,Def W,ST
(16) | sHow: ~{al W & ~al W} ID
(17) alwé& ~alw As
(18) SHOW: X 21,22
(29) W-a 17a, since Wis MC, it is deductively closed
(20) W-~a 17b, since WisMC, it is deductively closed
(22) W 19,20,result about AS1
(22) W shown earlier

The Substitution/Quantification Lemma About W

In the Chapter on Soundness, we proved the Substitution/Quantification Lemma, which is about
admissible valuations in CFOL. In the present section, we prove an analogous lemma about the

constructed set W.
LO5: "VvFT W « " c{F[ci]T W}
[® ]

Suppose” VIF T W, and suppose ¢ is a closed singular term. First, " vF® [F[c/v] isan
axiom of AS1+Q, so we have" vIF-F[c/v], so we have Wi-F[c/v]. Next, by an earlier
theorem, Wis maximal consistent, which by yet another earlier theorem entailsthat it is
closed under deductive consequence. It followsthat F[c/v] T W.
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(1)  SHew: - CD
(2) " c{ Flcv] T W} As
(3) SHeW: " vET W ID
(4) "vFT W As
(5) SHEW: X DD
(6) $n" vF = ) Def &8y, €, ...7
(7) "VvF = e, 6,$0
(8) SHOW: G, E {" VF} + ID
(9) GE{"VF} v As
(10) SHEW: X 4,12,SL
(11) G E {e} # 7.9,IL
(12) G = GE{e} 11,Def &G, G, .1
(13) Gwi = G E {" vF} 7,12,1L
(14) "vFT W 13, Def W, ST
(15) Guwi = G E {~" VF} E {~F[cyV]} (somecy) 7.8,Def &G, G, ... 1
(16) ~Flcgv] T W 15, Def W
(17) FlcgVv] T W 2,0L
(18) X 16,17,L04

8. Showing that W is Verifiable

Our next step is to show that our constructed set W is verifiable, which isto say there is a CFOL-
admissible valuation that verifies every formulain W, and hence every formulain our original set G We
proceed as follows.

First, we define the underlying domain of discourse (universe) U as follows.
U = CEN

the set of constants of [L
the set of proper nouns of [L

where C
ad N

In other words,
U = thesetof dl theclosed singular terms of L

Next, define an interpretation function |, and partial assignment function a, as follows.

alc) = ¢ for every constant ¢
I(n) = n A for every proper noun n
I(P) = {&u,...ud Pan...uifl W} for every k-place predicate P, for every k

Now, one can routinely show that there is at least one admissible valuation that extends | and a
[exercise]. Let w be one such valuation. In other words:

w is CFOL-admissible

w(c) = a(c) for every constant ¢
w(n) = I(n) for every proper noun n
w(P) = I(P) for every k-place predicate P, for every k

What we wish to show is that w verifies every formulain W. We in fact prove that w verifiesa
formulaif and only if itisin W.
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9. Aside on Induction on Complexity

In doing the proof that w verifies every formulain W, we will employing a deductive technique
called induction on formula-complexity.

First, the general notion of syntactic complexity may be defined as follows, where it is assumed
that e isa grammatically well-formed expression of L.

complexity(e) =4 the number of functor-occurrencesin e
Note, in this connection, that we count quantifiers astwo-place functors: ™ vf1 =" &/ f fi

Subordinate to this is the notion of term-complexity, which is defined just for singular terms, and
formula-complexity, which is defined just for formulas, as follows.

term-complexity(t) =4 the number of function sign occurrencesin t

formula-complexity(f ) =4 the number of logical operator occurrencesin f

Note, in this connection, that we count quantifier expressions (e.g., ‘" X', ‘" y’) as one-place logical
operators.
The following are examples.
Expression Syntactic Term- Formula-
Complexity Complexity Complexity
a 0 0 -
f(a) 1 1 -
f(f(a)) 2 2 -
s(f(a), f(b)) 3 3 -
Pla] 1 — 0
Pf(a)] 2 - 0
Pf(f(a)] 3 — 0
FX® Gx 3 - 1
" X(Fx® Gx) 4 - 2
~"X(F®Gx) |5 — 3

Now, every grammatical expression of aformal language [L has a complexity, so in order to show:
" elP[€]

[where e is understood to be an expression of [L] we need merely show:
" n" e{complexity(e) =n ® P[e]}

The latter can be shown ether by weak induction or strong induction. Let us concentrate on strong
induction, which is often more useful. Then the inductive case is officially written as follows.

Assume. " k{k<n ® " e{complexity(e) =k ® P[e]}}
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Show: " e{complexity(e)=n ® P[€]}
The inductive case can be smplified if we introduce the notion simpler than, defined as follows.
er<e =¢ complexity(ey) <complexity(e,)

Specifically, appealing to some fairly obvious principles of arithmetic, we can instead write the inductive
case as follows.

Assume. " efet<e ® P[eq}
Show: Ple]

The general case may not be useful. It is often easier to do proofs about singular terms, or about
formulas. That is where the notions of term-complexity and formula complexity arise. For example, in
dealing with CPL, we can do many proofs using induction on formula-complexity. In that case, we can
write the inductive case as follows, where ‘f * ranges over formulasof L .

Assume. " f{f <f, ® P[f]}
Show: P[f o]

10. Proof that w Verifies the Formulas in W

(al) wisCFOL-admissible As
(@) w(c) = a(c) foreveryconstantc As
@) w(n) = I(n) forevery proper nounn As
&) w(P) = I(P) foreveryk-place predicate PP, for every k As
(@) alc) = c for every constant ¢ As
@) In = n for every proper noun n As
@) I(P) = {&,...,udf Pay...ufl Wy forevery k-place predicate P, for every k  As
(P)ai « P&l W alternate description
(D SHeW: " f{w(f)=T « f1 W induction on complexity of f
(2 "fqfe<f (wfo=T « ¢l W} IH
(3) sHew:w(f)=T« fI W separation of cases
(4 f isatomic or molecular (i.e., not atomic) SL
(5) cl: f isatomic As
(6) | see below
@) c2: f ismolecular As
(8) f isauniversal, or anegation, or a conditional 6, def CPL
9 c2.1: f isauniversa As
(10) | see below
(11) c2.2: f isanegation As
(12) | see below
(13) c2.3: f isaconditiona As
(14) | see below
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Subordinate Cases:

Case 1:
D f isatomic As
(2) sHew:w(f)=T « fI W 34,L
3 f = P&y, ..., th (some P, ty, ..., 1)) Def(atomic), $O
(4) SHOW: W(P&y, ..., t ) =T « P&y, ..., t,dl W 5,8,9,SL
(5) w(Pay, ...t =T « w(P)an(ty), ..., w(t)A=T al, def(val)
(6) w(P) =I(P) a4
@) i<k w(t) =I(t) =t; az2,a3
(8) w(P)aw(ty), ..., w(t)h=T « [(P)ay, ...,tA=T 6,7,IL
9) (P)ay, ..., t =T « P&y, ..., 1,41 W ar
Case 2.1:
D f isauniversa As
(2) sHew:w(f)=T « fI W 34,L
(©)) f =" xF (somex, [F) def(universal), $O
(4) sHeW: w(" xF) =T « "xFT W 6,8,9,SL
5) every dement of U has a name according to w
(6) w" xF)=T « " c{w(F[c/V]) =T} 5,SubQ
(7 " cfF[c/v] <" xF} H
(8 "{w(F[cV]) =T «  [Flciv]T W 7,H,QL
9) "xFT W« " c{F[lcv]T W SubQ for W
Case 2.2:
D f isanegation As
(2) sHew:w(f)=T « fI W 34,L
3 f = ~b (someb) def(negation), $O
(4) SHOW: w(~b) =T « ~bl W 5,8,9,SL
(5) w(~b)=T « w(b)=F def(val)
(6) b issimpler than ~b obvious
(7) whb) =T « bl w 6,1H
(8 w(b)=F « bl W 7,def(val),SL
9 bl W« ~blT W LO4
Case 2.3:
D f isaconditional As
(2) sHew:w(f)=T « fI W 34,L
3 f =a®b (somea, b) def(conditional), $O
(4) SHEOW: w(a®b)=T « a®bl W 5,7,9,10,SL
5) w@®h)=T « . w(@)=F or whb)=T def(val)
(6) aissmplerthana® b obvious
(7) w@)=F« al W 6,1H
(8 b issimpler than a® b obvious
(9) whb) =T « bl W 8,IH
(10) a®bl W« . al Wor bT W earlier result about AS1
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2. Appendix — Completeness for CQL

1. Derivation System for CQL for Closed Formulas

(R1)
(R2)
(R3)
(R4)

(RS)
(R6)
(R7)
(R8)

Rules of CSL

/a® (b® a)

/[a® (b® g]® [(a® b)® (a® g)]
/ (~a® ~b)® (b® a)
a,a®b/b

New Rules

/" v ® [F[t/v] wheretisclosed

IF® " vl wherev isnot freein [

/" v(F® G)® (" VI® " v()

p(F[c/v]) I " vF where p([F[c/v]) are prior lines that prove F[c/v]

2. Completeness for Closed Argument Forms

Assume L is a CQL without constants; assume L+ is [L augmented by a denumerable set C of
constants, one of which is ¢;. Assume Gisa consistent set of closed formulasof IL; assume& 4, S, ...Ais
an enumeration of the closed formulas [L +.

[[Constants play the same role here that they do in derivations — they are ad hoc names of objects in the
domain; they are like variables, except that they are not quantified.]]

Congtruct &, G,, ...1A dJy, U,, ...A and @4, D,, ...fAinductively asfollows.
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Base Cases: .
a) U = PE{cg}
b) G = G
C) D, = /E

Inductive Cases:

cl:
a)
b)
c)

if at least one congtant in s, is already discarded [$c{cl s, & cl D,}], then:

Dn1 = Dn
Ui = Uy
G = G
otherwise:

if every constantin s, isaready used [ ¢{cl s, ® cl U,}], then:
Dn1 = Dy

Uw = U, R R
c2ll: ifGE{sn}r,thenGu = GE{sn}
c2.1.2: otherwise: G = GE{~sn}

if any congtant cin s, isnot aready used [i.e., ¢l s, & ¢l U], then:

-if $al G{a=~"vf & s,=~f[c/V]}, then:
Dn1 = Dn‘

Ul = UnE{C}

Gw1 = GE{sy}

: otherwise:

Dn1 = DhE{c}

Uw = U,

G = G
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Show:

Show:
Show:
Show:
Show:
Show:

uct=,u

w = UG, G, ...}
U = WU, Uy .0}
u@ =T if a*Tw
u@) = F if a*xl'w
u(t) = t* if tisaterm
u(w) = {3, .A..,ukﬁ OUy...uN
U...ul W} ) if o isak-placefunction sign
u(P) = {an,...,ud Pu...u l Wy if Pisak-place predicate

e =4 theresult of replacing every freevariablein e by c.

" n[G,#]. Then by the compactness of derivations, Wi-.
Show: ~$g{d G&c g ® . GE{F[c/v]}Fa ® GE{$vF}ra
u(Pty...t) = [u(P)]ai(ts),...,u(t )R
U(Gts...t) = [U(@)]&(te),...,u(t
u(@a® b) =u(a)® u(b)
u(~a)=~u(a)
u(" xF) =min{u€F): u¢=, u}

= "i{itk ® udx)=u(x)}
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Practice Proof:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

SHOW: " xFX' T W «
sHo: ®
xE T W

c U

SHOW: ‘Fc’ T W
‘F¢' T W

SHOW: X
‘~Fc'1T W
X

SHOW: —

SHOW: ‘" xFX' T W
P T W

SHOW: X

U xECT W
$n{‘~" xFx' 1 G}
LR =" | G,
finite[U,]
finite[Dy]

k>n -
ci UED,

"e{dU® ‘Fc' T W

"W{Ud U® ‘Fu T W

sHew: " u{ul U® ‘Fu il W

$k$c{k>n & ol U,ED, & ‘~Fc =s}}

« D

CD

As

UCD

As

ID

As

DD

7,Lemma
3,9,Earlier Theorem
CD

As

ID

As

DD

13,Lemma

16,Def W,ST

17,$0

lemma

lemma

19,20,lemma
21,$&0

21,$&0

21,$&0
18,22,23,24,Def &G
18,22,23,24,Def dJifi
26, Def U

25, Def W

12,28,QL

28,29, emma
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Real Proof:
(1) sHow:"VFl W« "uuU® Fluv]T W « D
(2) sHew: ® CD
(©)) " vF As
(4) sHow: " u{ul U® Flun]T W uCcD
(5) c U As
(6) SHEW: F[civ] T W ID
(7) Flciv] T W As
(8) SHOW: X DD
9) ~F[c] T W 7Lemma
(10) X 3,9,Earlier Theorem
(11) | sHewW: CD
(12) | " uW{u U® Fluv]T W As
(13) | sSHew: " vFT W ID
(14) "vFT W As
(15) SHOW: X DD
(16) ~"vFT W 13Lemma
(17) $n{~" vF1 G} 16,Def W,ST
(18) ~"vFT G, 17,$0
(19) finite[U,] lenma
(20) finite[Dy] lemma
(21) $k$c{k>n & ol U,ED, & ~F[c/v] =si} 19,20,lemma
(22) k>n 21,$&0
(23) cl U.ED, 21,$&0
(24) ~F[cV] = s 21,$&0
(25) ~Fle] T G 18,22,23,24,Def &G
(26) cl U 18,22,23,24,Def dJifi
(27) cl U 26, Def U
(28) ~Flc] T W 25, Def W
(29) Flcv]T W 12,28,QL
(30) X 28,29,Lemma
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slx,s? = " i{itk® sl=s?}
s[u/k] =g the result of substituting u for s
For example, &a,b,c,...fd/2] = &,d,c,...A and &,de,...fTa/3] = &,d,a,...1

"ul V:$I$s: u =va(l,s); in particular,

u(lP) = I(P)
u(m) = I(wd)
u(r)=1(r)
u(X) =Sk
In = the instantiations at n —

i.e., every formula obtained by instantiating every open formulain G, to
constant ¢, plus every formula obtained by multiple applications of " O to
formulasin G, using singular termsin U,,.

"F v vid B G & vy, varefreein F.® Flcivy,....cvid T 10} i
" VLV bt Ve T G &t td Uy ® vyt T 1)

*We describe this by saying that s, corroborates ~" vf .
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3.

UDP:

Universal Derivation is Admissible

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)

~%$g{gl G&cig ®. G-F[civ] ® G-" vF
~$g(d G& dl g

sHew: G-F[civ] ® G-" vF

sHew: " n:" d{dDF[c/v]/Gn ® G-" vIF}

" k<n:" d{dDF[civ]/Gk ® G-" vIF}

sHew: " d{dDF[c/]/Gn ® G-" vF}
dDF[c/v]/Gn

SHew: G-" VI

dn = F[c/V]

cl: Ax{ [F[c/v]}
afF[c/v]fproves [F[c/V]
ar[c/v], " VEDER" VIF[c/V]/G
$d{dDER" VG
G-" vl
c2: Flciv]1 G
SHOW: v not freein [
visfreein F
SHOW: X
cl Flciv]
X
F = F[c/v]
4 F®" vFiil R6
d Flc/v]® " vFiil R6
ar[c/v], Flc/v]® " v, " VIFFDER" vIF[c/V]/G
$d{dDER" VG
G-" vl
c3: GEN{ F[c/v]}

derd' vlFfiproves™ vIF
$d{ d proves" v[F}
" vl
G-" vl

c4: MP{ F[c/v]}
$j.k<n$g d=g® F[c/v] & dy=g
j<n & d=g® [F[c/v]
k<n & d=g
SHOW: &;: i<jAD g® [F[c/v] / T |
aSHOW: lendd;: i<jii=]
b:SHOW: lastad;: i <jfFg® [F[c/v]
‘ |aStéd| i<jﬁ: dj
C:SHOW: &;: i<jfiDG

di & i<
‘SH@W: Ax[d] or di GE{a} or GEN[d] or MP[d]
dd
SHowW: & i<kiiD g/ GE{a} / k
| similar to derivation of line 37
G-" v{g® [}
G-" v{g
G-" vl

AxX{ F[c/v]} or F[c/v] T Gor GEN{ F[c/v]} or MP{ F[c/v]}

$dd d: deproves Fgc/v][cdvd & F[c/v]=" vdF§c/v]

SHew: " di & i<jii Ax[d] or di Gor GEN[d] or MP[d]

As

3, lemma

SMI

As

UCD

As

Def

6,Def Da/Gn
6,8,Def Da/Gn
As

7,9,Def proves
inspection
11,QL

12, Def -

As

ID

As

16, Def [c/v]
1,14,18,QL

14, Def [c/v]

15, Def R6
20,21,IL
22+R4+inspection
23,0L

24, Def -

As

27,Def GEN [R8]

29,QL
30, Def
21,G?

As

33,Def MP]]
34,$&0
34,$&0

Def D/n[&D]
ST

ST

Def dDG
uCh

As

32,ST
Def D/n

IH
IH
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4. Negation-Universal Elimination is Admissible;
Existential Elimination is Admissible

L1:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

NUEP:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Corollary:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

Corollary:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

GE{~a}-b ® GE{~b}ra
SHow: GE{~a}+b ® GE{~b}+a

GE{~a}rb
SHOW: GE{ ~b} +a
SHOW: G—~b® a
G-~a®b

—(~a® b)® (~b® a)
G—(~a® b)® (~b® a)

CD

As

CDT
57MPP
20T
lemma
lemma

~$g{gl G&cig &cia®. GE{~F[c/v]}ra ® GE{~" vF}Ia

~$g(d G& d g
cl a

SHoW: GE{~F[cV]}Fa ® GE{~" vF}ra

GE{ ~F[c/V]}-a
GE{~a}rF[c/v]

CGe{~a}+" vl
CE{~" vF}Fa

~$g{gl G&cl g ® . GE{~F[c]} ® GE{~" vF}+

~$g(d G& dl g

SHoW: GE{ ~F[cV]}- ® GE{~" vF}+

GE{ ~F[c]} -
SHOW: GE{~" VF} -

GE{ ~F[c/V]} -P
GE{ ~F[c]} -~P
cl P

cl ~P

GE{~" VF} P
GE{~" VF} -~P
GE{~" VF} -

SHOW: GE{~" v[F}ra

~$9(d GE{~a} & ol g

" a[GE{ ~F[ch]} -a]

As

As

CD

As

DD

3L1
1,2,ST
6,7,UDP
8L1

As

CD

As

DD

3,Def
50L
50L
inspection
inspection
6,8,NUEP
7,9,NUEP
10,11,Lemma ?

 ~"VF11 G& ~$g{gi G&cl g & G+ .® GE{~F[c/N]}It

VR G
~$g(d G& d g
G

SHOW: GE{ ~F[c/V]} #
GE{ ~F[ch]} -

SHOW: X
GE{~" VF}
G=CGE{~" VF}
G_

As

As

As

CD

As
3,9,SL
2,5,corl
1,ST
7,8,1L
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L2: GE{a}b ® GE{~~a}rb
(1) sHow: GE{a}+rb ® GE{~~a}+rb CD
2 CGE{a}+b As
(3 SHEW: GE{ ~~a}+b DD
4 F~~a®a lemma
(5) G-~~a®a 4,G?
(6) CE{~~a}r~~a G?
(7) CE{~~a}r~~a®a G?
(8) CE{~~a}tra 6,7,MPP
9) CE{~~a}E{a}rb 2,G?
(10) CGE{~~a}rb 8,9,G?

EEP: ~$g{gl G&cl g &cia® . GE{F[c/V]}ra ® GE{$vF}I-a
(1) ~%$dd G&d g As
(20 ca As
(3)  sHow: GE{F[civ]}a ® GE{$vF}+a CD
4 CE{[F[c/v]} Fa As
(5) SHOW: GE{$VF}+a DD
(6) CE{~~F[c/V]}-a 4.2
(7) CGE{~a}+~[F[c/V] 6,L1
(8) ~$9(d GE{~a} & dl ¢ 1,2,ST
9) GE{~a}+" v~F 7,8,UDP
(10) GE{~" v~F}ra 9L1
(11) GE{$vF}+a 10, Def $v




