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1. Introduction  

 As mentioned earlier, in proving the major theorem, we proceed in small steps.  First, we prove 
that AS1+Q is complete for Classical Predicate Logic (CPL), then we prove that it is complete for 
Classical Quantifier Logic (CQL).  After that, we consider an axiom system for Classical First-Order 
Logic, and show that it is complete for CFOL. 

 In proving completeness of AS1+Q for CPL, we proceed in a manner fairly similar to, but not 
exactly like, our proof that AS1 is complete for CSL.   

(1) We prove that every (deductively) consistent set can be extended to a maximal consistent 
set.  The CPL-construction is slightly different from the SL-construction. 

(2) We prove that the maximal consistent set constructed in the manner specified in Part 1 is 
verifiable (semantically consistent). 

(3) We employ the two negation theorems – NT1 and NT2 – to prove that every CPL-valid 
argument is AS1+Q-valid [meaning that its conclusion can be derived from its premises 
using the rules of AS1].   

2. The Construction of the Sequence 〈〈 ΓΓ1, ΓΓ2, …〉〉  

 Let ¿ be the official language of CPL.  Let 〈ε1, ε2, …〉 be an enumeration of the closed formulas of 
¿.  Let 〈c1, c2, …〉 be an enumeration of the constants of ¿.  Suppose additionally that both enumerations 
are one-to-one, meaning that εi = εj only if i=j, and ci = cj only if i=j.   

 Suppose that Γ is a consistent set of closed formulas of ¿; further suppose that Γ does not contain 
any constants (recall Simplification #3).   

 The construction of 〈Γ1, Γ2, …〉 goes as follows. 

(1) Γ1 = Γ 

(2) if Γn ∪ {εn} Ò 
 then:  
  Γn+1 = Γn ∪ {εn} 
 
 if Γn ∪ {εn} � 
 then:  
  if εn is not a universal formula [i.e., ε ≠ ∀vφ, for any v, φ] 
  then: 
   Γn+1 = Γn ∪ {∼εn} 
 
  if εn is a universal formula,  
  then: 
   ε = ∀vφ (for some v, φ), and  
   Γn+1 = Γn ∪ {∼∀vφ} ∪ {∼φ[c/v]} 
   where c is the* first constant (relative to 〈c1, c2, …〉) not occurring in Γn. 
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*By hypothesis, Γ contains no constants.  Given the definition of 〈Γ1, Γ2, …〉, Γn has 
finitely-many formulas not in Γ, and each formula has finitely-many symbols, so at most 
finitely-many constants appear in Γn.  It follows, by ST, that there is a first constant not in 
Γn.  Thus, the description ‘the first constant not in Γn’ is referentially proper. 

3. Informal Account and Justification of the Construction 

 As the reader can see, the construction of 〈Γ1, Γ2, …〉 in Section 2 is very similar to the SL-
construction.  The only difference is the “extra” formula — ∼φ[c/v] — added in the third case. 

 The intuition is fairly straightforward.  Everytime one adds a ∼∀ formula to the expanding set, one 
adds a “corroborating” formula (also called a “witness”).  This maneuver corresponds to the natural 
deduction rule ∼∀O.  Recall how this rule is formulated. 

∼∀vφ 
––––––– 
∼φ[c/v] where c does not appear earlier in the derivation [i.e., c is “new”] 

So what we are doing in adding the extra formula is applying the rule ∼∀O.  Notice that the constant c 
substituted for v in φ is specified to be the first constant not appearing in Γn – in other words, c is “new”. 

 One might naturally ask why this extra step is required.  Why don’t we just construct 〈Γ1, Γ2, …〉 
and Ω [= �{Γ1, Γ2, …}] the same way we do in SL?  Then the proof would exactly parallel the proof for 
SL.  We show Γ is contained in Ω, and Ω is verifiable, so Γ is verifiable, then apply NT1 and NT2 to 
show completeness. 

 The answer is that the particular construction we choose makes showing that Ω is verifiable easier 
to accomplish.  As it turns out, some maximal consistent sets are easier to show verifiable than others. 

4. Every ΓΓ i in 〈〈 ΓΓ1, ΓΓ2, …〉〉  is Consistent 

 Having constructed 〈Γ1, Γ2, …〉, we next show every Γn is consistent, which is accomplished by 
(simple, weak) math induction. 

(1) �: ∀n[ΓnÒ] MI [nÕ1] 
  Base Case: 

(2) �: Γ1Ò 3,4,IL 
(3) |Γ1 = Γ Def 〈Γ1, Γ2, …〉 
(4) |ΓÒ by hypothesis 

  Inductive Case: 
(5) �: ∀n{ΓnÒ  →  Γn+1Ò} UCD 
(6) |ΓnÒ As 
(7) |�: Γn+1Ò SC 

 
Given the definition of Γn+1 in terms of Γn there are two cases to consider, the second of 
which divides into two cases. 

(8) |c1: Γn ∪ {εn} Ò  As 
(9) ||Γn+1 = Γn ∪ {εn} 8, Def 〈Γ1, Γ2, …〉 
(10) ||Γn+1Ò 6,9,IL 
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(11) |c2: Γn ∪ {εn} �  As 
 

(12) |c2.1: εn is not a universal As 
(13) ||Γn+1 = Γn ∪ {∼εn} 11, Def 〈Γ1, Γ2, …〉 
(14) ||Γn ∪ {∼εn} Ò 11,earlier result about AS1Û 

 
Û AS1+Q contains the full deductive apparatus of AS1, so results about AS1 can simply be 
transferred  to AS1+Q. 

(15) ||Γn+1Ò 13,14,IL 
 

(16) |c2.2:  εn is a universal As 
(17) ||εn = ∀vφ 16,def(is a universal),∃O 
(18) ||let c = the first constant not in Γn Ûsee Section 2 for justification 
(19) ||Γn+1  =  Γn ∪ {∼∀vφ} ∪ {∼φ[c/v]} 16,17,18,Def 〈Γ1, Γ2, …〉 

 
  given 19, in order to show  Γn+1 Ò, the following suffices: 
 

(20) ||�: Γn ∪ {∼∀vφ} ∪ {∼φ[c/v]} Ò ID 
(21) |||Γn ∪ {∼∀vφ} ∪ {∼φ[c/v]} � As 
(22) |||�: × 6,29,SL 
(23) ||||Γn � ∼εn  11,NT1 
(24) ||||Γn � ∼∀vφ 17,23,IL 
(25) ||||Γn ∪ {∼∀vφ} � φ[c/v] 20,NT1 
(26) ||||Γn � φ[c/v] 24,25,GenTh(�) 
(27) ||||c ∉* Γn 18, description logic 
(28) ||||Γn � ∀vφ 26,27,UDT 
(29) ||||Γn � 24,28,earlier result about AS1 

5. The Construction of ΩΩ , and Proof that it is Consistent 

 Next, given 〈Γ1, Γ2, …〉, as defined above, we define Ω as follows. 

Ω = �{Γ1, Γ2, …} 

The proof that Ω is consistent duplicates the result for AS1, which we summarize here. 

(1) �: ΩÒ DD 
(2) |Ω = �{Γ1, Γ2, …} Def of Ω 
(3) |∀n{Γi ⊆ Γn+1} L03 
(4) |�{Γ1, Γ2, …}Ò 3,L01,L02,QL 
(5) |ΩÒ 2,4,IL 

 
Subordinate Lemmas: 
 
L01: ∀n[ΓnÒ] 

 proven above 

L02: ∀n{Γn ⊆ Γn+1} &  ∀n[ΓnÒ]  .→  �{Γ1, Γ2, …}Ò 

 This result, proven earlier about AS1, transfers to AS1+Q. 
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L03: ∀n{Γn ⊆ Γn+1} 

 This result, proven earlier about AS1, transfers to AS1+Q. 

6. Proof that ΩΩ  is Maximal Consistent w.r.t. Closed Formulas 

 Next, we prove that Ω is maximal consistent w.r.t. closed formulas, which may be defined as 
follows. 

MC[Ω] =df  ΩÒ  &   ∀α{closed[α]  →  {α ∉ Ω  →.  Ω ∪ {α} �}} 

We have already shown the first conjunct – that Ω is consistent.  The second conjunct is proven like the 
analogous result about AS1, which is reproduced here.   

(1) �: ∀α{closed[α]  →  {α ∉ Ω  →.  Ω ∪ {α} �}} UCCD 
(2) |closed[α] As 
(3) |α ∉ Ω As 
(4) |�: Ω ∪ {α} � DD 
(5) |∼α ∈ Ω 3,L04,QL 
(6) |Ω � ∼α 5,GenTh(�) 
(7) |Ω ∪ {α} � ∼α 6,GenTh(�) 
(8) |Ω ∪ {α} � α GenTh(�) 
(9) |Ω ∪ {α} � 7,8, result about AS1 
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L04: ∀∀ αα {αα ∈∈ ΩΩ   xor  ∼∼αα ∈∈ ΩΩ } 
 

(0) ∀α{closed[α]  →  {α∈Ω  xor  ∼α∈Ω}} UCD 
(1) |closed[α] As 
(2) |�: α∈Ω  xor  ∼α∈Ω 3,16,Def(xor) 
(3) |�: α∈Ω  or  ∼α∈Ω 5,10,SL 
(4) ||∃n[α = εn] 1, Def 〈ε1, ε2, …〉 
(5) ||α = εn 5,∃O 
(6) ||�: Γn∪{εn}Ò  →  α ∈ Ω CD 
(7) |||Γn∪{εn}� As 
(8) |||�: α ∈ Ω 5,10,IL 
(9) ||||Γn+1 = Γn∪{εn} 7, Def 〈Γ1, Γ2, …〉 
(10) ||||εn ∈ Ω 9,Def Ω,ST 
(11) ||�: Γn∪{εn}�  →  ∼α ∈ Ω CD 
(12) |||Γn∪{εn}� As 
(13) |||�: ∼α ∈ Ω 5,15,IL 
(14) |||Γn+1 = Γn∪{∼εn} 10, Def 〈Γ1, Γ2, …〉 
(15) |||∼εn ∈ Ω 14,Def Ω,ST 
(16) |�: ∼{α∈Ω  &  ∼α∈Ω} ID 
(17) ||α∈Ω  &  ∼α∈Ω As 
(18) ||�: × 21,22 
(19) |||Ω�α 17a, since Ω is MC, it is deductively closed 
(20) |||Ω�∼α 17b, since Ω is MC, it is deductively closed 
(21) |||Ω� 19,20,result about AS1 
(22) |||ΩÒ shown earlier 

7. The Substitution/Quantification Lemma About ΩΩ  

 In the Chapter on Soundness, we proved the Substitution/Quantification Lemma, which is about 
admissible valuations in CFOL.  In the present section, we prove an analogous lemma about the 
constructed set Ω. 

L05: ∀∀ v¹¹  ∈∈  ΩΩ    ↔↔    ∀∀ c{¹¹[c/v] ∈∈  ΩΩ } 
 

[→] 
Suppose ∀v¹ ∈ Ω, and suppose c is a closed singular term.  First, ∀v¹→¹[c/v] is an 
axiom of AS1+Q, so we have ∀v¹�¹[c/v], so we have Ω�¹[c/v].  Next, by an earlier 
theorem, Ω is maximal consistent, which by yet another earlier theorem entails that it is 
closed under deductive consequence.  It follows that ¹[c/v] ∈ Ω. 
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(1) �: ← CD 
(2) |∀c{¹[c/v] ∈ Ω} As 
(3) |�: ∀v¹ ∈ Ω ID 
(4) ||∀v¹ ∉ Ω As 
(5) ||�: × DD 
(6) |||∃n[∀v¹  =  εn] Def 〈ε1, ε2, …〉 
(7) |||∀v¹  =  εn 6,∃O 
(8) |||�: Γn ∪ {∀v¹} � ID 
(9) ||||Γn ∪ {∀v¹} Ò As 
(10) ||||�: × 4,12,SL 
(11) |||||Γn ∪ {εn} Ò 7,9,IL 
(12) |||||Γn+1  =  Γn ∪ {εn} 11,Def 〈Γ1, Γ2, …〉 
(13) |||||Γn+1  =  Γn ∪ {∀v¹} 7,12,IL 
(14) |||||∀v¹ ∈ Ω 13, Def Ω, ST 
(15) |||Γn+1  =  Γn ∪ {∼∀v¹} ∪ {∼¹[c0/v]}  (some c0) 7,8,Def 〈Γ1, Γ2, …〉  
(16) |||∼¹[c0/v] ∈ Ω 15, Def Ω 
(17) |||¹[c0/v] ∈ Ω 2,QL 
(18) |||× 16,17,L04 

8. Showing that ΩΩ  is Verifiable 

 Our next step is to show that our constructed set Ω is verifiable, which is to say there is a CFOL-
admissible valuation that verifies every formula in Ω, and hence every formula in our original set Γ.  We 
proceed as follows. 

 First, we define the underlying domain of discourse (universe) U as follows. 

U = C ∪ N 
 
where C  =  the set of constants of ¿ 
and  N  =  the set of proper nouns of ¿ 

In other words,  

U = the set of all the closed singular terms of ¿ 

 Next, define an interpretation function I, and partial assignment function ω, as follows.   

ω(c) = c for every constant c 
I(n) = n for every proper noun n 
I(Ã) = {〈u1,…,uk〉: Ã〈u1…uk〉 ∈ Ω} for every k-place predicate Ã, for every k 

 Now, one can routinely show that there is at least one admissible valuation that extends I and ω 
[exercise].  Let ω be one such valuation.  In other words: 

ω is CFOL-admissible 
ω(c) = ω(c) for every constant c 
ω(n) = I(n) for every proper noun n 
ω(Ã) = I(Ã) for every k-place predicate Ã, for every k 

 What we wish to show is that ω verifies every formula in Ω.  We in fact prove that ω verifies a 
formula if and only if it is in Ω. 
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9. Aside on Induction on Complexity 

 In doing the proof that ω verifies every formula in Ω, we will employing a deductive technique 
called induction on formula-complexity.   

 First, the general notion of syntactic complexity may be defined as follows, where it is assumed 
that ε is a grammatically well-formed expression of ¿. 

complexity(ε)  =df  the number of functor-occurrences in ε 

Note, in this connection, that we count quantifiers as two-place functors:  {∀vφ} = ∀〈v,φ〉. 

 Subordinate to this is the notion of term-complexity, which is defined just for singular terms, and 
formula-complexity, which is defined just for formulas, as follows. 

term-complexity(τ)  =df  the number of function sign occurrences in τ 

formula-complexity(φ)  =df  the number of logical operator occurrences in φ 

Note, in this connection, that we count quantifier expressions (e.g., ‘∀x’, ‘∀y’) as one-place logical 
operators. 

The following are examples. 

Expression Syntactic 
Complexity 

Term-
Complexity 

Formula-
Complexity 

a 0 0 – 

f(a) 1 1 – 

f(f(a)) 2 2 – 

s(f(a), f(b)) 3 3 – 

P[a] 1 – 0 

P[f(a)] 2 – 0 

P[f(f(a))] 3 – 0 

Fx→Gx 3 – 1 

∀x(Fx→Gx) 4 – 2 

∼∀x(Fx→Gx) 5 – 3 

  
Now, every grammatical expression of a formal language ¿ has a complexity, so in order to show: 

∀εÃ[ε] 

[where ε is understood to be an expression of ¿] we need merely show: 

∀n∀ε{complexity(ε) = n  →  Ã[ε]} 

The latter can be shown either by weak induction or strong induction.  Let us concentrate on strong 
induction, which is often more useful.  Then the inductive case is officially written as follows. 

Assume: ∀k{k<n  →  ∀ε{complexity(ε) = k  →  Ã[ε]}} 
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Show: ∀ε{complexity(ε) = n  →  Ã[ε]} 

The inductive case can be simplified if we introduce the notion simpler than, defined as follows. 

ε1 < ε2 =df complexity(ε1) < complexity(ε2) 

Specifically, appealing to some fairly obvious principles of arithmetic, we can instead write the inductive 
case as follows. 

Assume: ∀ε′{ε′ < ε  →  Ã[ε′]} 

Show: Ã[ε] 

 The general case may not be useful.  It is often easier to do proofs about singular terms, or about 
formulas.  That is where the notions of term-complexity and formula complexity arise.  For example, in 
dealing with CPL, we can do many proofs using induction on formula-complexity.  In that case, we can 
write the inductive case as follows, where ‘φ’ ranges over formulas of ¿ . 

Assume: ∀φ{φ < φ0  →  Ã[φ]} 

Show: Ã[φ0] 

10. Proof that ωω  Verifies the Formulas in ΩΩ  

(a1) ω is CFOL-admissible As 
(a2) ω(c) = ω(c) for every constant c As 
(a3) ω(n) = I(n) for every proper noun n As 
(a4) ω(Ã) = I(Ã) for every k-place predicate Ã, for every k As 
(a5) ω(c) = c for every constant c As 
(a6) I(n) = n for every proper noun n As 
(a7) I(Ã) = {〈u1,…,uk〉: Ã〈u1…uk〉 ∈ Ω} for every k-place predicate Ã, for every k As 

I(Ã)〈τ〉  ↔  Ã〈τ〉 ∈ Ω  alternate description 
 

(1) �: ∀φ{ω(φ) = T  ↔  φ ∈ Ω} induction on complexity of φ 
(2) ∀φ′{φ′ < φ  →   {ω(φ′) = T  ↔  φ′ ∈ Ω}} IH 
(3) �: ω(φ) = T  ↔  φ ∈ Ω separation of cases 
(4) |φ is atomic or molecular (i.e., not atomic) SL 
(5) |c1:  φ is atomic As 
(6) ||see below 
(7) |c2:  φ is molecular As 
(8) ||φ is a universal, or a negation, or a conditional 6, def CPL 
(9) ||c2.1:  φ is a universal As 
(10) |||see below 
(11) ||c2.2:  φ is a negation As 
(12) |||see below 
(13) ||c2.3:  φ is a conditional As 
(14) |||see below 
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Subordinate Cases: 
 
Case 1: 
 

(1) φ is atomic As 
(2) �: ω(φ) = T  ↔  φ ∈ Ω 3,4,IL 
(3) |φ  =  Ã〈τ1, …, τk〉  (some Ã, τ1, …, τk) Def(atomic), ∃O 
(4) |�: ω(Ã〈τ1, …, τk〉) = T  ↔  Ã〈τ1, …, τk〉 ∈ Ω 5,8,9,SL 
(5) ||ω(Ã〈τ1, …, τk〉) = T  ↔  ω(Ã)〈ω(τ1), …, ω(τk)〉 = T a1, def(val) 
(6) ||ω(Ã) = I(Ã) a4 
(7) ||∀iÔk:  ω(τi) = I(τi) = τi a2,a3 
(8) ||ω(Ã)〈ω(τ1), …, ω(τk)〉 = T  ↔  I(Ã)〈τ1, …, τk〉 = T 6,7,IL 
(9) ||I(Ã)〈τ1, …, τk〉 = T  ↔  Ã〈τ1, …, τk〉 ∈ Ω a7 

 
Case 2.1: 
 

(1) φ is a universal As 
(2) �: ω(φ) = T  ↔  φ ∈ Ω 3,4,IL 
(3) |φ  =  ∀x¹  (some x, ¹) def(universal), ∃O 
(4) |�: ω(∀x¹) = T  ↔  ∀x¹ ∈ Ω 6,8,9,SL 
(5) ||every element of U has a name according to ω  
(6) ||ω(∀x¹) = T  ↔  ∀c{ω(¹[c/v]) = T} 5,SubQ 
(7) ||∀c{¹[c/v] < ∀x¹} Û 
(8) ||∀c{ω(¹[c/v]) = T  ↔  ¹[c/v] ∈ Ω} 7,IH,QL 
(9) ||∀x¹ ∈ Ω  ↔  ∀c{¹[c/v] ∈ Ω} SubQ for Ω 

 
Case 2.2: 
 

(1) φ is a negation As 
(2) �: ω(φ) = T  ↔  φ ∈ Ω 3,4,IL 
(3) |φ  =  ∼β  (some β) def(negation), ∃O 
(4) |�: ω(∼β) = T  ↔  ∼β ∈ Ω 5,8,9,SL 
(5) ||ω(∼β) = T  ↔  ω(β) = F def(val) 
(6) ||β is simpler than ∼β obvious 
(7) ||ω(β) = T  ↔  β ∈ Ω 6,IH 
(8) ||ω(β) = F  ↔  β ∉ Ω 7,def(val),SL 
(9) ||β ∉ Ω  ↔  ∼β ∈ Ω L04 

 
Case 2.3: 
 

(1) φ is a conditional As 
(2) �: ω(φ) = T  ↔  φ ∈ Ω 3,4,IL 
(3) |φ = α→β  (some α, β) def(conditional), ∃O 
(4) |�: ω(α→β) = T  ↔  α→β ∈ Ω 5,7,9,10,SL 
(5) ||ω(α→β) = T  ↔.  ω(α) = F  or  ω(β) = T def(val) 
(6) ||α is simpler than α→β obvious 
(7) ||ω(α) = F  ↔  α ∉ Ω 6,IH 
(8) ||β is simpler than α→β obvious 
(9) ||ω(β) = T  ↔  β ∈ Ω 8,IH 
(10) ||α→β ∈ Ω  ↔.  α ∉ Ω  or  β ∈ Ω earlier result about AS1 
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2. Appendix – Completeness for CQL 

1. Derivation System for CQL for Closed Formulas 

 Rules of CSL 
 
(R1) / α→(β→α) 
(R2) / [α→(β→γ)]→[(α→β)→(α→γ)] 
(R3) / (∼α→∼β)→(β→α) 
(R4) α, α→β / β 

 New Rules 

(R5) / ∀v¹ → ¹[t/v] where t is closed 
(R6) / ¹ → ∀v¹ where v is not free in ¹ 
(R7) / ∀v(¹→º)→(∀v¹→∀vº) 
(R8) π(¹[c/v])  /  ∀v¹ where π(¹[c/v]) are prior lines that prove ¹[c/v] 

2. Completeness for Closed Argument Forms 

 Assume ¿ is a CQL without constants; assume ¿+ is ¿ augmented by a denumerable set C of 
constants, one of which is c0.  Assume Γ is a consistent set of closed formulas of ¿; assume 〈σ1, σ2, …〉 is 
an enumeration of the closed formulas ¿+.   

[[Constants play the same role here that they do in derivations – they are ad hoc names of objects in the 
domain; they are like variables, except that they are not quantified.]] 

 Construct 〈Γ1, Γ2, …〉, 〈U1, U2, …〉, and 〈D1, D2, …〉 inductively as follows. 
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Base Cases: 
a) U1 = P∪{c0} 
b) Γ1 = Γ 
c) D1 = ∅ 
 
Inductive Cases: 
c1: if at least one constant in σn is already discarded [∃c{c∈σn & c∈Dn}], then: 
a) Dn+1 = Dn 
b) Un+1 = Un 
c) Γn+1 = Γn 
 
c2: otherwise: 
 
c2.1: if every constant in σn is already used [∀c{c∈σn → c∈Un}], then: 
a) Dn+1 = Dn 
b) Un+1 = Un 
c) c2.1.1: if Γn∪{σn}Ò, then: Γn+1 = Γn∪{σn} 
 c2.1.2: otherwise: Γn+1 = Γn∪{∼σn} 
 
c2.2: if any constant c in σn is not already used [i.e., c∈σn & c∉Un], then: 
c2.2.1: if ∃α∈Γn{α=∼∀vφ  &  σn = ∼φ[c/v]}, then: 
a) Dn+1 = Dn 
b) Un+1 = Un∪{c} 
c) Γn+1 = Γn∪{σn} 
c2.2.2: otherwise: 
a) Dn+1 = Dn∪{c} 
b) Un+1 = Un 
c) Γn+1 = Γn 
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Ω = �{Γ1, Γ2, …} 

U = �{U1, U2, …} 

υ(α) = T if α*∈Ω 
υ(α) = F if α*∉Ω 
υ(τ) = τ* if τ is a term 
υ(f) = {〈〈u1,…,uk〉, fu1…uk〉:  
  u1…uk∈ Ω} if f is a k-place function sign 
υ(Ã) = {〈u1,…,uk〉: Ãu1…uk ∈ Ω} if Ã is a k-place predicate 

ε*  =df the result of replacing every free variable in ε by c0. 

Show: ∀n[ΓnÒ].  Then by the compactness of derivations, ΩÒ. 

 Show: ∼∃γ{γ∈Γ & c∈γ}  →.  Γ∪{¹[c/v]}�α  →  Γ∪{∃v¹}�α 

Show: υ(Ãτ1…τk) = [υ(Ã)]〈υ(τ1),…,υ(τk)〉 

Show:  υ(fτ1…τk) = [υ(f)]〈υ(τ1),…,υ(τk)〉 

Show: υ(α→β) = υ(α)→υ(β) 

Show:  υ(∼α) = ∼υ(α) 

Show: υ(∀xk¹) = min{υ′(¹): υ′ Àk υ} 

υ′ Àk υ =df ∀i{i≠k  →  υ′(xi) = υ(xi)} 
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Practice Proof: 
(1) �: ‘∀xFx’ ∈ Ω  ↔  ∀u{u∈U → ‘Fu’ ∈ Ω} ↔D 
(2) �: → CD 
(3) |‘∀xFx’ ∈ Ω As 
(4) ||�: ∀u{u∈U → ‘Fu’ ∈ Ω} UCD 
(5) |||c∈U As 
(6) |||�: ‘Fc’ ∈ Ω ID 
(7) ||||‘Fc’ ∉ Ω As 
(8) ||||�: Ð DD 
(9) |||||‘∼Fc’ ∈ Ω 7,Lemma 
(10) |||||Ð 3,9,Earlier Theorem 
(11) |�: ← CD 
(12) |∀c{c∈U → ‘Fc’ ∈ Ω} As 
(13) |�: ‘∀xFx’ ∈ Ω ID 
(14) ||‘∀xFx’ ∉ Ω As 
(15) ||�: Ð DD 
(16) |||‘∼∀xFx’ ∈ Ω 13,Lemma 
(17) |||∃n{‘∼∀xFx’ ∈ Γn} 16,Def Ω,ST 
(18) |||‘∼∀xFx’ ∈ Γn 17,∃O 
(19) |||finite[Un] lemma 
(20) |||finite[Dn] lemma 
(21) |||∃k∃c{k>n  &  c∉Un∪Dn  &  ‘∼Fc’ = σk} 19,20,lemma 
(22) |||k>n 21,∃&O 
(23) |||c ∉ Un∪Dn 21,∃&O 
(24) |||‘∼Fc’ = σk 21,∃&O 
(25) |||‘∼Fc’ ∈ Γk+1 18,22,23,24,Def 〈Γi〉 
(26) |||c ∈ Uk+1 18,22,23,24,Def 〈Ui〉 
(27) |||c ∈ U 26, Def U 
(28) |||‘∼Fc’ ∈ Ω 25, Def Ω 
(29) |||‘Fc’ ∈ Ω 12,28,QL 
(30) |||Ð 28,29,Lemma 
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Real Proof: 
(1) �: ∀v¹ ∈ Ω  ↔  ∀u{u∈U → ¹[u/v] ∈ Ω} ↔D 
(2) �: → CD 
(3) |∀v¹ As 
(4) ||�: ∀u{u∈U → ¹[u/v] ∈ Ω} UCD 
(5) |||c∈U As 
(6) |||�: ¹[c/v] ∈ Ω ID 
(7) ||||¹[c/v] ∉ Ω As 
(8) ||||�: Ð DD 
(9) |||||∼¹[c/v] ∈ Ω 7,Lemma 
(10) |||||Ð 3,9,Earlier Theorem 
(11) |�: ← CD 
(12) |∀u{u∈U → ¹[u/v] ∈ Ω} As 
(13) |�: ∀v¹ ∈ Ω ID 
(14) ||∀v¹ ∉ Ω As 
(15) ||�: Ð DD 
(16) |||∼∀v¹ ∈ Ω 13,Lemma 
(17) |||∃n{∼∀v¹ ∈ Γn} 16,Def Ω,ST 
(18) |||∼∀v¹ ∈ Γn 17,∃O 
(19) |||finite[Un] lemma 
(20) |||finite[Dn] lemma 
(21) |||∃k∃c{k>n  &  c∉Un∪Dn  &  ∼¹[c/v] = σk} 19,20,lemma 
(22) |||k>n 21,∃&O 
(23) |||c ∉ Un∪Dn 21,∃&O 
(24) |||∼¹[c/v] = σk 21,∃&O 
(25) |||∼¹[c/v] ∈ Γk+1 18,22,23,24,Def 〈Γi〉 
(26) |||c ∈ Uk+1 18,22,23,24,Def 〈Ui〉 
(27) |||c ∈ U 26, Def U 
(28) |||∼¹[c/v] ∈ Ω 25, Def Ω 
(29) |||¹[c/v] ∈ Ω 12,28,QL 
(30) |||Ð 28,29,Lemma 

 



16 Hardegree, MetaLogic 

 

σ1 Àk σ
2 =df ∀i{i≠k → σ1

i = σ2
i} 

σ[u/k]   =df the result of substituting u for σk 

For example, 〈a,b,c,…〉[d/2] = 〈a,d,c,…〉, and 〈c,d,e,…〉[a/3] = 〈c,d,a,…〉. 

∀υ∈V:∃I∃σ: υ = val(I,σ); in particular, 
 
υ(Ã) = I(Ã) 
υ(f) = I(f) 
υ(ρ) = I(ρ) 
υ(xk) = σk 
 

In = the instantiations at n –  
i.e., every formula obtained by instantiating every open formula in Γn to 
constant c0, plus every formula obtained by multiple applications of ∀O to 
formulas in Γn using singular terms in Un. 

∀¹∀v1…vk{¹∈Γn & v1,…,vk are free in ¹ .→ ¹[c/v1,…,c/vk] ∈ In} 
∀¹∀v1…vk∀τ1…τk{¸∀v1…∀vk¹¹∈Γn & τ1,…,τk∈Un .→ ¹[τ1/v1,…,τk/vk] ∈ In} 
 

*We describe this by saying that σn corroborates ∼∀vφ. 
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3. Universal Derivation is Admissible 

UDP:  ∼∼∃∃ γγ{γγ ∈∈ ΓΓ  & c∈∈ γγ}  →→ .  ΓΓ��¹¹[c/v]  →→   ΓΓ��∀∀ v¹¹  
(1) ∼∃γ{γ∈Γ & c∈γ} As 
(2) �: Γ�¹[c/v]  →  Γ�∀v¹ 3, lemma 
(3) �: ∀n:∀d{dD¹[c/v]/Γ/n  →  Γ�∀v¹} SMI 
(4) |∀k<n:∀d{dD¹[c/v]/Γ/k  →  Γ�∀v¹} As 
(5) |�: ∀d{dD¹[c/v]/Γ/n  →  Γ�∀v¹} UCD 
(6) ||δD¹[c/v]/Γ/n As 
(7) ||�: Γ�∀v¹ Def � 
(8) |||δn = ¹[c/v] 6,Def Dα/Γ/n 
(9) |||Ax{¹[c/v]} or ¹[c/v] ∈ Γ or GEN{¹[c/v]} or MP{¹[c/v]} 6,8,Def Dα/Γ/n 
(10) ||c1: Ax{¹[c/v]} As 
(11) |||〈¹[c/v]〉 proves ¹[c/v] 7,9,Def proves 
(12) |||〈¹[c/v], ∀v¹〉DER∀v¹[c/v]/Γ inspection 
(13) |||∃d{dDER∀v¹/Γ 11,QL 
(14) |||Γ�∀v¹ 12, Def � 
(15) ||c2: ¹[c/v] ∈ Γ As 
(16) |||�: v not free in ¹ ID 
(17) ||||v is free in ¹ As 
(18) ||||�: Ð  
(19) |||||c ∈ ¹[c/v] 16, Def [c/v] 
(20) |||||Ð 1,14,18,QL 
(21) |||¹ = ¹[c/v] 14, Def [c/v] 
(22) |||〈/ ¹→∀v¹〉 ∈ R6 15, Def R6 
(23) |||〈/ ¹[c/v]→∀v¹〉 ∈ R6 20,21,IL 
(24) |||〈¹[c/v], ¹[c/v]→∀v¹, ∀v¹〉DER∀v¹[c/v]/Γ 22+R4+inspection 
(25) |||∃d{dDER∀v¹/Γ 23,QL 
(26) |||Γ�∀v¹ 24, Def � 
(27) ||c3: GEN{¹[c/v]} As 
(28) |||∃δ′⊆δ: δ′ proves ¹′[c/v][c′/v′] & ¹[c/v]=∀v′¹′[c/v] 27,Def GEN [R8] 
(29) |||δ′+〈∀v¹〉 proves ∀v¹  
(30) |||∃d{d proves ∀v¹} 29,QL 
(31) |||�∀v¹ 30, Def � 
(32) |||Γ�∀v¹ 21,G? 
(33) ||c4: MP{¹[c/v]} As 
(34) |||∃j,k<n,∃γ: dj=γ→¹[c/v] & dk=γ 33,Def MP[] 
(35) |||j<n & dj=γ→¹[c/v] 34,∃&O 
(36) |||k<n & dk=γ 34,∃&O 
(37) |||�: 〈di: iÔj〉 D γ→¹[c/v] / Γ/ j Def D/n [&D] 
(38) |||a:�: len〈di: iÔj〉 = j ST 
(39) |||b:�: last〈di: iÔj〉=γ→¹[c/v]  
(40) ||||last〈di: iÔj〉 = dj ST 
(41) |||c:�: 〈di: iÔj〉DΓ Def dDΓ 
(42) |||�: ∀δ∈〈di: iÔj〉: Ax[δ] or δ∈Γ or GEN[δ] or MP[δ] UCD 
(43) ||||δ∈〈di: iÔj〉 As 
(44) ||||�: Ax[δ] or δ∈Γ∪{α} or GEN[δ] or MP[δ]  
(45) |||||δ∈d 32,ST 
(46) |||�: 〈di: iÔk〉 D γ / Γ∪{α} / k Def D/n 
(47) ||||similar to derivation of line 37 
(48) |||Γ�∀v{γ→¹} IH 
(49) |||Γ�∀v{γ} IH 
(50) |||Γ�∀v¹  
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4. Negation-Universal Elimination is Admissible;  
Existential Elimination is Admissible 

L1:  ΓΓ ∪∪{∼∼αα }��ββ   →→   ΓΓ ∪∪{∼∼ββ}��αα  
(1) �: Γ∪{∼α}�β  →  Γ∪{∼β}�α CD 
(2) |Γ∪{∼α}�β As 
(3) |�: Γ∪{∼β}�α CDT 
(4) |�: Γ�∼β→α 5,7,MPP 
(5) ||Γ�∼α→β 2,DT 
(6) ||�(∼α→β)→(∼β→α) lemma 
(7) ||Γ�(∼α→β)→(∼β→α) lemma 

 
NUEP: ∼∼∃∃ γγ{γγ ∈∈ ΓΓ  & c∈∈ γγ} & c∉∉ αα  →→ .  ΓΓ ∪∪{∼∼¹¹[c/v]}��αα   →→   ΓΓ ∪∪{∼∼∀∀ v¹¹}��αα  

(1) ∼∃γ{γ∈Γ & c∈γ} As 
(2) c∉α As 
(3) �: Γ∪{∼¹[c/v]}�α  →  Γ∪{∼∀v¹}�α CD 
(4) |Γ∪{∼¹[c/v]}�α As 
(5) |�: Γ∪{∼∀v¹}�α DD 
(6) ||Γ∪{∼α}�¹[c/v] 3,L1 
(7) ||∼∃γ{γ∈Γ∪{∼α} & c∈γ} 1,2,ST 
(8) ||Γ∪{∼α}�∀v¹ 6,7,UDP 
(9) ||Γ∪{∼∀v¹}�α 8,L1 

 
Corollary: ∼∼∃∃ γγ{γγ ∈∈ ΓΓ  & c∈∈ γγ} →→ .  ΓΓ ∪∪{∼∼¹¹[c/v]}��   →→   ΓΓ ∪∪{∼∼∀∀ v¹¹}��  

(1) ∼∃γ{γ∈Γ & c∈γ} As 
(2) �: Γ∪{∼¹[c/v]}�  →  Γ∪{∼∀v¹}� CD 
(3) |Γ∪{∼¹[c/v]}� As 
(4) |�: Γ∪{∼∀v¹}� DD 
(5) ||∀α[Γ∪{∼¹[c/v]}�α] 3,Def � 
(6) ||Γ∪{∼¹[c/v]}�P 5,QL 
(7) ||Γ∪{∼¹[c/v]}�∼P 5,QL 
(8) ||c ∉ P inspection 
(9) ||c ∉ ∼P inspection 
(10) ||Γ∪{∼∀v¹}�P 6,8,NUEP 
(11) ||Γ∪{∼∀v¹}�∼P 7,9,NUEP 
(12) ||Γ∪{∼∀v¹}� 10,11,Lemma ? 

 
Corollary: ¸∼∼∀∀ v¹¹¹∈∈ ΓΓ  & ∼∼∃∃ γγ{γγ ∈∈ ΓΓ  & c∈∈ γγ}  &  ΓΓÒÒ   .→→   ΓΓ ∪∪{∼∼¹¹[c/v]}ÒÒ  

(1) ¸∼∀v¹¹∈Γ As 
(2) ∼∃γ{γ∈Γ & c∈γ} As 
(3) ΓÒ As 
(4) �: Γ∪{∼¹[c/v]}Ò CD 
(5) |Γ∪{∼¹[c/v]}� As 
(6) |�: Ð 3,9,SL 
(7) ||Γ∪{∼∀v¹}� 2,5,cor1 
(8) ||Γ = Γ∪{∼∀v¹} 1,ST 
(9) ||Γ� 7,8,IL 
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L2:  ΓΓ ∪∪{αα }��ββ   →→   ΓΓ ∪∪{∼∼∼∼αα }��ββ  
(1) �: Γ∪{α}�β  →  Γ∪{∼∼α}�β CD 
(2) |Γ∪{α}�β As 
(3) |�: Γ∪{∼∼α}�β DD 
(4) ||�∼∼α→α lemma 
(5) ||Γ�∼∼α→α 4,G? 
(6) ||Γ∪{∼∼α}�∼∼α G? 
(7) ||Γ∪{∼∼α}�∼∼α→α G? 
(8) ||Γ∪{∼∼α}�α 6,7,MPP 
(9) ||Γ∪{∼∼α}∪{α}�β 2,G? 
(10) ||Γ∪{∼∼α}�β 8,9,G? 

 
EEP:  ∼∼∃∃ γγ{γγ ∈∈ ΓΓ  & c∈∈ γγ} & c∉∉ αα  →→ .  ΓΓ ∪∪{¹¹[c/v]}��αα   →→   ΓΓ ∪∪{∃∃v¹¹}��αα  

(1) ∼∃γ{γ∈Γ & c∈γ} As 
(2) c∉α As 
(3) �: Γ∪{¹[c/v]}�α  →  Γ∪{∃v¹}�α CD 
(4) |Γ∪{¹[c/v]}�α As 
(5) |�: Γ∪{∃v¹}�α DD 
(6) ||Γ∪{∼∼¹[c/v]}�α 4,L2 
(7) ||Γ∪{∼α}�∼¹[c/v] 6,L1 
(8) ||∼∃γ{γ∈Γ∪{∼α} & c∈γ} 1,2,ST 
(9) ||Γ∪{∼α}�∀v∼¹ 7,8,UDP 
(10) ||Γ∪{∼∀v∼¹}�α 9,L1 
(11) ||Γ∪{∃v¹}�α 10, Def ∃v 

 
 


