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1. Introduction

Having described the axiom system AS1+Q, our next task is to show that it is sound with respect
to the semantics of CFOL. This means we have to show the following, for every Gand a

G-a ® G=a

where - is defined relative to AS1+Q, and = isdefined relative to CFOL.

2. Overall Construction of the Proof of Soundness

The proof that AS1+Q is sound w.r.t. the standard CFOL-semantics is the same in overdl
construction to the corresponding proof about AS1. After setting up the strong induction, one gets to the
key juncture. One has assumed that a isderivable from G. So a isthe last line of the derivation &, ...,
diifrom G Given the definition of derivation, either a isapremise, or follows by arule. Thefirst case
IS easy to settle, just like in AS1. The second case divides into as many cases as their are rules of
deduction. In the case of AS1+Q, there are 8 rules, four of which are identical in form to ASL
Accordingly, the first four cases have in effect aready been settled in the proof of the soundness of AS1.

That leaves four more cases. Each of these cases reduces to proving an appropriate lemma. We
provide those lemmas in what follows.

[Exercise] The reader is invited to construct the overal derivation, being careful to set it up so
that the following lemmas suffice; note in particular the form of the lemma concerning R8.

3. Rule R5 is Valid

(1) sHewW: =" nF® [F[c/n] Def(E)
(2)  sHOW: " u[u(" nF® F[c/n])) =T] ubD
(3 sSHoW:u("nF® F[c/n)) =T H

i Given some simple facts about admissible valuations and the truth-function for ® , in
order to show (3), it suffices to show the following, where c is an arbitrary closed

singular term.
(4) sHoW: u("nF)=T ® u(Flc/n) =T CD
5) u" nk) =T As
(6) SHOW: u(F[c/n]) =T 10,11,IL
@) "u¢uct=,u u€F)=T} 8, Def CFOL-val
(8 let ug(n)=u(c) & " e{Atomic[e] & etn ® uy(e)=u(e)} ST+$0
9 Up=~npUu 8b, Def =
(20) uo(F)=T 7,9,QL
(1) uo(F) = u(F[c/n]) 8a9,Subst Lemma
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4.

Rule R6 is Valid

(1)
(2)
(3)
(4)

(4)
(5)
(6)
(7)
(8)
(9)

nisnot freein As
SHOW: = F®" nfF Def(E)
SHOW: " u[u(F®" nfF) =T] ubD
SHOW: u(f® " nlF) =T H

i Given some simple facts about admissible valuations and the truth-functionfor ® , in
order to show (3), it suffices to show the following, where [ isa closed formula.

sHoW: u(F) =T ® u("nF)=T CD
ulb)=T As
SHOW: u(" nF) =T Def (CFOL-val)
"uut~,u ® ugp=T} UCD
ut=,u As
SHEW: u€F)=T 1,8, Bound Variable Lemma (below)

Rule R7 is Valid

(1)
(2)
3)

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

sHew: =" n(F® G)® (" nfF®" nk) Def(E=)
SHOW: " ufu(" n(F® G)® (" nF® " nG)) =T] ubD
SHOW: u(" n(F® G)® (" nF®" nG)) =T H

i Given some simple facts about admissible valuations and the truth-function for ® , in
order to show (3), it suffices to show the following.

SHOW: u("' N(F® G) =T ® . uC" nH) =T ® u"nG)=T CCD
u" n(F® G))=T As
u" nF) =T As
SHOW: (" nG)) =T Def (CFOL-val)
SHOW: " u€ut~,u ® ugG)=T} ucD

Up =, U As
SHOW: ug(G)=T DD
"ugut~,u ® ugF® G)=T} 5, Def (CFOL-val)
"ugut=,u ® ugp=T} 6, Def (CFOL-val)
u(F® G) =T 9,11,QL
u(F) =T 9,12,QL
u(G)=T 13,14, earlier result about CSL
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Rule R8 is Validity-Preserving

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

every occurrenceof cin [F isfreefor n
[F[n/c] isthe result of replacing every occurrence of cin [F by n
sHew: =F ® E" nfF[n/d]

=F

ie:" ufu(F)=T]

SHOW: =" nlF[n/c]

SHOW: " u[u(" nF[n/c]) =T]

SHOW: uo(" nF[n/c]) =T

SHeW: " uf{u =, u, ® u(F[n/c])=T}
Uy =p Ug

SHEW: uy([F[n/c])=T

uz(C) =n Uuy(n)

" F{ua(f) = ux(f [c/n])}
uy(F[n/c]) = ux(F[n/c][c/n])
clam: F[n/c][c/n] = F
uy(Fn/c]) = ux(F)

let u, be such that: uy(c) = uy(n); otherwise u, = u, for smples

AsS

As

CD

As

4,Def (=)
Def(=)

ubD
Def(CFOL-val)
ucb

As

517,IL
ST,$0
12b,Def(=)

12a,13,Subst Lemma

14,0L
b
15,16,IL

8 Intuitively, thisisthe argument: By requirement of Rule R8, [ is closed, so [F hasno
free occurrence of n. Also by requirement of R8, cisfreefor nin [F. Consider an
arbitrary occurrence o of cin [F. When one does the first subgtitution, producing F[n/c], o
isreplaced by an occurrence o¢of n. Sincecisfreefor n, o¢isfree. Accordingly, when
one does the second substitution, producing [F[n/c][c/n], o¢is replaced by an occurrence
od®tof c. Thus, every occurrence of cisreplaced by an occurrence of n, whichinturnis
replaced by an occurrence of c. It isevident that the resulting formulaisidentical to the
origina formula. Ultimately, aformal proof requires induction, and appealsto the

officia (inductive) definition of substitution [see Section 7].
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7. Formal Definition of Substitution

Many of theorems we wish to prove involve substituting one expression for another. For this
reason, it is useful to have a forma definition from which one can make logical deductions. As with
many formal syntactic notions, substitution is officially defined inductively.

Definition of [t/v]

Df
if t isan atomic singular term, then:
t[tiv] = t if t=v
= t if tiv

if t isamolecular singular term, then:

t = f&,, ...t (for somef, t, ..., ty), and
t[thv] = fa&qtiv], ..., tJt/V]i

if f isan atomic formula, then:

f = P&y, ..., t, A (for some P, t,, ..., ty), and
f[thv] = Paqtiv], ..., tt/v]i

if f isamolecular formula, then:

either:
f = ~b (for someb), in which case
f[tiv] = ~Db[t/V]

or:
f = a®b (for somea, b), inwhich case
f[t/v] = a[tiv] ® b[t/v]
or:
f =" xF (for somex, [F), inwhich case
either:
X=w, in which case
fltiv] =1
or:

xt w, in which case
f[tiv] = " xF[t/V]
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8. The Substitution Lemma

The Subgtitution Lemma — which is very important both in the proof of soundness and in the
(later) proof of completeness — concerns the semantics of CFOL.

Th
Let [F beaformula. Let u; and u, be admissible valuations, let x be avariable,

and let ¢ be any closed singular ternt, for any expression e, let e* = €[c/x], the
latter being defined asusual. Then:

up ~x Uy ® . u1(X)=ux(c) ® uy(lF) = ux(F)

Recall that ~ is defined as follows.
Ug =y Uy = " e{Simplele] ® . {el x ® uy(e) = uxe)}}

Here, ‘Simplele]’ meansthat e is a syntactically atomic expression of L, which isto say a symbol (other
than punctuation). In FOL’s the simple expressions are variables, constants, proper nouns, predicate
letters, and function signs.

For clarity, we divide the proof into two segments — one for singular terms, the other for formulas —.
the first of which feedsinto the second.

SINGULAR TERMS:

(1)  SHOW: " Uy, Uy X, c{uy =yU, ® . " t{uyX)=uxc) ® uy(t) =uyt*)}} UCUCD

(2 Up =x Uz
i.e, "e[Simplefe] ® . {e1 x ® uy(e) =uye)}} As
(3) u(x)=ux(C) , As
4 SHOW: u4(t) = uy(t*) Induction on term formation

Base Case:
(5) t isan atomic singular term, and hence simple As
(6) SHOW: u4(t) = uy(t*) separation of cases, 7-17
(7 t=xort?x SL
(8 clit=x As
(9) us(t) = uy(x) = uz(c) 38IL
(20) t*=c 8, Def[c/X]
(11) ux(t*) = uy(c) 10,IL
(12 uq(t) = vy(t*) 10,11,IL
(13) c2: ttx As
(14) u(t) = uy(t) 2,5,QL
(15) t* =t 13, Def[c/x]
(16) us(t*) = uy(t) 15,IL
(17) U(t) = vo(t*) 15,16,1L
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Inductive Case:
(18)  ug(ty) =ux(ts*), ..., us(ti) = ux(ty*) As(IH)
(19)  SHOW: Uy(f&y, ..., tf) = U(f&1*, ..., t ¥ 21,22,IL
(20) U]_(fétl, veey tkf» = Ul(f)éul(tl), ceey Ul(tk)ﬁ Def CFOL-vd
(21) | us() =uAf) 2,4
i every function signis simple, and no function sign isa variable
(22) ‘ Ul(f)éjl(tl), veny Ul(tk)ﬁ = Uz(f)ajz(tl*), viny Uz(tk)*ﬁ 18,21,”_

FORMULAS (Proof by induction on formula formation):

(1)  SHOW: " F:" uy, Uy X, c{ur =, U ® . uy(x)=uy(c) ® uy(F)=uxF*)}  Induction

on formula
formation
Base Case:
2 [F isan atomic formula. As
(3)  SHOW: " Uy, Up X, C{uy =4U, ® . uy(X)=uxc) ® uy(F)=uy(F*)} U4CCD
(4) U; =x Uz As
(5) i.e:" e{Simplefe] ® . et x® us(e)=uxe)} 3, Def ~
(6) u1(X)=ux(C) As
(7) SHOW: u(F) = ux(lF*)
(8) | F=P&y, ..., tA 1, Def Atomic formula, $O &

i Note that given the categoria approach to grammar, thisincludesthe caseinwhich P is
the special (logical) predicate ‘=". Inthat case P&, to,fi = [S]&q, tofi= Mti=t,!.

(9 UuyF) =uy(Péy, ..., ted = uy(P)auy(ty), ..., uy(tyn 7,IL / Def CFOL-val
(20) [F* = [Pay, ..., tl* 7L
(11) = Pa,*, ..., t*n GenSubTh
(12) uy(F*) = uy(P)aus(t*),...,us(t*)i 9-10,IL,Def CFOL-val
(13) [" 1<K]: uq(ty) = vo(t*) shown above
(14) Simple[P] & Pt x H

i every predicate is simple, and no predicate is avariable.

(15) uy(P) = uyP) 4,13,QL
(16) u(F) = uy(P)au(ty),..., us(t)f 8,14,1L
(17) = Uz(P)éjz(tl*) ..... Uz(tk*)ﬁ 12,|L
(18) uy(F) = ux(F*) 11,14-16,1L

Inductive Case 1 (~)
Given the form of the formulato be shown, it suffices to do the following conditional

derivation.
(1) uy(F) =uy(F*) As
(2)  SHOW: uy(~F) = uy([~F*) 3-7,L
(3) [~[F]* =~F* Def [¢/X]
(4) Ua([~F]*) = ux(~F*) 3IL
(5) Us(~F) = ~uy(F) Def CFOL-val
(6) ~Uy(F) = ~ux(F*) 1,5,L

(7) Ux(~[F*) = ~uy([F*) Def CFOL-val
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Inductive Case 2 (® )
Given the form of the formulato be shown, it suffices to show the following.
u(F) = ux(F*) As
u1(G) = uy(G*) As
SHOW: U (F® G) = u,([F® G]*) 5-8,IL
[F® G]* = F*® G* Def [c/X]
Ux([F® G]*) = ux(F*® G*) 4,1L
U(F® G) = uy(F)® uy(G) Def CFOL-val
U(F)® uy(G) = uy(F*)® uy(G*) 1,2,6,IL
Uy(F*® G*) = uy(F*)® uy(G*) Def CFOL-val
Inductive Case 3 (" )
"u,ugx, c{u ~ut® . ux)=ugc) ® u(F) = ugr*) As
SHOWT: " Uy, Uz, X, C Y {Ur mx Uz, ® . uy(x)=uy(c) ® uy(" yF) = ux([" yFI*)}
Uy ~xU> As
u1(x)=uy(c) As
SHOW: uy(" yF) = u([" YF]*) SC.6-
X=y or xty SL
cl: x=y As
SHOW: u (" yIF) = ux([" y[F]*) 7,9,IL
SHOW: u(" XIF) = ux([" x[F]*) 10,11,IL
[" xF]* =" xF Def [c/X]
uy(" XIF) = uy(" xIF) 3 + Bound Variable Lemma (below)
c2: Xty As
SHOW: u (" yIF) = ux([" y[F]*) 14,15,1L
[" yF]* = " yF* 12, Def [c/X]
SHOW: u (" yIF) = uy(" yF*) 16,17,18,GenTh(u),IL
u"yF) =T « " u{u=,u;® u(F)=T} Def CFOL-val (alt)
u(" yF*) =T « " u{u =, u,® u(F*)=T} Def CFOL-val (alt)
SHOW: " u{u =yu; ® u(F)=T} « " u{u~,u,® u(F*)=T} 19,48,SL
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(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

(48)

SHOW: ®
"u{u=yu;® u(F)=T}
SHOW: " u{u =, u, ® u(F*)=T}

Uz =y Uz
SHOW: ux(F*)=T
let us(y) = us(y) & ug(€) =uy(e) if ety and Simplefe]
Ug =y Uz
usfF)=T
SHOW: U,y =, U3
sHow: " e{Simplefe] ® . el x ® u4(e) = us(e)}
Simplefe]
el x
SHOW: uy(e) = us(e)
e=yorety
cl: e=y
| us(e) = ualy) = usly) = us(e)
c2: ely
us(€) = ua(e)
us(€) = uz(e)
u(€) = us(e)
Us(e) = us(e)
SHOW: u4(X) = us(C)
Xty
Ug(X) = u(X)
ui(X) = uy(c)
Atomic[c] & cty
ux(c) = ug(v)
u(lF) = us(F*)
us(fF*)

SHOW: -
Proof isvery similar to 19-47 [exer cise]

CD
As
UCD
As

ST,$0

24b, Def(=)
20,25,QL
Def(~)

UCCD

As

As

SC,32-39

SL

As
33,IL/24alL /1L
As
25,29,35,Def(~)
3,29,30,Def (=)
22,29,35,Def(~)
36-38,IL
42,43,45,IL

12 (reminder)
24b,A1

4 (reminder)
presumed
22,44, Def (=)
1(1H),27,40,QL
26,46,IL

CD
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9. The Substitution/Quantification Lemma

The next lemma, which follows fairly directly from The Substitution Lemma, shows that, under
certain circumstances, a universally quantified formula is naturally related to its closed substitution
instances. First we define a subordinate notion.

Def
Let u beavauation from L into U, and let u be an dement of U. Then:

uhasanameaccordingtou [au-name] =g $t{closed[t] & u(t)=u}

The Substitution/Quantification Lemma

Th  (SubQ)

Suppose every object uin U has aname according tou. Then:

u" vi)=T « " t{closed[t] ® u(F[tiv]) =T}

In other words, if every object has a u-name, then a universal formula u verifies " v[Fif and only if u
verifies every (closed) substitution instance of [F.

We divide the proof into two natural halves. Notice that the first half does not employ the
hypothesis [that every object in U has a u-name]; indeed, the first half smply amounts to the soundness
of Rule R5. The converse, however, does employ this hypothesis.

(1)  SHOW: u(" XF)=T ® " t{closed[t] ® uy(F[t/x]) =T} CUCD
2 u(" xF) =T As
©)) closed[t] As
4 SHOW: ug(F[t/X]) =T ID
5) " u{u =, Ug u(F)=T} 2, Def CFOL-val
(6) let uy(X)=uo(t) & " e{Simplefe] & etx ® uy(e)=uq(e)} ST+$0
(7) U; = Ug 6b, Def =~
(8 uy(F)=T 5,7,QL
9 uy(F) = ue(F[t/x]) 3,6a,7, Subst Lemma
(20) Uuo(F[t/x]) =T 8,9,IL
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1) " uu U® $t{closed[t] & uq(t)=u}}

(2)  sHew: " t{closed[t] ®

u(Fit/X]) =T} ® uy(" xF)=T

3) " t{ closed[t] uo(F[t/x]) = T}
(4) | SHOW: ug(" XF) =T

(5) SHOW: " u{u =yuy ® u(F)=T}
(6) Ui =y Ug

@) SHOW: uy(F)=T

(8) $u{u U & uruy(x)}

(9) u U

(10) u=uqXx)

(12) $t{closed[t] & uq(t)=u}
(12) closed[t]

(13) Uo(t)=u

(14 Uo(t) = us(X)

(15) uy(F) = ue(F[t/x])

(16) uo(F[t/X]) =T

10. The Bound Variable Lemma

hyp
CD

As

Def CFOL-val
UCD

As

15,16,IL

Def CFOL-va
8,$&0
8,$&0
1,9,0L
11,$&0
11,$&0
10,13,IL
6,12,14,Subst Lemma
3,12,QL

Suppose variable v is not free in formula | [for example, ‘X’ is not free in ™ xXFx']. Then,
inutitively, the semantic value of F [e.g., " XFx’'] should not depend upon the semantic value of v [e.g.,
‘x']. Thefollowing theorem corroborates thisintution.

Letf beany formula. Let u; and u, be admissible valuations, let x be any
variable that does not occur freein f ; then:

Ui =x Uz ® uy(f) =ux(f)

Although the theorem is “obvious’, in some sense, the proof is quite challenging, and is left as an

exercise for the reader.
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Appendix

(1)  sHOW: uy ~yu, ®  uy(f) = uyf)

(2) Up =xUsz

(3) SHOW: uy(f) = uy(f)

4 f isatomic, or f ismolecular (i.e., not atomic)

(5) cl: f isatomic

(6) SHOW: uy(f) = ux(f)

) f = Pay, ..., tyl (some P, ty, ..., ty)

(8) Uy(Pay, ..., tild = uy(P)aus(ty), ..., us(tn

(9) Ux(Pay, ..., til) = ux(P)auy(ty), ..., ux(th

(10) uy(P) = us(P) _ o _
i every predicate is atomic, and no predicate is avariable

(11) ;Jl(tl) = Uy(ty), ..., Ug(ti) = ux(ty)

(12) c2: f ismolecular

(13) SHOW: uy(f) = uy(f)

(14) f isanegation, or aconditional, or a universal

(15) c2.1: f isanegation

(16) SHOW: uy(f) =uy(f)

a7) f = ~b

(18) uy(f) = ~aiy(b)i

(19) uy(f) = ~aiy(b)i

(20) uy(b) = ug(b)

(21) c2.2: f isaconditional

(22) | similar to case 2.1

(23) c2.3: f isauniversa

(24) SHOW: uy(f) =uy(f)

(25) f ="yF (somey, [F)

(26) y=X, or y'X

(27) cl: y=x

(28) SHOW: u (" xF) = uy(" xF)

(29) uy(" XF) = min{u(lF) : u =4uq}

(30) ux(" XF) = min{u(F) : u =,uy}

(31) SHOW: " u{u =4U; € U~y Uy}

(32) c2: ytx

(33) SHOW: uy(" yF) = ux(" yF)

(34)

CD

As

SC, 4-

SL

As

7-11,1L
Def(atomic),$O
Def(CFOL-val)
Def(CFOL-val)
2, Def(~)h

IHf

As

SC,14-
12,Def(molecular for [L)
As

15, Def(negation), $O
Def(CFOL-val)
Def(CFOL-val)

IH
As

23,Def(universal), $0O
SL

As

29-31,ST

def CFOL-val

def CFOL-val

2, routine [exer cise]
As



