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1. Introduction 

 Having described the syntax and semantics for classical first-order logic, the next task is to offer a 
deductive account of argument validity in CFOL. 

 We approach this task in steps.  First, we axiomatize classical quantifier logic (CQL), which is a 
major “fragment” of CFOL, then we axiomatize classical first-order logic.  This is not entirely crazy; we 
have already adopted this strategy in concentrating on the SL-fragment of CFOL in previous chapters.  The 
language for CQL is like the language of CFOL, except that it lacks identity.   

 We further fragmentize our chief meta-theorems for CQL.  First, we prove the results for classical 
predicate logic (CPL), then we prove the results about CQL.  The difference is not the axiom system but 
the underlying language – CPL is like the language of CQL, except that it lacks function signs [except zero-
place, which are functionally identical to proper nouns]. 

 We also adopt three convenient, and natural, simplifications of classical first-order logic (and its 
fragments).   

Simplification #1:  no open formulas in arguments; 
Simplification #2: no open formulas in derivations; 
Simplification #3: no constants in arguments. 

Simplification #1 is natural if we agree that, although an open formula ¹ has a meaning, which contributes 
to the meaning of any super-formula of ¹, it does not strictly speaking have a denotation (i.e., truth-value).  
We can therefore claim that, since validity amounts to truth-preservation, validity does not strictly apply to 
open argument forms.  Simplification #2 is the natural extension of #1.  Simplification #3 is natural if we 
agree that constants are purely intra-derivational devices [∃O, UD, etc.], and accordingly do not appear in 
any proper argument we wish to analyze.  In this connection, recall that constants are not proper nouns, but 
rather unquantified variables (alternatively, ad hoc names). 

2. An Axiom System for CQL – AS1+Q 

 The axiom system we discuss is obtained by taking axiom system AS1 for CSL, and adding rules 
for quantification, and is accordingly called AS1+Q.  Notice that all the rules are restricted to closed 
formulas of the language ¿. 

AS1 Rules: 
 

 In the following, α, β, γ are closed formulas. 

(R1) å α→(β→α) 
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)] 
(R3) å (∼α→∼β)→(β→α) 
(R4) α, α→β å β 



16: Axioms for Classical First-Order Logic 3 

 

New Rules: 
 

 In the following, ¹ and º are formulas, ν is a variable, c is a constant, and τ is a singular term. 

(R5) å  ∀ν¹ → ¹[τ/ν] τ is a closed singular term; at most ν is free in ¹ 
(R6) å  ¹ → ∀ν¹ ¹ is closed 
(R7) å  ∀ν(¹→º)→(∀ν¹→∀vº) at most ν is free in ¹ and º 
(R8) π(¹)  å  ∀ν¹[ν/c] π(¹) is a prior sub-sequence that proves ¹ [closed] 

If one is inclined to give names to rules, the following might be considered. 

(R1) repetition Rep 
(R2) conditional distribution →Dist 
(R3) (non-intuitionistic) contraposition Contra 
(R4) modus ponens MP 
(R5) universal elimination (out) ∀O 
(R6) trivial quantification TrivQ 
(R7) universal distribution ∀Dist 
(R8) (provable) generalization Gen 

3. Simple Examples of Derivations in AS1+Q 

1. ��∀∀ x(Fx→→Fx) 

(1) Fa→(Fa→Fa.→Fa) R1 Rep 
(2) Fa→(Fa→Fa.→Fa) .→. (Fa→.Fa→Fa)→(Fa→Fa) R2 →Dist 
(3) (Fa→.Fa→Fa)→(Fa→Fa) 1,2,R4 MP 
(4) (Fa→.Fa→Fa) R1 Rep 
(5) Fa→Fa 3,4,R4 MP 
(6) ∀x(Fx→Fx) 1-5,R8 Gen 

 
In this derivation, first notice that lines 1-5 simply repeat an earlier proof in AS1, where ‘Fa’ is 
substituted for ‘P’.  Notice, in particular, that the sequence 1-5 is a proof of ‘Fa→Fa’ – every line follows 
by a rule, and the last line is ‘Fa→Fa’.  Accordingly, 1-5 can be used in combination with R8 (Gen) to 
produce line 6. 

2. ��∀∀ x∀∀ y(Rxy →→  Rxy) 

(1) Rab→(Rab→Rab.→Rab) R1 Rep 
(2) Rab→(Rab→Rab.→Rab) .→. (Rab→.Rab→Rab)→(Rab→Rab) R2 →Dist 
(3) (Rab→.Rab→Rab)→(Rab→Rab) 1,2,R4 MP 
(4) (Rab→.Rab→Rab) R1 Rep 
(5) Rab→Rab 3,4,R4 MP 
(6) ∀y(Ray→Ray) 1-5,R8 Gen 
(7) ∀x∀y(Rxy→Rxy) 1-6,R8 Gen 

 
First notice that lines 1-5 are formally similar to Example 1; this time, these lines are a proof of 
‘Rab→Rab’.  Accordingly, we are entitled to apply R8 (Gen), to obtain ‘∀y(Ray→Ray)’.  Next, we 
notice that lines 1-6 prove ‘∀y(Ray→Ray)’, so 1-6 can be used in combination with R8 (Gen) to produce 



4 Hardegree, MetaLogic 

 

line 7.  [Notice that R8 also entitles us to infer ‘∀y∀y(Ryy → Ryy)’ at line 7; this is a harmless oddity of 
R8.] 

3. {∀∀ x(Fx→→Gx), Fa} ��  Ga 

(1) ∀x(Fx→Gx) Pr 
(2) Fa Pr 
(3) Fa→Ga 1,R5 ∀O 
(4) Ga 2,3,R4 MP 

 

4. {∀∀ x(Fx→→Gx), ∀∀ xFx} ��  ∀∀ xGx 

(1) ∀x(Fx→Gx) Pr 
(2) ∀xFx Pr 
(3) ∀x(Fx→Gx)→.∀xFx→∀xGx R7 ∀Dist 
(4) ∀xFx→∀xGx 1,3,R4 MP 
(5) ∀xGx 2,4,R4 MP 

4. The Deduction Theorem for AS1+Q 

 The first major theorem is the deduction theorem for AS1+Q.  We have already proven DT for 
AS1.  This does not automatically transfer to AS1+Q.  The reason is that AS1+Q has a new multi-place 
rule, R8, which requires us to amend the proof of DT with a special case pertaining to R8 (GEN).  In the 
following proof, which mostly reproduces the proof of DT for AS1 [i.e., lines 1-39], ‘GEN[β]’ means ‘β 
follows from previous lines by (provable) generalization (R8).  The only genuinely new part of the proof 
is lines 40-43, which employ a new supporting lemma (D4). 

DT:  ΓΓ ∪∪{αα }��ββ   →→   ΓΓ��αα →→ ββ  

(1) �: ∀Γ∀α∀β{Γ∪{α}�β  →  Γ�α→β} Def � 
(2) �: ∀Γ∀α∀β{∃d[dDβ/Γ∪{α}]  →  Γ�α→β} 3,QL 
(3) �: ∀d∀Γ∀α∀β{dDβ/Γ∪{α}  →  Γ�α→β} 4+G14 
(4) �: ∀n:∀d∀Γ∀α∀β{dDβ/Γ∪{α}/n  →  Γ�α→β} SMI 

IH: 
(5) |∀k<n:∀d∀Γ∀α∀β{dDβ/Γ∪{α}/k  →  Γ�α→β} As 

IS: 
(6) |�: ∀d∀Γ∀α∀β{dDβ/Γ∪{α}/n  →  Γ�α→β} U4CD 
(7) ||dDβ/Γ∪{α}/n As 
(8) ||�: Γ�α→β SC 
(9) ||β = dn 7,Def derives/n 
(10) ||∀δ∈d: Ax[δ] or δ∈Γ∪{α} or MP[δ] or GEN[β] 7,Def AS1+Q, derives [b] 
(11) ||β∈d 9,ST 
(12) ||Ax[β] or β∈Γ∪{α} or MP[β] or GEN[β] 10,11,QL 

 
(13) ||c1: Ax[b] As  
(14) |||Γ�α→β 13,D1 
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(15) ||c2: β∈Γ∪{α} As 
(16) ||| β∈Γ  or  β=α 15,ST 
(17) |||c1: β∈Γ As 
(18) ||||Γ�α→β 17,D2 
(19) |||c2: β=α As 
(20) ||||Γ�α→α D3 
(21) ||||Γ�α→β 19,20,IL 

 
(22) ||c3: MP[β] As 
(23) |||∃j,k<n∃γ: dj=γ→β & dk=γ 9,22,Def MP[] 
(24) |||j<n & dj=γ→β 23,∃&O 
(25) |||k<n & dk=γ 23,∃&O 
(26) |||�: 〈di: iÔj〉 D γ→β / Γ∪{α} / j Def D/n [&D] 
(27) |||a:�: len〈di: iÔj〉 = j ST 
(28) |||b:�: last〈di: iÔj〉=γ→β 24b,29,IL 
(29) ||||last〈di: iÔj〉 = dj ST 
(30) |||c:�: 〈di: iÔj〉DΓ∪{α} Def dDΓ 
(31) |||�: ∀δ∈〈di: iÔj〉: Ax[δ] or δ∈Γ∪{α} or MP[δ] or GEN[δ] UCD 
(32) ||||δ∈〈di: iÔj〉 As 
(33) ||||�: Ax[δ] or δ∈Γ∪{α} or MP[δ] or GEN[δ] 10,34,QL 
(34) |||||δ∈d 32,ST 
(35) |||�: 〈di: iÔk〉 D γ / Γ∪{α} / j Def D/n 
(36) ||||similar to derivation lines 26-34 
(37) |||Γ�α→(γ→β) 24a,26,IH 
(38) |||Γ�α→γ 25a,35,IH 
(39) |||Γ�α→β 37,38,D4 

 
(40) ||c4: GEN[β] As 
(41) |||�β 40, D5 
(42) |||�α→β 41, earlier result about AS1 (prefix principle) 
(43) |||Γ�α→β 42, GenTh(�) 

5. Lemmas Supporting The Deduction Theorem 

 The proof of the Deduction Theorem appeals to five lemmas.  (D1)–(D4) have already been 
proved in connection with SL.  The remaining one – (D5) – is proven below. 

(D1) β is an axiom  →  Γ�α→β 

(D2) β∈Γ  →  Γ�α→β 

(D3) Γ�α→α 

(D4) Γ�α→(γ→β)  &  Γ�α→γ  .→  Γ�α→β 

(D5) GEN[α]  →  �α 
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(1) �: GEN[α]  →  �α CD 
(2) |GEN[α] As 
(3) |�: �α 4, Def(�) 
(4) |�: ∃π: π proves α 7,QL 
(5) ||∃d∃π∃¹∃c∃v{π⊆〈di: i<n〉 & π proves ¹ & α=∀v¹[v/c]}  2, Def GEN[] 
(6) |||π0⊆〈di: i<n〉  &  π proves ¹  &  α=∀v¹[c/v]  41,∃O 
(7) |||π0+〈α〉 proves α Û 

 
Û α is clearly the last line of π0+〈α〉, so the question is whether π0+〈α〉 is a proof, 
which is the question whether every line follows by a rule.  Let δ be a line in 
π+〈α〉.  Then either δ∈π or δ=α.  In the first case, by hypothesis π is a proof, so δ 
follows by a rule.  In the second case, by hypothesis α – i.e., ∀v¹[v/c] – follows 
from π by R8, so α follows by a rule. 

6. The Universal Derivation Theorem 

 The next key task is to prove that universal derivation is an admissible rule – a result we call the 
Universal Derivation Theorem.  [We could correspondingly call the Deduction Theorem the Conditional 
Derivation Theorem, since it demonstrates that conditional derivation is admissible.]  Recall that the 
Universal Derivation show-rule (UD) tells us that showing ¹[c/v], where c is new, is tantamount to 
showing ∀v¹.  The following theorem is the axiomatic counterpart of UD.  It says that if constant c does 
not occur in any formula in set Γ, then if one can deduce ¹[c/v] from Γ, then one can deduce ∀v¹ from Γ.  
In other words, 

if c does not occur in any formula in Γ, then 
if  Γ�¹[c/v], then 
Γ�∀v¹ 

In order to simplify our notation in the proof, we employ the following shorthand, where it is understood 
that c is a constant, and Γ is a set of formulas. 

c ∈ γ =df c occurs in γ 
c∈*Γ =df ∃γ{γ∈Γ & c∈γ} 
c∉*Γ =df ∼∃γ{γ∈Γ & c∈γ} 

Applying this notation, and restoring all the implicit universal quantifiers, the Universal Derivation 
Theorem can written thus. 

UDT:  ∀∀ ΓΓ ∀∀ ¹¹∀∀ c∀∀ v{c ∉∉* ΓΓ   →→ .  ΓΓ��¹¹[c/v]  →→   ΓΓ��∀∀ v¹¹} 
 

Note carefully that, just as with the Deduction Theorem (a.k.a. the Conditional Derivation Theorem), the 
Universal Derivation Theorem does not say that the derivation of ¹[c/v] is a derivation of ∀v¹; rather it 
only says that a derivation exists, without saying what the derivation looks like.   

The following is a formal proof.  As before,  

d D φ / Γ =df d is a derivation of φ from Γ 
d D φ / Γ / n =df d is an n-long derivation of φ from Γ 
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(1) �: ∀Γ∀¹∀c∀v{c∉*Γ  →.  Γ�¹[c/v]  →  Γ�∀v¹} Def � 
(2) �: ∀Γ∀¹∀c∀v{c∉*Γ  →.  ∃d[dD¹[c/v]/Γ]  →  Γ�∀v¹} QL 
(3) �: ∀d∀Γ∀¹∀c∀v{c∉*Γ  →.  dD¹[c/v]/Γ  →  Γ�∀v¹} G14 
(4) �: ∀n:∀d∀Γ∀¹∀c∀v{c∉*Γ  →.  dD¹[c/v]/Γ/n  →  Γ�∀v¹} SMI 

 
(5) |∀k<n:∀d∀Γ∀¹∀c∀v{c∉*Γ  →.  dD¹[c/v]/Γ/k  →  Γ�∀v¹} As [IH] 

 
(6) |�: ∀d∀Γ∀¹∀c∀v{c∉*Γ  →.  dD¹[c/v]/Γ/n  →  Γ�∀v¹} U5CCD 
(7) ||c ∉* Γ   As 
(8) ||d D ¹[c/v] / Γ / n As 
(9) ||�: Γ�∀v¹ 11-52,SC 
(10) |||dn = ¹[c/v] 8,Def Dα/Γ/n 
(11) |||Ax{¹[c/v]} or ¹[c/v] ∈ Γ or GEN{¹[c/v]} or MP{¹[c/v]} 8,10,Def Dα/Γ/n 

 
(12) ||c1: Ax{¹[c/v]} As 
(13) |||〈¹[c/v]〉 proves ¹[c/v] 12, Def Ax,  Def proves 
(14) |||〈¹[c/v], ∀v¹〉 D ∀v¹ / Γ Û 

 
Û By hypothesis (12), ¹[c/v] is an axiom, so the sequence 〈¹[c/v]〉 proves ¹[c/v], 
so we can apply rule R8 to this sequence to obtain ∀v¹[c/v][v/c].  But 
∀v¹[c/v][v/c] = ∀v¹.  Thus, the sequence 〈¹[c/v], ∀v¹〉 proves ∀v¹.  Since 
every proof is automatically a derivation from any set, we have 〈¹[c/v], ∀v¹〉 
derives ∀v¹ from Γ. 

 
(15) |||∃d{d D ∀v¹ / Γ} 14,QL 
(16) |||Γ�∀v¹ 15, Def � 

 
(17) ||c2: ¹[c/v] ∈ Γ As 
(18) |||�: v is not free in ¹ ID 
(19) ||||v is free in ¹ As 
(20) ||||�: × DD 
(21) |||||c ∈ ¹[c/v] 19, Def [c/v] 
(22) |||||× 7,17,21,QL 
(23) |||¹ = ¹[c/v] 18, Def [c/v] 
(24) |||¹→∀v¹ is an instance of R6 18, Def R6 
(25) |||¹[c/v]→∀v¹ is an instance of R6 23,24,IL 
(26) |||〈¹[c/v], ¹[c/v]→∀v¹, ∀v¹〉 D ∀v¹ / Γ Û 

 
Û By 17, ¹[c/v] ∈ Γ.  By 25, ¹[c/v]→∀v¹ is an instance of R6.  By R4 (MP), 
∀v¹ follows from  ¹[c/v] and ¹[c/v]→∀v¹.  Thus, the sequence 〈¹[c/v], 
¹[c/v]→∀v¹, ∀v¹〉 derives ∀v¹ from Γ. 

 
(27) |||∃d{d D ∀v¹ / Γ} 26,QL 
(28) |||Γ�∀v¹ 27, Def � 

 
(29) ||c3: GEN{¹[c/v]} As 
(30) |||� ¹[c/v] 29, D5 
(31) |||¹[c/v] � ∀v¹ 30, def(Gen) 
(32) |||� ∀v¹ 30,31, GenTh(�) Ø 
(33) |||Γ�∀v¹ 32,GenTh(�) 

 



8 Hardegree, MetaLogic 

 

(34) ||c4: MP{¹[c/v]} As 
(35) |||∃j,k<n,∃´: dj=´→¹[c/v] & dk=´ 34,Def MP[] 
(36) |||j<n & dj=´→¹[c/v] 35,∃&O 
(37) |||k<n & dk=´ 35,∃&O 
(38) |||�: 〈di: iÔj〉 D ´→¹[c/v] / Γ/ j 39,40,42, &I, Def D/n 
(39) |||a:�: len〈di: iÔj〉 = j ST 
(40) |||b:�: last〈di: iÔj〉=´→¹[c/v] 36b,40,IL 
(41) ||||last〈di: iÔj〉 = dj ST 
(42) |||c:�: 〈di: iÔj〉DΓ 43,44,GenTh(�) 
(43) ||||〈di: iÔj〉 ⊆ d ST 
(44) ||||d D Γ 8, Def D 
(45) |||�: 〈di: iÔk〉 D ´ / Γ / k Def D/n 
(46) ||||similar to derivation 39-45  
(47) |||v is not free in ´ 37b, Simplification #2 
(48) |||´[c/v] = ´ 47,Def [c/v] 
(49) |||(´→¹)[c/v] = (´[c/v]→¹[c/v]) GenSubTh ØØ  
(50) |||´→¹[c/v] = (´→¹)[c/v] 48,49,IL 
(51) |||〈di: iÔj〉 D (´→¹)[c/v] / Γ/ j 38,50,IL 
(52) |||Γ�∀v(´→¹) 36a,52,5(IH),QL 
(53) |||´→∀v´ is an instance of R6 47, Def R6 
(54) |||〈di: iÔk〉+〈´→∀v´〉+〈∀v´〉 D ∀v´ / Γ 51,53,inspection 
(55) |||∃d{d D ∀v´ / Γ} 54,QL 
(56) |||Γ�∀v´ 55, Def � 
(57) |||Γ�∀v¹ 52,56,UD1ØØØ 

 
Ø GenTh(�) means ‘by a general theorem about �’ [There are many such theorems.] 
ØØ The General Substitution Theorem (GenSubTh) is presented in its own section. 

ØØ ØØ ØØ  Supporting Lemma: 
 

UD1: ΓΓ��∀∀ v¹¹   &  ΓΓ��∀∀ v(¹¹→→ºº )  .→→   ΓΓ��∀∀ vºº  

(1) �: Γ�∀v¹  &  Γ�∀v(¹→º)  .→  Γ�∀vº &CD 
(2) |Γ�∀v¹ As 
(3) |Γ�∀v(¹→º) As 
(4) |�: Γ�∀vº DD 
(5) ||Ax[∀v(¹→º)→(∀v¹→∀vº)] R7 
(6) ||�∀v(¹→º)→(∀v¹→∀vº) 5,G5 
(7) ||Γ�∀v(¹→º)→(∀v¹→∀vº) 6,G2 
(8) ||Γ�∀v¹→∀vº 3,7,MPP 
(9) ||Γ�∀vº 2,8,MPP 
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7. Exercises for Chapter 16 

1. Derivations (and Proofs) in Axiom System AS1+Q 

Given a valid argument form, give a derivation of the conclusion from the premises in Axiom 
System AS1+Q. 

2. Deduction Theorem for AS1+Q 

3. Universal Derivation Theorem 

2. Appendix 

1. A Very General Substitution Theorem About Semantics of CFOL 

 We next prove a very general theorem about CFOL.  It provides two different corollaries that are 
important in later proofs. 

Th 
Let ¹ be any formula.  Let υ1 and υ2 be admissible valuations.  Let 〈x1, x2, …〉 be a 
sequence of variables of ¿, and let 〈c1, c2, …〉 be an equally-long sequence of 
constants of ¿.    
 
Suppose ∀i: υ1(xi) = υ2(ci).   
 

Suppose ∀ε{Atomic[ε] →.  ∀i[ε ≠ xi]  →  υ1(ε) = υ2(ε)} 
 
In other words, υ1 and υ2 agree on all symbols except (perhaps) the variables x1, 
x2, …  By analogy with our earlier predicate À, we abbreviate this as follows. 
 
 υ1 À* υ1  
 
Then: 
 
 υ1(¹) = υ2(¹*) 
 
where ε*  =df  the result of substituting ci for xi in ε, for i=1, 2, … 
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Proof (by induction on formula formation): 
 

  Base Case:   
(1) ¹ is an atomic formula. As 
(2) �: ∀υ1, υ2, x, c {υ1 À* υ2  →.  ∀i{υ1(xi)=υ2(ci)}  →  υ1(¹) = υ2(¹*)} U4CCD 
(3) |υ1 À* υ2 As 
(4) |i.e.: ∀ε{Atomic[ε] →. ∀i[ε ≠ xi] → υ1(ε)=υ2(ε)} 3, Def À* 
(5) |∀i{υ1(xi)=υ2(ci)} As 
(6) |�: υ1(¹) = υ2(¹*) 
(7) ||¹ = Ã〈τ1, …, τk〉 1, Def Atomic formula, ∃O 
(8) ||υ1(¹) = υ1(Ã〈τ1, …, τk〉) = υ1(Ã)〈υ1(τ1), …, υ1(τk)〉 7,IL / Def CFOL-val 
(9) ||¹* = [Ã〈τ1, …, τk〉]* 7,IL 
(10) || = Ã〈τ1*, …, τk*〉 GenSubTh 
(11) ||υ2(¹*) = υ2(Ã)〈υ2(τ1*),…,υ2(τk*)〉 9-10,IL,Def CFOL-val 
(12) ||[∀iÔk]: Atomic[τi] * 

 
*This is ok if we are doing classical predicate logic; however, if we wish to consider 
classical function logic, then a more general proof is required at this point. 

 
(13) ||�: [∀iÔk]: υ1(τk) = υ2(τk*) SC 
(14) |||∃i[τk = xi]  or  ∼∃i[τk = xi] SL 
(15) |||c1: ∃i[τk = xi] As 
(16) ||||υ1(τk)  =  υ1(xi)  =  υ2(ci) 5,15,IL 
(17) ||||τk* = ci 15, Def(ε*) 
(18) ||||υ2(τk*)  =  υ2(ci) 17,IL 
(19) ||||υ1(τk) = v2(τk*) 16,18,IL 
(20) |||c2:  ∼∃i[τk = xi] As 
(21) ||||υ1(τk) = υ2(τk) 4,12,20,QL 
(22) ||||τk* = τk 12,20, Def(ε*) 
(23) ||||υ2(τk*)  =  υ2(τk) 22,IL 
(24) ||||υ1(τk) = v2(τk*) 21,23,IL  
(25) ||Atomic[Ã] & Ã≠x * 

 
* It is presumed that every predicate is atomic, and no predicate is a variable. 

 
(26) ||υ1(Ã)  = υ2(Ã) 4,25,QL 
(27) ||υ1(¹) =  υ2(Ã)〈υ1(τ1),…,υ1(τk)〉   8,26,IL 
(28) || = υ2(Ã)〈υ2(τ1*),…,υ2(τk*)〉 4,12,IL 
(29) ||υ1(¹) = υ2(¹*) 11,27-28,IL 

   
Inductive Case 1 (∼) 
Given the form of the formula to be shown, it suffices to do the following conditional 
derivation. 

(1) υ1(¹) = υ2(¹*) As 
(2) �: υ1(∼¹) = υ2([∼¹][c/x]) 3-7,IL 
(3) |[∼¹]* = ∼¹* GenSubTh 
(4) |υ2([∼¹]*) = υ2(∼¹*) 3,IL 
(5) |υ1(∼¹) = ∼υ1(¹)  Def CFOL-val 
(6) |∼υ1(¹) = ∼υ2(¹*)  1,5,IL 
(7) |υ2(∼¹*) = ∼υ2(¹*) Def CFOL-val 
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  Inductive Case 2 (→) 
  Given the form of the formula to be shown, it suffices to show the following. 
 

(1) υ1(¹) = υ2(¹*) As 
(2) υ1(º) = υ2(º*) As 
(3) �: υ1(¹→º) = υ2([¹→º]*) 5-8,IL 
(4) |[¹→º]* = ¹*→º* GenSubTh 
(5) |υ2([¹→º]*) = υ2(¹*→º*) 4,IL 
(6) |υ1(¹→º) = υ1(¹)→υ1(º) Def CFOL-val 
(7) |υ1(¹)→υ1(º) = υ2(¹*)→υ2(º*) 1,2,6,IL 
(8) |υ2(¹*→º*) = υ2(¹*)→υ2(º*) Def CFOL-val 

 
  Inductive Case 3 (∀) 
 

(1) ∀υ1, υ2{υ1 À* υ2  →.  ∀i{υ1(xi)=υ2(ci)}  →  υ1(¹) = υ2(¹*)} As 
(2) �: ∀υ1, υ2, y {υ1 À* υ2  →.  ∀i{υ1(xi)=υ2(ci)}  →  υ1(∀y¹) = υ2([∀y¹]*)}U2CCD 
(3) |υ1 À* υ2 As 
(4) |∀i{υ1(xi)=υ2(ci)} As 
(5) |�: υ1(∀y¹) = υ2([∀y¹]*) 6-17,SC 
(6) |∃i[y = xi]  or  ∼∃i[y = xi] SL 
(7) |c1:  ∃i[y = xi] As 
(8) ||�: υ1(∀y¹) = υ2([∀y¹]*) 7,9,IL 
(9) |||�: υ1(∀xi¹) = υ2([∀xi¹]*) 10,11,IL 
(10) ||||[∀xi¹]*  =  ∀xi¹ y is not free in ∀y¹ 
(11) ||||υ1(∀xi¹) = υ2(∀xi¹) 3,Lemma** 
(12) |c2:  x ≠ y As 
(13) ||�: υ1(∀y¹) = υ2([∀y¹]*) 14,15,IL 
(14) ||[∀y¹]*  =  ∀y¹* 12, Lemma** 
(15) ||�: υ1(∀y¹) = υ2(∀y¹*) 16,17,18,GenTh(υ),IL 
(16) ||υ1(∀y¹) = T  ↔  ∀υ{υ Ày υ1 → υ(¹) = T} Def CFOL-val (alt) 
(17) ||υ2(∀y¹*) = T  ↔  ∀υ{υ Ày υ2 → υ(¹*) = T} Def CFOL-val (alt) 
(18) ||�: ∀υ{υ Ày υ1 → υ(¹) = T}  ↔  ∀υ{υ Ày υ2 → υ(¹*) = T} 19,48,SL 
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(19) ||�: → CD 
(20) |||∀υ{υ Ày υ1 → υ(¹) = T} As 
(21) |||�: ∀υ{υ Ày υ2 → υ(¹*) = T} UCD 
(22) ||||υ3 Ày υ2 As 
(23) ||||�: υ3(¹*) = T  
(24) |||||let υ4(y) = υ3(y)  &  υ4(ε) = υ1(ε)  if  ε≠y  and Atomic[ε] ST,∃O 
(25) |||||υ4 Ày υ1 24b, Def(À) 
(26) |||||υ4(¹) = T 20,25,QL 
(27) |||||�: υ4 Àx υ3  Def(À) 
(28) |||||�: ∀ε{Atomic[ε]  →.  ε ≠ x  →  υ4(ε) = υ3(ε)} UCCD 
(29) ||||||Atomic[ε] As 
(30) ||||||ε ≠ x As 
(31) ||||||�: υ4(ε) = υ3(ε) SC,32-39 
(32) |||||||ε = y  or  ε ≠ y SL 
(33) |||||||c1:  ε = y As 
(34) ||||||||υ4(ε)  =  υ4(y)  =  υ3(y)  =  υ3(ε) 33,IL / 24a,IL / IL 
(35) |||||||c2:  ε ≠ y As 
(36) ||||||||υ4(ε) = υ1(ε) 25,29,35,Def(À) 
(37) ||||||||υ1(ε) = υ2(ε) 3,29,30,Def(À) 
(38) ||||||||υ2(ε) = υ3(ε) 22,29,35,Def(À) 
(39) ||||||||υ4(ε) = υ3(ε) 36-38,IL 
(40) |||||�: υ4(x) = υ3(c) 42,43,45,IL 
(41) ||||||x ≠ y 12 (reminder) 
(42) ||||||υ4(x)  =  υ1(x) 24b,41 
(43) ||||||υ1(x)  =  υ2(c) 4 (reminder) 
(44) ||||||Atomic[c]  &  c ≠ y presumed 
(45) ||||||υ2(c)  =  υ3(v) 22,44,Def(À) 
(46) |||||υ4(¹) = υ3(¹*) 1(IH),27,40,QL 
(47) |||||υ3(¹*) 26,46,IL 

 
(48) �: ← CD 

  Proof is very similar to 19-47 [exercise] 
 


