Axiom Systems for Classical First-Order Logic

1. Introduction. 2
2. An Axiom System for $\mathrm{CQL}-\mathrm{AS} 1+\mathrm{Q}$ 2
3. Simple Examples of Derivations in AS1+Q 3
4. The Deduction Theorem for AS1+Q. 4
5. Lemmas Supporting The Deduction Theorem 5
6. The Universal Derivation Theorem 6
7. Exercises for Chapter 16 9
8. Appendix 9
9. A Very General Substitution Theorem About Semantics of CFOL 9

1. Introduction

Having described the syntax and semantics for classical first-order logic, the next task is to offer a deductive account of argument validity in CFOL.

We approach this task in steps. First, we axiomatize classical quantifier logic (CQL), which is a major "fragment" of CFOL, then we axiomatize classical first-order logic. This is not entirely crazy; we have already adopted this strategy in concentrating on the SL-fragment of CFOL in previous chapters. The language for CQL is like the language of CFOL, except that it lacks identity.

We further fragmentize our chief meta-theorems for CQL. First, we prove the results for classical predicate logic (CPL), then we prove the results about CQL. The difference is not the axiom system but the underlying language - CPL is like the language of CQL, except that it lacks function signs [except zeroplace, which are functionally identical to proper nouns].

We also adopt three convenient, and natural, simplifications of classical first-order logic (and its fragments).

$$
\begin{array}{ll}
\text { Simplification \#1: } & \text { no open formulas in arguments; } \\
\text { Simplification \#2: } & \text { no open formulas in derivations; } \\
\text { Simplification \#3: } & \text { no constants in arguments. }
\end{array}
$$

Simplification \#1 is natural if we agree that, although an open formula \mathbb{F} has a meaning, which contributes to the meaning of any super-formula of \mathbb{F}, it does not strictly speaking have a denotation (i.e., truth-value). We can therefore claim that, since validity amounts to truth-preservation, validity does not strictly apply to open argument forms. Simplification \#2 is the natural extension of \#1. Simplification \#3 is natural if we agree that constants are purely intra-derivational devices [$\exists \mathrm{O}$, UD, etc.], and accordingly do not appear in any proper argument we wish to analyze. In this connection, recall that constants are not proper nouns, but rather unquantified variables (alternatively, ad hoc names).

2. An Axiom System for CQL - AS1+Q

The axiom system we discuss is obtained by taking axiom system AS1 for CSL, and adding rules for quantification, and is accordingly called AS1+Q. Notice that all the rules are restricted to closed formulas of the language \mathbb{L}.

AS1 Rules:

In the following, α, β, γ are closed formulas.

$$
\begin{equation*}
\rightarrow \alpha \rightarrow(\beta \rightarrow \alpha) \tag{R1}
\end{equation*}
$$

(R2) $\quad \rightarrow[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
(R3) $\quad \rightarrow(\sim \alpha \rightarrow \sim \beta) \rightarrow(\beta \rightarrow \alpha)$
(R4) $\alpha, \alpha \rightarrow \beta \hookrightarrow \beta$

New Rules:

In the following, \mathbb{F} and \mathbb{G} are formulas, v is a variable, c is a constant, and τ is a singular term.

(R5)	$\rightarrow \forall v \mathbb{F} \rightarrow \mathbb{F}[\tau / v]$	τ is a closed singular term; at most v is free in \mathbb{F}
(R6)	$\rightarrow \mathbb{F} \rightarrow \forall v \mathbb{F}$	\mathbb{F} is closed
(R7)	$\rightarrow \forall v(\mathbb{F} \rightarrow \mathbb{G}) \rightarrow(\forall v \mathbb{F} \rightarrow \forall v \mathbb{V})$	at most v is free in \mathbb{F} and \mathbb{G}
(R8)	$\pi(\mathbb{F}) \rightarrow \forall \vee \mathbb{F}[\mathrm{V} / \mathrm{c}]$	$\pi(\mathbb{F})$ is a prior sub-sequence that proves \mathbb{F} [closed]

If one is inclined to give names to rules, the following might be considered.

(R1)	repetition	Rep
(R2)	conditional distribution	\rightarrow Dist
(R3)	(non-intuitionistic) contraposition	Contra
(R4)	modus ponens	MP
(R5)	universal elimination (out)	$\forall \mathrm{O}$
(R6)	trivial quantification	TrivQ
(R7)	universal distribution	\forall Dist
(R8)	(provable) generalization	Gen

3. Simple Examples of Derivations in AS1+Q

1. $\vdash \forall x(F x \rightarrow F x)$

(1) $\mathrm{Fa} \rightarrow(\mathrm{Fa} \rightarrow \mathrm{Fa} . \rightarrow \mathrm{Fa})$
(2) $\mathrm{Fa} \rightarrow(\mathrm{Fa} \rightarrow \mathrm{Fa} . \rightarrow \mathrm{Fa}) . \rightarrow .(\mathrm{Fa} \rightarrow . \mathrm{Fa} \rightarrow \mathrm{Fa}) \rightarrow(\mathrm{Fa} \rightarrow \mathrm{Fa})$
(3) $(\mathrm{Fa} \rightarrow . \mathrm{Fa} \rightarrow \mathrm{Fa}) \rightarrow(\mathrm{Fa} \rightarrow \mathrm{Fa})$
(4) $(\mathrm{Fa} \rightarrow . \mathrm{Fa} \rightarrow \mathrm{Fa})$
(5) $\mathrm{Fa} \rightarrow \mathrm{Fa}$
(6) $\quad \forall x(\mathrm{Fx} \rightarrow \mathrm{Fx})$

R1	Rep
R2	\rightarrow Dist
1,2,R4	MP
R1	Rep
3,4,R4	MP
1-5,R8	Gen

In this derivation, first notice that lines $1-5$ simply repeat an earlier proof in AS1, where ' Fa ' is substituted for ' P '. Notice, in particular, that the sequence $1-5$ is a proof of ' $\mathrm{Fa} \rightarrow \mathrm{Fa}$ ' - every line follows by a rule, and the last line is ' $\mathrm{Fa} \rightarrow \mathrm{Fa}$ '. Accordingly, $1-5$ can be used in combination with R 8 (Gen) to produce line 6.

2. $\vdash \forall x \forall y(R x y \rightarrow R x y)$

(1) $\mathrm{Rab} \rightarrow(\mathrm{Rab} \rightarrow \mathrm{Rab} . \rightarrow \mathrm{Rab})$
(5) $\mathrm{Rab} \rightarrow \mathrm{Rab}$
(6) $\quad \forall y($ Ray \rightarrow Ray $)$
$\forall x \forall y(R x y \rightarrow R x y)$

R1 Rep
R2 \rightarrow Dist
1,2,R4 MP
R1 Rep
3,4,R4 MP
1-5,R8 Gen
1-6,R8 Gen

First notice that lines 1-5 are formally similar to Example 1 ; this time, these lines are a proof of 'Rab \rightarrow Rab'. Accordingly, we are entitled to apply R8 (Gen), to obtain $\forall y$ (Ray \rightarrow Ray)'. Next, we notice that lines 1-6 prove ' $\forall \mathrm{y}$ (Ray \rightarrow Ray)', so 1-6 can be used in combination with R8 (Gen) to produce
line 7. [Notice that R8 also entitles us to infer ' $\forall \mathrm{y} \forall \mathrm{y}$ (Ryy \rightarrow Ryy)' at line 7; this is a harmless oddity of R8.]
3. $\{\forall x(F x \rightarrow G x), F a\} \vdash G a$

(1)	$\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx})$	Pr	
(2)	Fa	Pr	
(3)	$\mathrm{Fa} \rightarrow \mathrm{Ga}$	$1, \mathrm{R} 5$	$\forall \mathrm{O}$
(4)	Ga	$2,3, \mathrm{R} 4$	MP

4. $\quad\{\forall \mathbf{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}), \forall \mathrm{xFx}\} \vdash \forall \mathrm{xGx}$

(1)	$\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx})$	Pr	
(2)	$\forall \mathrm{xFx}$	Pr	
(3)	$\forall \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}) \rightarrow . \forall \mathrm{xFx} \rightarrow \forall \mathrm{xGx}$	R7	\forall Dist
(4)	$\forall \mathrm{xFx} \rightarrow \forall \mathrm{xGx}$	$1,3, \mathrm{R} 4$	MP
(5)	$\forall \mathrm{xGx}$	$2,4, \mathrm{R} 4$	MP

4. The Deduction Theorem for AS1+Q

The first major theorem is the deduction theorem for $\mathrm{AS} 1+\mathrm{Q}$. We have already proven DT for AS1. This does not automatically transfer to AS1+Q. The reason is that AS1+Q has a new multi-place rule, R8, which requires us to amend the proof of DT with a special case pertaining to R8 (GEN). In the following proof, which mostly reproduces the proof of DT for AS1 [i.e., lines 1-39], 'GEN[β]' means ' β follows from previous lines by (provable) generalization (R8). The only genuinely new part of the proof is lines 40-43, which employ a new supporting lemma (D4).

DT:

$\Gamma \cup\{\alpha\} \vdash \boldsymbol{\beta} \rightarrow \Gamma \vdash \boldsymbol{\alpha} \rightarrow \boldsymbol{\beta}$
(1) SHOWV: $\forall \Gamma \forall \alpha \forall \beta\{\Gamma \cup\{\alpha\} \vdash \beta \rightarrow \Gamma \vdash \alpha \rightarrow \beta\} \quad$ Def \vdash
(2) SHOW: $\forall \Gamma \forall \alpha \forall \beta\{\exists \mathrm{d}[\mathrm{dD} \beta / \Gamma \cup\{\alpha\}] \rightarrow \Gamma \vdash \alpha \rightarrow \beta\} \quad$ 3, QL
(3) SHOW: $\forall \mathrm{d} \forall \Gamma \forall \alpha \forall \beta\{\mathrm{dD} \beta / \Gamma \cup\{\alpha\} \rightarrow \Gamma \vdash \alpha \rightarrow \beta\} \quad$ 4+G14
(4) SHOW: $\forall \mathrm{n}: \forall \mathrm{d} \forall \Gamma \forall \alpha \forall \beta\{\mathrm{dD} \beta / \Gamma \cup\{\alpha\} / \mathrm{n} \rightarrow \Gamma \vdash \alpha \rightarrow \beta\} \quad$ SMI

IH:
$\forall \mathrm{k}<\mathrm{n}: \forall \mathrm{d} \forall \Gamma \forall \alpha \forall \beta\{\mathrm{dD} \beta / \Gamma \cup\{\alpha\} / \mathrm{k} \rightarrow \Gamma \vdash \alpha \rightarrow \beta\} \quad$ As
IS:
(12) $\mid \operatorname{Ax}[\beta]$ or $\beta \in \Gamma \cup\{\alpha\}$ or $\operatorname{MP}[\beta]$ or $\operatorname{GEN}[\beta]$

U4CD
SHOW: $\forall \mathrm{d} \forall \Gamma \forall \alpha \forall \beta\{\mathrm{dD} \beta / \Gamma \cup\{\alpha\} / \mathrm{n} \rightarrow \Gamma \vdash \alpha \rightarrow \beta\}$
$\mathrm{dD} \beta / \Gamma \cup\{\alpha\} / \mathrm{n}$ As
SHOW: $\Gamma \vdash \alpha \rightarrow \beta$
$\beta=\mathrm{d}_{\mathrm{n}}$
$\forall \delta \in \mathrm{d}$: $\mathrm{Ax}[\delta]$ or $\delta \in \Gamma \cup\{\alpha\}$ or MP[$\delta]$ or GEN[$\beta]$ $\beta \in \mathrm{d}$

SC
7,Def derives/n
7,Def AS1+Q, derives [b]
9,ST
(14)
$\left\lvert\, \begin{gathered}\mid c 1: A x[b] \\ \mid \Gamma \vdash \alpha \rightarrow \beta\end{gathered}\right.$
As
13,D1

(15)	c2: $\beta \in \Gamma \cup\{\alpha\}$	As	
(16)	$\beta \in \Gamma$ or $\beta=\alpha$	15,ST	
(17)	c1: $\beta \in \Gamma$	As	
(18)	$\mid \Gamma \vdash \alpha \rightarrow \beta$	17,D2	
(19)	c2: $\beta=\alpha$	As	
(20)	$\Gamma \vdash \alpha \rightarrow \alpha$	D3	
(21)	$\Gamma \vdash \alpha \rightarrow \beta$	19,20,IL	
(22)	c3: MP[β]	As	
(23)	$\exists \mathrm{j}, \mathrm{k}<\mathrm{n} \exists \gamma: \mathrm{d}_{\mathrm{j}}=\gamma \rightarrow \beta$ \& $\mathrm{d}_{\mathrm{k}}=\gamma$	9,22,Def MP[]	
(24)	$\mathrm{j}<\mathrm{n} \& \mathrm{~d}_{\mathrm{j}}=\gamma \rightarrow \beta$	$23, \exists \& \mathrm{O}$	
(25)	$\mathrm{k}<\mathrm{n}$ \& $\mathrm{d}_{\mathrm{k}}=\gamma$		
(26)	SHOW: $\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{j}\right\rangle \mathrm{D} \gamma \rightarrow \beta / \Gamma \cup\{\alpha\} / \mathrm{j}$	Def D/n [\&D]	
(27)	a :SHOW: len $\left\langle\mathrm{d}_{\mathrm{i}}\right.$: $\left.\mathrm{i} \leqslant \mathrm{j}\right\rangle=\mathrm{j}$	ST	
(28)	$\mathrm{b}:$ SHOW: last $\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{j}\right\rangle=\gamma \rightarrow \beta$	24b,29,IL	
(29)	$\mid \operatorname{last}\left\langle\mathrm{d}_{\mathrm{i}} \mathrm{i} \mathrm{i} \leqslant \mathrm{j}\right\rangle=\mathrm{d}_{\mathrm{j}}$	ST	
(30)	c SHOW: $\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{j}\right\rangle$ D $\Gamma \cup\{\alpha\}$	Def dDГ	
(31)	SHOW: $\forall \delta \in\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{j}\right\rangle$: $\mathrm{Ax}[\delta]$ or $\delta \in \Gamma \cup\{\alpha\}$ or MP[$[\delta]$ or GEN[δ]	UCD	
(32)	$\delta \in\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{j}\right\rangle$	As	
(33)	SHOW: Ax[δ] or $\delta \in \Gamma \cup\{\alpha\}$ or MP[δ] or GEN[δ]	10,34,QL	
(34)	\\| δ d	32,ST	
(35)	SHOW: $\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i} \leqslant \mathrm{k}\right\rangle \mathrm{D} \gamma / \Gamma \cup\{\alpha\} / \mathrm{j}$	Def D/n	
(36)	\| similar to derivation lines 26-34		
(37)	$\Gamma \vdash \alpha \rightarrow(\gamma \rightarrow \beta)$	24a,26,IH	
(38)	$\Gamma \vdash \alpha \rightarrow \gamma$	25a,35,IH	
(39)	$\Gamma \vdash \alpha \rightarrow \beta$	37,38,D4	
(40)	c4: GEN[β]	As	
(41)	$\vdash \beta$	40, D5	
(42)	$\vdash \alpha \rightarrow \beta$ - 41, earlier result about A	refix principle)	
(43)	$\Gamma \vdash \alpha \rightarrow \beta$	42, GenTh(\vdash)	

5. Lemmas Supporting The Deduction Theorem

The proof of the Deduction Theorem appeals to five lemmas. (D1)-(D4) have already been proved in connection with SL. The remaining one - (D5) - is proven below.
(D1) β is an axiom $\rightarrow \Gamma \vdash \alpha \rightarrow \beta$
(D2) $\beta \in \Gamma \rightarrow \Gamma \vdash \alpha \rightarrow \beta$
(D3) $\Gamma \vdash \alpha \rightarrow \alpha$
(D4) $\quad \Gamma \vdash \alpha \rightarrow(\gamma \rightarrow \beta) \quad \& \quad \Gamma \vdash \alpha \rightarrow \gamma \quad \rightarrow \quad \Gamma \vdash \alpha \rightarrow \beta$
(D5) $\operatorname{GEN}[\alpha] \rightarrow \vdash \alpha$
CD
4, $\operatorname{Def}(\vdash)$
7,QL

```
SHOW: GEN \([\alpha] \rightarrow \vdash \alpha\)
```

SHOW: GEN $[\alpha] \rightarrow \vdash \alpha$
GEN $[\alpha]$ As
GEN $[\alpha]$ As
SHOW: $\vdash \alpha$
SHOW: $\vdash \alpha$
SHOW: $\exists \pi$: π proves α
SHOW: $\exists \pi$: π proves α
$\exists \mathrm{d} \exists \pi \exists \mathbb{F} \exists \mathrm{c} \exists \mathrm{v}\left\{\pi \subseteq\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i}<\mathrm{n}\right\rangle \& \pi\right.$ proves $\left.\mathbb{F} \& \alpha=\forall \mathrm{vF}[\mathrm{v} / \mathrm{c}]\right\}$
$\exists \mathrm{d} \exists \pi \exists \mathbb{F} \exists \mathrm{c} \exists \mathrm{v}\left\{\pi \subseteq\left\langle\mathrm{d}_{\mathrm{i}}: \mathrm{i}<\mathrm{n}\right\rangle \& \pi\right.$ proves $\left.\mathbb{F} \& \alpha=\forall \mathrm{vF}[\mathrm{v} / \mathrm{c}]\right\}$
$\pi_{0} \subseteq\left\langle\mathrm{~d}_{\mathrm{i}}: \mathrm{i}<\mathrm{n}\right\rangle \& \pi$ proves $\mathbb{F} \quad \& \quad \alpha=\forall \mathrm{vF}[\mathrm{c} / \mathrm{v}]$
$\pi_{0} \subseteq\left\langle\mathrm{~d}_{\mathrm{i}}: \mathrm{i}<\mathrm{n}\right\rangle \& \pi$ proves $\mathbb{F} \quad \& \quad \alpha=\forall \mathrm{vF}[\mathrm{c} / \mathrm{v}]$
$\pi_{0}+\langle\alpha\rangle$ proves α

```
\(\pi_{0}+\langle\alpha\rangle\) proves \(\alpha\)
```

2, Def GEN[]
41, $\exists \mathrm{O}$
ต
$\dagger \alpha$ is clearly the last line of $\pi_{0}+\langle\alpha\rangle$, so the question is whether $\pi_{0}+\langle\alpha\rangle$ is a proof, which is the question whether every line follows by a rule. Let δ be a line in $\pi+\langle\alpha\rangle$. Then either $\delta \in \pi$ or $\delta=\alpha$. In the first case, by hypothesis π is a proof, so δ follows by a rule. In the second case, by hypothesis $\alpha-$ i.e., $\forall \mathrm{v} \mathbb{F}[\mathrm{v} / \mathrm{c}]-$ follows from π by R8, so α follows by a rule.

6. The Universal Derivation Theorem

The next key task is to prove that universal derivation is an admissible rule - a result we call the Universal Derivation Theorem. [We could correspondingly call the Deduction Theorem the Conditional Derivation Theorem, since it demonstrates that conditional derivation is admissible.] Recall that the Universal Derivation show-rule (UD) tells us that showing $\mathbb{F}[\mathrm{c} / \mathrm{v}]$, where c is new, is tantamount to showing $\forall \mathrm{vF}$. The following theorem is the axiomatic counterpart of UD. It says that if constant c does not occur in any formula in set Γ, then if one can deduce $\mathbb{F}[\mathrm{c} / \mathrm{v}]$ from Γ, then one can deduce $\forall \mathrm{vF}$ from Γ. In other words,

> if c does not occur in any formula in Γ, then
> if $\Gamma \vdash \mathbb{F}[\mathrm{c} / \mathrm{v}]$, then
> $\Gamma \vdash \forall \mathrm{vF}$

In order to simplify our notation in the proof, we employ the following shorthand, where it is understood that c is a constant, and Γ is a set of formulas.

$$
\begin{array}{lll}
\mathrm{c} \in \gamma & =_{\mathrm{df}} & \mathrm{c} \text { occurs in } \gamma \\
\mathrm{c} \in * \Gamma & =_{\mathrm{df}} & \exists \gamma\{\gamma \in \Gamma \& \mathrm{c} \in \gamma\} \\
\mathrm{c} \notin \Gamma & =_{\mathrm{df}} & \sim \exists \gamma\{\gamma \in \Gamma \& \mathrm{c} \in \gamma\}
\end{array}
$$

Applying this notation, and restoring all the implicit universal quantifiers, the Universal Derivation Theorem can written thus.

UDT: $\quad \forall \Gamma \forall \mathbb{F} \forall c \forall v\left\{c \notin{ }^{*} \Gamma \rightarrow . \Gamma \vdash \mathbb{F}[c / v] \rightarrow \Gamma \vdash \forall v \mathbb{F}\right\}$

Note carefully that, just as with the Deduction Theorem (a.k.a. the Conditional Derivation Theorem), the Universal Derivation Theorem does not say that the derivation of $\mathbb{F}[\mathrm{c} / \mathrm{v}]$ is a derivation of $\forall \mathrm{vF}$; rather it only says that a derivation exists, without saying what the derivation looks like.

The following is a formal proof. As before,

$$
\begin{array}{lll}
\mathrm{dD} \phi / \Gamma & =_{\mathrm{df}} & \mathrm{~d} \text { is a derivation of } \phi \text { from } \Gamma \\
\mathrm{dD} \phi / \Gamma / \mathrm{n} & =_{\mathrm{df}} & \mathrm{~d} \text { is an } \mathrm{n} \text {-long derivation of } \phi \text { from } \Gamma
\end{array}
$$

(1) SHOW: $\forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\{\mathrm{c} \notin \Gamma \rightarrow$. $\Gamma \vdash \mathbb{F}[\mathrm{c} / \mathrm{v}] \rightarrow \Gamma \vdash \forall \mathrm{vF}\}$

Def \vdash
(2) SHOWV: $\forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\{\mathrm{c} \notin * \Gamma \rightarrow$. $\exists \mathrm{d}[\mathrm{dDF}[\mathrm{c} / \mathrm{v}] / \Gamma] \rightarrow \Gamma \vdash \forall \mathrm{vF}\}$

QL
(3) SHOW: $\forall \mathrm{d} \forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\{\mathrm{c} \notin \Gamma \Gamma \rightarrow . \mathrm{dDF}[\mathrm{c} / \mathrm{v}] / \Gamma \rightarrow \Gamma \vdash \forall \mathrm{vF}\}$

G14
(4) SHOW: $\forall \mathrm{n}: \forall \mathrm{d} \forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\{\mathrm{c} \notin \Gamma \rightarrow$. $\mathrm{dDF}[\mathrm{c} / \mathrm{v}] / \Gamma / \mathrm{n} \rightarrow \Gamma \vdash \forall \mathrm{v} \mathbb{F}\} \quad$ SMI
(5) $\quad \forall \mathrm{k}<\mathrm{n}: \forall \mathrm{d} \forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\{\mathrm{c} \notin \Gamma \rightarrow . \mathrm{dDF}[\mathrm{c} / \mathrm{v}] / \Gamma / \mathrm{k} \rightarrow \Gamma \vdash \forall \mathrm{vF}\} \quad$ As $[\mathrm{IH}]$
(6) \quad SHOW: $\forall \mathrm{d} \forall \Gamma \forall \mathbb{F} \forall \mathrm{c} \forall \mathrm{v}\left\{\mathrm{c} \notin{ }^{*} \Gamma \rightarrow . \mathrm{dDF}[\mathrm{c} / \mathrm{v}] / \Gamma / \mathrm{n} \rightarrow \Gamma \vdash \forall \mathrm{v} \mathbb{F}\right\}$

U5CCD
As
(11)
$\mathrm{c} \notin{ }^{*} \Gamma$
As
ó D $\mathbb{F}[\mathrm{c} / \mathrm{v}] / \Gamma / \mathrm{n}$
SHOW: $\Gamma \vdash \forall \mathrm{vF}$
11-52,SC
$\dot{O}_{\mathrm{n}}=\mathbb{F}[\mathrm{c} / \mathrm{v}]$
$\operatorname{Ax}\{\mathbb{F}[\mathrm{c} / \mathrm{v}]\}$ or $\mathbb{F}[\mathrm{c} / \mathrm{v}] \in \Gamma$ or $\operatorname{GEN}\{\mathbb{F}[\mathrm{c} / \mathrm{v}]\}$ or $\operatorname{MP}\{\mathbb{F}[\mathrm{c} / \mathrm{v}]\}$
8,Def D $\alpha / \Gamma / \mathrm{n}$
8,10, Def $\operatorname{D} \alpha / \Gamma / \mathrm{n}$

As
12, Def Ax, Def proves

母 By hypothesis (12), $\mathbb{F}[\mathrm{c} / \mathrm{v}]$ is an axiom, so the sequence $\langle\mathbb{F}[\mathrm{c} / \mathrm{v}]\rangle$ proves $\mathbb{F}[\mathrm{c} / \mathrm{v}]$, so we can apply rule R8 to this sequence to obtain $\forall \mathrm{vF}[\mathrm{c} / \mathrm{v}][\mathrm{v} / \mathrm{c}]$. But $\forall \mathrm{v} \mathbb{F}[\mathrm{c} / \mathrm{v}][\mathrm{v} / \mathrm{c}]=\forall \mathrm{v} \mathbb{F}$. Thus, the sequence $\langle\mathbb{F}[\mathrm{c} / \mathrm{v}], \forall \mathrm{v} \mathbb{F}\rangle$ proves $\forall \mathrm{vF}$. Since every proof is automatically a derivation from any set, we have $\langle\mathbb{F}[\mathrm{c} / \mathrm{v}], \forall \mathrm{v} \mathbb{F}\rangle$ derives $\forall \mathrm{vF}$ from Γ.

14,QL 15, Def \vdash
(33)

26,QL 27, Def \vdash
$\| \left\lvert\, \begin{aligned} & \mathrm{c} 3: \operatorname{GEN}\{\mathbb{F}[\mathrm{c} / \mathrm{v}]\} \\ & \vdash \mathbb{F}[\mathrm{c} / \mathrm{v}] \\ & \mathbb{F}[\mathrm{c} / \mathrm{v}] \vdash \forall \mathrm{vF} \\ & \vdash \forall \mathrm{F} \mathbb{F} \\ & \Gamma \vdash \forall \mathrm{v} F\end{aligned}\right.$
Ł By 17, $\mathbb{F}[\mathrm{c} / \mathrm{v}] \in \Gamma$. By $25, \mathbb{F}[\mathrm{c} / \mathrm{v}] \rightarrow \forall \mathrm{vF}$ is an instance of R6. By R4 (MP),
$\forall \mathrm{v} \mathbb{F}$ follows from $\mathbb{F}[\mathrm{c} / \mathrm{v}]$ and $\mathbb{F}[\mathrm{c} / \mathrm{v}] \rightarrow \forall \mathrm{v} \mathbb{F}$. Thus, the sequence $\langle\mathbb{F}[\mathrm{c} / \mathrm{v}]$, $\mathbb{F}[\mathrm{c} / \mathrm{v}] \rightarrow \forall \mathrm{vF}, \forall \mathrm{vF}\rangle$ derives $\forall \mathrm{vF}$ from Γ.
$\mathrm{c} 2: \mathbb{F}[\mathrm{c} / \mathrm{v}] \in \Gamma \quad$ As
SHOW: v is not free in \mathbb{F}
ID
v is free in \mathbb{F} As
SHOW: \times
DD
19, $\operatorname{Def}[\mathrm{c} / \mathrm{v}$]
7,17,21,QL
$\mathbb{F}=\mathbb{F}[\mathrm{c} / \mathrm{v}]$
18, Def [c/v]
18, Def R6
$\mathbb{F}[\mathrm{c} / \mathrm{v}] \rightarrow \forall \mathrm{v} \mathbb{F}$ is an instance of R6
23,24,IL
(57)

```
c4: MP{ F}[c/v]
    \existsj,k<n,\exists\mathbb{A}:\mp@subsup{d}{j}{}=\mathbb{A}->\mathbb{F}[c/v] & \mp@subsup{O}{k}{}=\mathbb{A}
    j<n & Ój=A ->\mathbb{F}[c/v]
    k<n & O
    SHOW: <\mp@subsup{o}{i}{\prime}: i\leqslantj\rangleD A }->\mathbb{F}[c/v]/\Gamma/
    a:SHOW: len\langleói: i\leqslantj\rangle=j
    b:SHOW: last \óo:}:i\leqslant\textrm{j}\rangle=\mathbb{A}->\mathbb{F}[c/v
        last\langleói: i < j > = ój
        c:SHOW: <ói: i i\leqslantj\rangleD\Gamma
        \langleói: i\leqslantj\rangle\subseteqó
        ó D \Gamma
    SHOHV: <ói: i i\leqslantk>D A / \Gamma/k
        | similar to derivation 39-45
        v}\mathrm{ is not free in A
        A}[\textrm{c}/\textrm{v}]=\mathbb{A
    (\mathbb{A}->\mathbb{F})[c/v]=(\mathbb{A}[\textrm{c}/\textrm{v}]->\mathbb{F}[\textrm{c}/\textrm{v}])
    A}->\mathbb{F}[c/v]=(\mathbb{A}->\mathbb{F})[c/v
    \langle'́i: i\leqslantj\rangleD (\mathbb{A}->\mathbb{F})[c/v]/ \Gamma/j
    \Gamma \vdash \forall \mathrm { v } ( \mathbb { A } \rightarrow \mathbb { F } )
    A}->\forallv\mathbb{A}\mathrm{ is an instance of R6
    \langleó
    \existsd{dD \forallvA/ / \Gamma}
    \Gamma\vdash\forallvA
        \Gamma\vdash\forallvF
```

 As
 34,Def MP[]
 35, \(\exists\) \&O
 \(35, \exists \& \mathrm{O}\)
 39,40,42, \&I, Def D/n
ST
36b,40,IL
ST
43,44, GenTh(\vdash)
ST
8, Def D
Def D/n
37b, Simplification \#2
47,Def [c/v]
GenSubTh \#\#
48,49,IL
38,50,IL
36a,52,5(IH),QL
47, Def R6
51,53,inspection
54, QL
55, Def \vdash
52,56,UD1\#\#\#
\# $\operatorname{GenTh}(\vdash)$ means 'by a general theorem about \vdash ' [There are many such theorems.] \#\# The General Substitution Theorem (GenSubTh) is presented in its own section.

\#\#\# Supporting Lemma:

UD1: $\Gamma \vdash \forall \mathbf{v} \mathbb{F}$ \& $\Gamma \vdash \forall v(\mathbb{F} \rightarrow \mathbb{G}) . \rightarrow \Gamma \vdash \forall v \mathbb{G}$
(1) SHOW: $\Gamma \vdash \forall \mathrm{vF} \& \Gamma \vdash \forall \mathrm{v}(\mathbb{F} \rightarrow \mathbb{G}) . \rightarrow \Gamma \vdash \forall \mathrm{v} \mathbb{C}$
\&CD
(2)
$\Gamma \vdash \forall \mathrm{vF}$
$\Gamma \vdash \forall \mathrm{v}(\mathbb{F} \rightarrow \mathbb{G})$
As
(4)

SHOW: $\Gamma \vdash \forall \mathrm{v} \mathbb{G}$
DD
(5)
$\operatorname{Ax}[\forall \mathrm{v}(\mathbb{F} \rightarrow \mathbb{G}) \rightarrow(\forall \mathrm{v} \rightarrow \forall \mathrm{v} \mathbb{G})]$
$\vdash \forall \mathrm{v}(\mathbb{F} \rightarrow \mathbb{G}) \rightarrow(\forall \mathrm{v} \mathbb{F} \rightarrow \forall \mathrm{v} \mathbb{G})$
5,G5
(7) $\quad \Gamma \vdash \forall \mathrm{v}(\mathbb{F} \rightarrow \mathbb{G}) \rightarrow(\forall \mathrm{vF} \rightarrow \forall \mathrm{v} \mathbb{G})$ 6,G2
$\begin{array}{ll}\Gamma \vdash \forall \mathrm{vF} \rightarrow \forall \mathrm{vG} & 3,7, \mathrm{MPP} \\ \Gamma \vdash \forall \mathrm{vG}\end{array}$
(9)
$\Gamma \vdash \forall \mathrm{v} \mathbb{G}$

7. Exercises for Chapter 16

1. Derivations (and Proofs) in Axiom System AS1+Q

Given a valid argument form, give a derivation of the conclusion from the premises in Axiom System AS1+Q.

2. Deduction Theorem for AS1+Q

3. Universal Derivation Theorem

2. Appendix

1. A Very General Substitution Theorem About Semantics of CFOL

We next prove a very general theorem about CFOL. It provides two different corollaries that are important in later proofs.

Th
Let \mathbb{F} be any formula. Let v_{1} and v_{2} be admissible valuations. Let $\left\langle x_{1}, x_{2}, \ldots\right\rangle$ be a sequence of variables of \mathbb{L}, and let $\left\langle c_{1}, c_{2}, \ldots\right\rangle$ be an equally-long sequence of constants of \mathbb{L}.

Suppose $\forall \mathrm{i}: \mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right)$.

Suppose $\forall \varepsilon\left\{\right.$ Atomic $\left.[\varepsilon] \rightarrow . \forall \mathrm{i}\left[\varepsilon \neq \mathrm{x}_{\mathrm{i}}\right] \rightarrow \mathrm{v}_{1}(\varepsilon)=v_{2}(\varepsilon)\right\}$
In other words, v_{1} and v_{2} agree on all symbols except (perhaps) the variables x_{1}, x_{2}, \ldots By analogy with our earlier predicate \approx, we abbreviate this as follows.

$$
v_{1} \approx * v_{1}
$$

Then:

$$
v_{1}(\mathbb{F})=v_{2}\left(\mathbb{F}^{*}\right)
$$

where $\varepsilon^{*}=_{d f}$ the result of substituting c_{i} for x_{i} in ε, for $i=1,2, \ldots$

Proof (by induction on formula formation):

Base Case:

(1) \mathbb{F} is an atomic formula.
(2) SHOW: $\forall v_{1}, v_{2}, \mathrm{x}, \mathrm{c}\left\{v_{1} \approx * v_{2} \rightarrow . \forall \mathrm{i}\left\{v_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right)\right\} \rightarrow v_{1}(\mathbb{F})=v_{2}(\mathbb{F} *)\right\} \quad$ U4CCD
*This is ok if we are doing classical predicate logic; however, if we wish to consider classical function logic, then a more general proof is required at this point.

```
SHOW: \([\forall \mathrm{i} \leqslant \mathrm{k}]: v_{1}\left(\tau_{\mathrm{k}}\right)=v_{2}\left(\tau_{\mathrm{k}} *\right) \quad\) SC
    \(\exists \mathrm{i}\left[\tau_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}\right]\) or \(\sim \exists \mathrm{i}\left[\tau_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}\right]\)
        \(\mathrm{c} 1: \exists \mathrm{i}\left[\tau_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}\right]\)
            \(v_{1}\left(\tau_{\mathrm{k}}\right)=\mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right) \quad 5,15, \mathrm{IL}\)
            \(\tau_{\mathrm{k}}{ }^{*}=\mathrm{c}\)
            \(v_{2}\left(\tau_{\mathrm{k}}{ }^{*}\right)=v_{2}\left(\mathrm{c}_{\mathrm{i}}\right)\)
                                \(15, \operatorname{Def}\left(\varepsilon^{*}\right)\)
                            17,IL
                \(v_{1}\left(\tau_{\mathrm{k}}\right)=\mathrm{v}_{2}\left(\tau_{\mathrm{k}}{ }^{*}\right) \quad 16,18\),IL
            \(\mathrm{c} 2: \sim \exists \mathrm{i}\left[\tau_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}\right] \quad\) As
            \(v_{1}\left(\tau_{\mathrm{k}}\right)=v_{2}\left(\tau_{\mathrm{k}}\right) \quad 4,12,20, \mathrm{QL}\)
            \(\tau_{\mathrm{k}}{ }^{*}=\tau_{\mathrm{k}}\)
            \(v_{2}\left(\tau_{\mathrm{k}}{ }^{*}\right)=v_{2}\left(\tau_{\mathrm{k}}\right)\)
                                    \(12,20, \operatorname{Def}\left(\varepsilon^{*}\right)\)
                                    22,IL
                                    21,23,IL
                                    Atomic \([\mathbb{P}] \& \mathbb{P} \neq \mathrm{x}\)
                                    SL
\begin{tabular}{|c|c|}
\hline c2: \(\sim \exists \mathrm{i}\left[\tau_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}\right]\) & As \\
\hline \(v_{1}\left(\tau_{k}\right)=v_{2}\left(\tau_{k}\right)\) & 4,12,20,QL \\
\hline \(\tau_{\mathrm{k}}{ }^{*}=\tau_{\mathrm{k}}\) & 12,20, \(\operatorname{Def}\left(\varepsilon^{*}\right)\) \\
\hline \(v_{2}\left(\tau_{\mathrm{k}}{ }^{*}\right)=v_{2}\left(\tau_{\mathrm{k}}\right)\) & 22,IL \\
\hline \(v_{1}\left(\tau_{\mathrm{k}}\right)=\mathrm{v}_{2}\left(\tau_{\mathrm{k}}{ }^{*}\right)\) & 21,23,IL \\
\hline Atomic \([\mathbb{P}]\) \& \(\mathbb{P} \neq \mathrm{x}\) & \\
\hline
\end{tabular}
```

| * It is presumed that every predicate is atomic, and no predicate is a variable.

$|$| $v_{1}(\mathbb{P})$ | $=v_{2}(\mathbb{P})$ | $4,25, \mathrm{QL}$ |
| :--- | :--- | ---: |
| $v_{1}(\mathbb{F})$ | $=v_{2}(\mathbb{P})\left\langle v_{1}\left(\tau_{1}\right), \ldots, v_{1}\left(\tau_{\mathrm{k}}\right)\right\rangle$ | $8,26, \mathrm{IL}$ |
| | $=v_{2}(\mathbb{P})\left\langle v_{2}\left(\tau_{1}{ }^{*}\right), \ldots, v_{2}\left(\tau_{\mathrm{k}}^{*}\right)\right\rangle$ | $4,12, \mathrm{IL}$ |
| $v_{1}(\mathbb{F})=v_{2}(\mathbb{F} *)$ | $11,27-28, \mathrm{IL}$ | |

Inductive Case $1(\sim)$
Given the form of the formula to be shown, it suffices to do the following conditional derivation.
$v_{1}(\mathbb{F})=v_{2}\left(\mathbb{F}^{*}\right)$
SHOW: $v_{1}(\sim \mathbb{F})=v_{2}([\sim \mathbb{F}][\mathrm{c} / \mathrm{x}])$
3-7,IL
$[\sim \mathbb{F}]^{*}=\sim \mathbb{F}^{*}$
GenSubTh
$v_{2}\left([\sim \mathbb{F}]^{*}\right)=v_{2}(\sim \mathbb{F} *)$
3,IL
$v_{1}(\sim \mathbb{F})=\sim v_{1}(\mathbb{F}) \quad$ Def CFOL-val
$\sim v_{1}(\mathbb{F})=\sim v_{2}\left(\mathbb{F}^{*}\right)$
$v_{2}\left(\sim \mathbb{F}^{*}\right)=\sim v_{2}\left(\mathbb{F}^{*}\right)$
1,5,IL

Inductive Case $2(\rightarrow)$
Given the form of the formula to be shown, it suffices to show the following.
(1) $\quad v_{1}(\mathbb{F})=v_{2}\left(\mathbb{F}^{*}\right)$

As
$v_{1}(\mathbb{G})=v_{2}(\mathbb{G} *)$
As
(3) SHOW: $v_{1}(\mathbb{F} \rightarrow \mathbb{G})=v_{2}\left([\mathbb{F} \rightarrow \mathbb{G}]^{*}\right) \quad 5-8, I L$ GenSubTh
$[\mathbb{F} \rightarrow \mathbb{G}]^{*}=\mathbb{F} * \rightarrow \mathbb{C}_{0} *$
4,IL
$v_{2}\left([\mathbb{F} \rightarrow \mathbb{G}]^{*}\right)=v_{2}\left(\mathbb{F} * \rightarrow \mathbb{G}^{*}\right)$
$v_{1}(\mathbb{F} \rightarrow \mathbb{G})=v_{1}(\mathbb{F}) \rightarrow v_{1}(\mathbb{G})$
Def CFOL-val
$v_{1}(\mathbb{F}) \rightarrow v_{1}(\mathbb{G})=v_{2}\left(\mathbb{F}^{*}\right) \rightarrow v_{2}\left(\mathbb{G}^{*}\right)$
1,2,6,IL
$v_{2}\left(\mathbb{F}^{*} \rightarrow \mathbb{G}^{*}\right)=v_{2}\left(\mathbb{F}^{*}\right) \rightarrow v_{2}\left(\mathbb{G}^{*}\right)$
Def CFOL-val
Inductive Case $3(\forall)$
(1)

$\forall v_{1}, v_{2}\left\{v_{1} \approx * v_{2} \rightarrow . \forall \mathrm{i}\left\{\mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right)\right\} \rightarrow \mathrm{v}_{1}(\mathbb{F})=\mathrm{v}_{2}(\mathbb{F} *)\right\} \quad$ As		
SHOW: $\forall v_{1}, v_{2}, \mathrm{y}\left\{\mathrm{v}_{1} \approx * v_{2} \rightarrow\right.$. $\forall \mathrm{i}\left\{\mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right)\right\} \rightarrow v_{1}(\forall \mathrm{yF})=$	$\left.=v_{2}\left([\forall \mathrm{yF}]^{*}\right)\right\} \mathrm{U} 2 \mathrm{CCD}$	
$v_{1} \approx * v_{2}$	As	
$\forall \mathrm{i}\left\{\mathrm{v}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{v}_{2}\left(\mathrm{c}_{\mathrm{i}}\right)\right\}$	As	
SHOW: $v_{1}(\forall y \mathbb{F})=v_{2}\left([\forall \mathrm{yF}]^{*}\right)$	6-17,SC	
$\exists \mathrm{i}\left[\mathrm{y}=\mathrm{x}_{\mathrm{i}}\right]$ or $\sim \exists \mathrm{i}\left[\mathrm{y}=\mathrm{x}_{\mathrm{i}}\right]$	SL	
c1: $\exists \mathrm{i}\left[\mathrm{y}=\mathrm{x}_{\mathrm{i}}\right]$	As	
SHOW: $v_{1}(\forall y \mathbb{F})=v_{2}\left([\forall y \mathbb{F}]^{*}\right)$	7,9,IL	
SHOWV: $v_{1}\left(\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}\right)=v_{2}\left(\left[\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}\right]^{*}\right)$	10,11,IL	
$\left[\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}\right]^{*}=\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}$	y is not free in $\forall \mathrm{yF}$	
$\\| \mathrm{v}_{1}\left(\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}\right)=\mathrm{v}_{2}\left(\forall \mathrm{x}_{\mathrm{i}} \mathbb{F}\right)$	3,Lemma**	
c2: $\mathrm{x} \neq \mathrm{y}$	As	
SHOW: $v_{1}(\forall y \mathbb{F})=v_{2}\left([\forall y \mathbb{F}]^{*}\right)$	14,15,IL	
$[\forall \mathrm{yF}]^{*}=\forall \mathrm{y} \mathbb{F}^{*}$	12, Lemma**	
SHOW: $v_{1}(\forall y \mathbb{F})=v_{2}\left(\forall y F^{*}\right) \quad 16,17$,	16,17,18,GenTh(v),IL	
$v_{1}(\forall \mathrm{yF})=\mathrm{T} \leftrightarrow \forall \mathrm{v}\left\{\mathrm{v} \approx_{\mathrm{y}} \mathrm{v}_{1} \rightarrow \mathrm{v}(\mathbb{F})=\mathrm{T}\right\}$	Def CFOL-val (alt)	
$v_{2}\left(\forall \mathrm{yF} \mathrm{F}^{*}\right)=\mathrm{T} \leftrightarrow \forall v\left\{v \approx_{\mathrm{y}} \mathrm{v}_{2} \rightarrow v\left(\mathbb{F}^{*}\right)=\mathrm{T}\right\}$	Def CFOL-val (alt)	
SHOW: $\forall v\left\{v \approx_{\mathrm{y}} \mathrm{v}_{1} \rightarrow v(\mathbb{F})=\mathrm{T}\right\} \leftrightarrow \forall v\left\{v \approx_{\mathrm{y}} \mathrm{v}_{2} \rightarrow v\left(\mathbb{F}^{*}\right)=\mathrm{T}\right.$	$=\mathrm{T}\} \quad 19,48, \mathrm{SL}$	

(19)	SHOW: \rightarrow	CD	
(20)	$\forall v\left\{v \approx_{y} v_{1} \rightarrow v(\mathbb{F})=\mathrm{T}\right\}$	As	
(21)	SHOW: $\forall v\left\{v \approx_{y} v_{2} \rightarrow v\left(\mathbb{F}^{*}\right)=T\right\}$	UCD	
(22)	$\mathrm{v}_{3} \approx_{\mathrm{y}} \mathrm{v}_{2}$	As	
(23)	SHOW: $v_{3}\left(\mathbb{F}^{*}\right)=$ T		
(24)	let $v_{4}(\mathrm{y})=v_{3}(\mathrm{y}) \& v_{4}(\varepsilon)=v_{1}(\varepsilon)$ if $\varepsilon \neq \mathrm{y}$ and Atomic[$\left.\varepsilon\right]$	ST, $\exists \mathrm{O}$	
(25)	$v_{4} \approx_{y} v_{1}$	$24 \mathrm{~b}, \operatorname{Def}(\approx)$	
(26)	$v_{4}(\mathbb{F})=\mathrm{T}$	20,25,QL	
(27)	SHOW: $v_{4} \approx_{x} v_{3}$	$\operatorname{Def}(\approx)$	
(28)	SHOW: $\forall \varepsilon\left\{\right.$ Atomic $\left.[\varepsilon] \rightarrow . \varepsilon \neq \mathrm{x} \rightarrow \mathrm{v}_{4}(\varepsilon)=v_{3}(\varepsilon)\right\}$	UCCD	
(29)	Atomic[ε]	As	
(30)	$\varepsilon \neq \mathrm{x}$	As	
(31)	SHOWV: $v_{4}(\varepsilon)=v_{3}(\varepsilon)$	SC,32-39	
(32)	$\varepsilon=\mathrm{y}$ or $\varepsilon \neq \mathrm{y}$	SL	
(33)	c1: $\varepsilon=\mathrm{y}$	As	
(34)	$v_{4}(\varepsilon)=v_{4}(\mathrm{y})=v_{3}(\mathrm{y})=v_{3}(\varepsilon)$	33,IL / 24a,IL / IL	
(35)	c2: $\varepsilon \neq \mathrm{y}$	As	
(36)	$v_{4}(\varepsilon)=v_{1}(\varepsilon)$	25,29,35,Def(\approx)	
(37)	$v_{1}(\varepsilon)=v_{2}(\varepsilon)$	3,29,30,Def(\approx)	
(38)	$v_{2}(\varepsilon)=v_{3}(\varepsilon)$	22,29,35, $\operatorname{Def}(\approx)$	
(39)	$v_{4}(\varepsilon)=v_{3}(\varepsilon)$	36-38,IL	
(40)	SHOW: $v_{4}(x)=v_{3}(c)$	42,43,45,IL	
(41)	$\mathrm{x} \neq \mathrm{y}$	12 (reminder)	
(42)	$v_{4}(\mathrm{x})=v_{1}(\mathrm{x})$	24b,41	
(43)	$v_{1}(\mathrm{x})=\mathrm{v}_{2}(\mathrm{c})$	4 (reminder)	
(44)	Atomic[c] \& $\mathrm{c} \neq \mathrm{y}$	presumed	
(45)	$v_{2}(\mathrm{c})=\mathrm{v}_{3}(\mathrm{v})$	22,44, $\operatorname{Def}(\approx)$	
(46)	$v_{4}(\mathbb{F})=v_{3}(\mathbb{F} *)$	1(IH),27,40, QL	
(47)	$\\| v_{3}(\mathbb{F} *)$	26,46,IL	
(48)	SHOW: \leftarrow	CD	
	Proof is very similar to 19-47 [exercise]		

