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1. Introduction

In order to describe semantic validity and entailment in the context of CFOL, we must provide the
relevant class of admissible valuations. Obviously, since CFOL subsumes CSL, many of the features of
CSL are preserved in the semantics of CFOL. In particular, the truth value of a sentential compound is
truth-functionally related to the truth values of its parts. On the other hand, the truth value of a quantified
formula is not so smply related to the truth value of the affiliated unquantified formula. For this reason,
the semantics of CFOL is considerably more complex than the semantics of CSL.

2. Semantic Evaluations

The trangition from CSL to CFOL involves a large increase in grammatical conplexity. CSL has
only one primitive grammatical category (sentences/formulas), and only one derivative grammatical
category (connectives), so the semantics of CSL is quite simple. By contrast, CFOL has two primitive
categories (sentences/formulas, nouns/singular terms), and three derivative categories (connectives,
predicates, function signs), so the semanticsis correspondingly more complex.

As mentioned before, at a minimum, a semantics specifies the class of (logicaly) admissible
valuations on a forma language L, which are functions that assign truth values to every formulain L. In
addition to its minimum duties, a semantics can be expected to provide a class of admissible semantic
evauations on L. A semantic evauation is a function that assigns a semantic value u(e) to every
ggammatical expression e, where u(e) isasemantic item that is appropriate to the grammatical category of
e.

3. Semantic Items and their Categories

Recall that every grammatical expression has a category. The primitive syntactic categoriesare N
(noun phrase) and S (sentence); derivative syntactic categories include function signs (Nk=*N), predicates
(Nk=»S), connectives (Sk=YS).

Semantic categories parallel syntactic categories. First there are two primitive categories —
individuals (U) , truth-values (V)2 Then the derivative semantic categories are constructed in away that
formally parallels the construction of the syntactic categories. The following are the relevant categories.

Category: Instances:

U elements of the universe U

\% elementsof {T,V}; i.e, truth-values
(Uk=UV) k-place functions from U into U
(Uk=V) k-place functionsfrom U into { T,F}
(Vk=V) k-place functions from { T,F} into {T,F}

! It isimportant to keep in mind the following point. Recall that, in CSL, an atomic formulais not true or false per se, but
only relative to aparticular valuation. The semantics of CSL specifies the admissible combinationsof truth value
assignments, but it does not specify the truth values of the atomic formulas. Similarly, the semantics of CFOL does not
specify aunique denotation for each atomic symbol, but only specifies a class of admissible combinations of denotations.
Accordingly, an atomic symbol of CFOL does not denote a specific item per se, but only relative to a given admissible
semantic evaluation.

2 |f we are doing intensional logic, we must add other primitive semantic categories, including propositions and/or indices
of various sorts, including worlds, times, etc.
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Notice that we have aready seen the category (Vk=»V); they are the truth-functions.

4, Official versus Conventional Identifications of Semantic Items

If we are pursuing areductionistic set theory [see appendix on set theory], then we have an officia
formal account of semantic items. We briefly review that here.

First, ardation from A to B isa subset of A" B, which isthe Cartesian product of A and B, which
isthe set {(a,b): d A & bl B}; here, the ordered pair (a,b) is officialy the unordered set {{a} ,{ab}}. A
function from A into B isareation from A to B such that every element in A bears that relation to a unique
element in B. A kplace function from A into B is a function from A‘ into B. Here A is the kfold
Cartesian power of A, which is the set of all k-tuples of elements of A. A ktuple of elements of A is
officidly afunction from k into A. Generally A® isthe set of functions from B into A. The natural numbers
are officially identified as follows. 0=/ 1={ A&, 2={ £{ A}, etc. Inother words, the natural number k
isofficially equal to the set of all its predecessors — 0=A, 1={ 0}, 2={0,1}, etc.

It is usually convenient to make some conventional, or practical, identifications among the various
set-theoretic entities built out of aset U of original elements.

(@) ordered pairs are identified with 2-tuples — (a,b)=2a,bfl

2 the 1-tuple &iisidentified with u; accordingly, a 1-place function from U into U/V isthe
same as a function from U into U/V.

(3)  weshift theindexing of every k-tuple, so that the first element of k-tuple (sequence) s is
S1, not so. Note, officialy s;=s(i).

4 functions from U into V are identified with subsets of U In particular, if Sisasubset of
U, San,... . ufi=T if &n,....ufl S San,....ufi=F if &n,...,ufil S. [Seenext section
for afurther account of this.]

(5) zero-place functions from U into U/V are identified with elementsof U/V. [See next
section for a further account of this.]

5. The Categorial Correspondence Rule

Basic to categorial formal semantics is the correspondence between syntactic categories and
semantic categories. This correspondence is given by the following inductive rule.

N*

S*
(Kg,....KnPko)*

U
Vv
(Ke*,....kn*Pko*)

First, N*=U means that the semantic counterpart, and hence the semantic value, of a noun phrase (N) isan
element in the universe U of discourse (U). Similarly, the semantic counterpart of a sentence (S) is atruth-
value (V).

The correspondence between derivative syntactic categories and derivative semantic categoriesis
inductively generated. Let us do some simple examples. First, consider the category of one-place
connectives— (S+S). According to the correspondence rule,
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(SP)* S S
ButS* =V, 0

(SH9)*

S5 = VvV

In other words, one-place connectives correspond to one-place truth-functions. This sounds about right —
connectives denote truth-functions.

Similarly, consider the category of one-place function signs — (N-*N). According to the
correspondence rule,

(N N)* = N*N*
But N* = U, s0
(N N)* = N*N* = UsU

In other words, one-place function signs correspond to one-place functions that assign elements of U to
elements of U — U being the domain (universe) of individuals. This also sounds exactly right — function
signs denote functions.

Finally, consider the category of one-place predicates— (N-=S). According to the correspondence

rule,
(N+S)* = NS
ButN* =U,and S* =V, s0
(N+9)* = NS = UV

In other words, one-place predicates correspond to one-place functions that assign truth-values to
elements of the domain U of individuas. This does not sound exactly right! So let us see how it squares
with our intuitive understanding of one-place predicates.

Intuitively, one place predicates correspond to properties; for example, ‘is even’ corresponds to
the property of being even. Now, every property has an extension — associated with every property P isa
subset {x: X U & x has P} of those individuals in U that have property P, which is the extension of P.
Thus, property extensions are subsets of U.

Next, every subset S of U corresponds naturally to a function ¢ from U into {T,F}, defined as
follows.
T if els
F if el S

cs(€)

The function cs is called the characteristic function of set S. [Usualy, the characteristic function is
defined using 1in place of T, and O in place of F, but the ideais the same.]

Thus, we see that one-place predicates correspond to characteristic functions on U, which
correspond to subsets of U, which correspond to properties of individualsin U.
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Finally, we consider the degenerate case where k=0. What exactly is a zero-place function? What
is A% Recall that, officialy, 0=A& so A’=A”%. Officially, A*isthe set of functions from /Einto A; there
is only one such object, the empty set A& so A® = {A. A function from {/& into A can simply be
identified with its value at A, so a zero-place function into U can be identified with an element of U, and a
zero-place function into V can be identified with an element of V, atruth-value.

This is exactly how it should be. A zero-place function sign serves exactly like a proper noun;
standing by itself, a zero-place function sign ‘f’ is a singular term. [Check the rules of formation!]
Accordingly, its denotation should be an element of the universe U. Similarly, a zero-place predicate
serves as a sentential constant; just like in SL, standing by itself, ‘P is a sentence; accordingly, its
denotation should be an element of V, which isto say atruth-value.

6. The Categorial Composition Principle

Not only is there a correspondence between syntactic and semantic categories, this
correspondence informs the interpretation of complex syntactic expressions. First of all, the interpretation
of an expression of syntactic category K is a semantic item of the corresponding semantic category K*. In
other words,

o cat(u(e)) = [cat(e)]*
r:
if cat(e) =K, then cat(u(e)) = K*

Furthermore, we have the following agebraic-compositional principle.

Supposef isasyntactic functor, and e, ...,e are appropriate syntactic argumentsfor f , so
that f &ey,...,edlis well-formed. Then for any semantic evaluation function u:

ufée,....ad = u(f)a(ey,...,u(ge)i
Alternatively:

if:
u(f)=~*,
u(e) = e*,
u(el) = e,
then:
ul[f &ey,....adf = f*&*,....a*Nn

Here the angle brackets represent functor application on the left, and functi on application on the right.

We have already seen this principle in action in the context of classical sententia logic. Recall
that an admissible valuation for CSL isany function u satisfying the following requirements.

u(~a)
u(a® b)
etc.

~u(a)
u(@)® u(b)
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Recadl that we use the logica symbols ambiguoudy, for example, ‘ ~" refers both to syntactic and
semantic conjunction, the latter being the truth-function that interprets the former. 1f we wanted to be more
careful, we might rewrite this as follows.

u(~a) = ~*u(a)
u(@®b) = u(a)® *u(b)
etc.

Here,
~* isthe truth-function that interprets the connective ~; i.e, ~*=u(~)
® * isthe truth-function that interprets the connective® ;  i.e,®* =u(®)
etc.

Writing these in generic categoria form, we have the following.

u(~afn = u(~a(a)n
u®a,bh = u(®)a(a),u(b)n
etc.

7. The Sub-Functions of a Semantic Evaluation

For the sake of delineating the different semantic duties of a semantic evauation function, we sub-
divide semantic evaluations into various inter-related sub-functions, described as follows. We begin the
list with the overall category.

(0) semantic evaluation assigns denotationsto all  grammatical expressions;
(1)  valuation assignsdenotationsto al  formulas;

2 interpretation assigns denotationsto all  atomic non-logical symboals;
(©)) assignment function assigns denotationsto all  variables and constants;

4 designation function assignsdenotationsto all  singular terms;

5) logical meaning function  assigns denotationsto all  special logical symbols.

These are described in more detail in the following sections.

8. Interpretations

The first semantic evaluation functions we examine are called interpretations. An interpretation is
afunction that assigns a denotation to each non-logical atomic symbol; these include:

al proper nouns,
all functionssigns,
al predicates except ‘=’

Recall that ‘=" isalogical sign, so its denotation is provided by the logical meaning function.

Thefollowing is our officia definition.
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(D) LetL beaquantified language, let V be the set of truth-values, let U be a non-empty set,
and let i beafunction. Theniisaninterpretation from L into U if and only if the following
conditions are satisfied, for any non-logical symbol e.

D if eisaproper noun,

theni(e) T U;
2 if eisan n-place function sign,

then i(e) is an n-place function from U into U;
(©)) if eisan n-place non-logical predicate,

then i(e) is an n-place function from U into V;
4 otherwise, 1(€) is undefined.

(D) LetL beaquantified language, let i beafunction. Theniisan interpretation on L if and
only if thereisaset U such that 7 isan interpretation from L into U.

The set U is called the domain (or universe) of discourseg; it is what the quantifiersinplicitly refer
to; thus, ‘" ’ is interpreted to mean ‘every dement of U is such that’, and ‘$’ is interpreted to mean ‘at
least one element of U is such that’.

9. Truth and Falsity for Simple Atomic Formulas

Once we have an interpretation i on FOL L, we can immediately define the corresponding
valuation function restricted to simple atomic formulas. These are officially defined as follows.

(D) LetL beaFOL,andleta beaformulainL. Then a issaid to be a simple atomic formula
if and only if a hastheform Pn;...ny, where P is ak-place predicate, and n;,...,ny are
proper nouns.

Consider asimple atomic formula Pn;...n,. By general categorial principles, we require that:
u(Pny.ny) = u(P)au(ny, ..., u(nyn

Now, as we have mentioned, the semantic duties of u are subcontracted to its sub-function i for P, as well
asny, ...,ny; in other words,

ulP) = i«(P)
u(n) = i(n)
um) = i(ny).
So we have:
uPnp.n) = i(P)a(n), ..., i)

Or if weregard i([P) as a subset of U, then we have:

T if a(ny), ...,i(nk)r”ﬂ i(P)
F otherwise

u(Pn;...ny)

The intuition is straightforward, even if the official formulation might seem somewhat opaque.
According to interpretation i, the nplace predicate P denotes a certain n-place relation on U; call this
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relation R. Also, according to i, each of proper nouns ny,...ny denotes an object in U; call these objects
0y,...,0k, respectively. In other words, we have the following.

i(P)=R
i(c) =0,
i(c) =0,
etc.

Here, ‘P’ is the metdanguage name of the predicate, and ‘R’ is the metalanguage name of the relation
denoted by that predicate, according to interpretation i. Similarly with the other expressions in the above
list: expressions on the right refer to semantic itemsin U, whereas expressions on the |eft refer to syntactic
itemsinL.

Now, the definition of truth for simple atomic formulas says that Pn;,...ny istrue (relativeto u [i])
if and only if the tuple &(ny),...i(ny)fis an element of i(P), but given the identities of i(P), etc., we have
that Pny...n, istruein 1 if and only if the tuple &y,...,0fiis an element of R.

Recall the set-theoretic definition of ‘bears’, first for 2-place relations, and generally for n-place
relations.

(d abearsRtob =4 &bl R
(d) ay,..., 0 bear R =df éﬁl,...,a(ﬁl R

Thus, we have that Pn;...ngistruein 1 if and only if the objects a,,...,0¢ bear the relation R. In
other words, we have the obvious result that a smple atomic formula Pn;...ngistruein i if and only if the
objects denoted by the proper nouns n,...,ny bear the relation denoted by the predicate P.

For the sake of further illustration, consider a simple example in the style of intro logic. In
particular, consider the two-place predicate ‘R’, and the proper nouns ‘)’ and ‘k’; also let U be the class
of humans. Now, obvioudy, whether the formula ‘Rjk’ is true or not depends upon the answers to the
following four questions.

(1) whatitemdoes‘j’ denote?
(92) what item does‘k’ denote?
(g3) what item does‘R’ denote?
(g4) doestheitem in#1 bear theitem in #3 to the item in #2?

The answers to these questions are as follows (where we drop quotes):

() ()
(@2) ik
(a3) i(P)

(ad) yes, if i(j) bearsi(R) to i(k); no, otherwise.
In other words, the formula‘Rjk’ istrue according to 1 if and only if i(j) bears i(R) to i(k).

For example, suppose the following.

‘|’ denotes Jay; i.e, i(j) =Jay;
‘k’ denotes Kay; i.e, 1(k)=Kay;
‘R’ denotes the respects-relation; i.e, 1(R)={&yf x respectsy}
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Then ‘RjK’ istruein i if and only if
&ay, Kayil {&yf X respectsy},
whichistrueif and only if

Jay respects Kay.

10. Pronouns — Variables and Constants

As it stands, the semantic pattern described so far works perfectly for variable-free formulas, but
it faces problems as soon as we consider variables. Variables are the logica counterparts of pronounsin
natural language. Consider the following sentence.

heis right-handed.
In reference to this sentence, we can ask three related, but distinct, questions.

what does it mean?
what does it say?
iswhat it saystrue?

In particular, we can understand what it means, without knowing what it says; similarly, we can know
what it says without knowing whether what it saysistrue.

The problem revolves around the pronoun ‘he’. If we do not know the occasion of its use, we do
not know what ‘he’ refers to. Without this piece of information, we do not know what is being said, so
(usually) we don’t know whether it istrue. On the other hand, it isfairly clear that we understand what the
sentence means.

Its meaning in fact contributes to the meanings of the following more complex sentences.

if Jay is not left-handed, then he is right-handed;
if aman is not left-handed, then he is right-handed.

Note carefully that there is an ambiguity in the word ‘he’. Either it takes an earlier noun phrase as
antecedent, or it is used demonstratively (which requires an act of pointing while it is being uttered). We
could convey thiswith a special pointer marker next to ‘he', asfollows.

if Jay is not left-handed, then he(¢) is right-handed; [demonstrative]
if Jay is not left-handed, then he(=) is right-handed; [antecedent pointing]
if aman is not left-handed, then he(d) is right-handed; [demonstrative]
if aman is not left-handed, then he(=) is right-handed; [antecedent pointing]

The two demonstrative sentences may be trandlated into predicate logic as follows.

~Lj ® Rx
"X{MX®.~LX® Ry}

Notice that both sentences contain a free variable, which represents the demonstrative ‘he’. This is not
obviously the best approach, however. Perhaps it is better to use constants (unquantified variables) to
trand ate demonstrative pronouns, in which case we have the following trand ations.
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~Lj® Rc
"X{Mx®.~Lx® Rc}

In this case, the constant ‘C’ is used as a demonstrative pronoun — what we might also call an ad hoc
name.

In the case of the other two sentences, we have the following trandations.

~Lj® Rj
"X{MXx®.~LXx® Rx}

Notice that these formulas have no free variables. Notice aso how differently the two trandations deal
with the word *he’. This reflects the important grammatical fact that there are two ways that a pronoun
can be antecedent-pointing — either as a “pronoun of laziness’, or as an anaphoric pronoun. In the first
case, the pronoun may simply be replaced by its antecedent. In the second case, the pronoun cannot be
replaced by its antecedent. The above examplesillustrate thisidea; so do the following.

Jay respects his(=) mother 0 Jay respects Jay’ s mother
every man respects his(=) mother  # every man respects every man's mother

The basic idea about the semantics of logical variables/constants may be summarized as follows.

Cc
X

it(d)
it(=)

The actual colloquia reading will of course depend upon natural language grammatical conventions
concerning gender (e.g., ‘he' versus ‘she’ versus ‘he/she’) and case (e.g., ‘he’ versus ‘him’).

This assumes that we use constants exclusively as demonstratives. If we use free variables this
way then we have a different semantic account. In particular, when a variable occurs free, it has a
demonstrative (¢) interpretation, but when a variable occurs bound, it has an anaphoric (=) interpretation.
This means that

when ‘X’ isunbound, ‘X’ means ‘it(d)’
when ‘X’ is bound, ‘X' means “it(=)’.

In either case, ‘Fx’ means‘itisF .

11.  Multiple Pronouns

Of course, the advantage of logical syntax over natural language syntax is that logical syntax has an
infinite list of pronouns (‘x’, ‘y’, ‘Z’, etc.), not just one (*it’ +gender+case). This allows more complicated
congtructions — we can have ‘the first it’, ‘the second it’, etc. Also, each occurrence of ‘it’ can be
demonstrative or anaphoric.

Let us do a couple of examples, assuming that constants are used exclusively as demondtrative
pronouns, and variables are used as anaphoric pronouns. First, the formula

" x{Wx® Rxc}

can beread:
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every woman is such that she(=) respects her(d),
whose more colloquia formiis:

every woman respects her(d).

On the other hand, the formula

" x{Wx ® Rxy}
can be read:

every woman is such that she(=) respects her(=),
whose more colloquial formis:

every woman respects her(=).

Here, it is understood that ‘her’ does not point at ‘every woman’, but to some earlier noun phrase. If we
want ‘her’ to point at ‘ every woman, we write:

" X{Wx® Rxx};
every woman respects herself(=).

[[Notice that reflexive pronouns (e.g., ‘herself’) are always antecedent-pointing, and never purely
demonstrative.]]

Next, consider the formula,
SY{Wy & " x{Wx ® Rxy}},
which reads:
there isawoman such that every woman is such that she(=) respects her(=).

Even with the index fingers as written, the English sentence is ambiguous, because we do not know the
respective antecedents of the two pronouns; which woman is which? That is why we need to further
delineate our index fingers (pronouns). The following is the intended reading.

there is awoman, such that every womar, is such that she,(=) respects her,(=).

The same thing happens with demonstrative pronouns. Consider the army drill instructor selecting
“volunteers’ for the garbage detall.

| select you, you, you, and you.
Or, using ‘him’ instead of ‘you’.
| select him, him, him, and him.

Presumably each utterance of ‘him’ is accompanied by an appropriate pointing gesture. Using delineated
indexical markers, we can convey this asfollows.

| select himy(4), himy(¢), himy(d), and himy(4).
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This suggests the following refinement of the semantics of variables/constants.

X = ity(=)
y = i)
z = it3(=)
efc.

a = ity(d)
b = ity(d)
c = its(d)
etc.

Or, if we wish to be more mathematically exact, we begin with an infinite sequence &/y,v,...f of
variables, and an infinite sequence &,c,,...fiof constants, to which we propose the following reading.

Vi
Ck

it(=)
itu(¢)

12.  Assignment Functions — Constants

In order to give an interpretation to al formulas at once, we must assign denotations to all
constants (demonstrative pronouns) at once. Semantically this requires a universal act of pointing — What
isity(4)? What isity(d)? etc. This may be mathematically accomplished in one of two ways. (1) We can
specify an infinite sequence s of elements of the domain U; thereby selecting s ; as the (demonstrative)
denotation of ¢;, s, (demonstrative) as the denotation of ¢, etc. (2) Alternatively, we can use an
assgnment function, a, to assign a demonstrative denotation, a(c), to every constant c. These are
interchangeable. Given a sequence s, we define a so that a(cy) = sk. Given an assgnment function, we
define s = &a(c,y), a(cy),...i The latter depends, of course, on having an enumeration &;,C,,...MAof the
constants.

Once we have chosen an object for each ‘it (4)’ to refer to, we can assign semantic values to
sentences involving constants. For example, the sentence

it(d)isP [Pcy]

istrueif and only if the object ‘it;” points at has the property that P denotes, whichisto say:
a(c) T i(P),

or if we are using the functional guise of a(P),

i(P)aa(cy)fi=T

13. Assignment Functions — Variables
But what about the “ =" pronouns? How do we assign atruth-value to:
ity(=®)isP [PXq]

Without a linguistic context, we don't know what ‘it,(=)’ points at. All we know is that it stands and
walits (and therefore serves, if Milton is correct!) ready to point at an antecedent noun phrase, should such
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an expression be placed grammatically “ahead” of it [sometimes, the antecedent is later in the actud
sentence].

At this point, it seems that we have two choices.

()  Wecansmply say that dangling pronouns (free variables) have no denotation, because
they are semantically incomplete, and accordingly formulas with dangling pronouns (free
variables) have no truth-value, because they are semantically incomplete.

(2)  Wecan assign denotationsto variables in alargely arbitrary manner.

Neither of these approaches is completely without inconvenience. We follow the latter approach, and
assign denotations to variables in precisely the same way that we assign denotations to constants. This
amounts to saying that we treat dangling pronouns as demonstrative pronouns.

Thisalows us to assign atruth-value to open formulas. For example, presuming that ‘X’ = vy,
Fx [ity(d) isF]

istrue if the first object s, [i.e., the first “it” pointed at] has the property denoted by the predicate ‘F'.
Similarly, further presuming 'y’ = vy,

Fx & Fy [ity(4) is F and it(d) is F]

istrue if both object s, [i.e., the first “it” pointed at] and object s, [i.e., the second “it” pointed at] have
the property denoted by predicate ‘F' .

We now officialy define assignment function.

(D) LetL beaquantified language, let Var(L) bethevariablesinL (i.e., Var(L) = {vy, Va,...}),
let Con(L) be the constantsin L (i.e,, Con(L) = {cy, Cz,...}), and let U be anon-empty set.
Then an assgnment function from L into U isany function from Var(L) E Con(L) into U.

In other words, an assignment function assigns an object (in the domain) to each variable and constant.

14. Designation Functions — Singular Terms

Given an interpretation function i, and an assignment function a, from language L into domain U,
we can define an associated designation function d from L into U asfollows.

(D) LetL beaquantified language, let U be a nonrempty set, let i be an interpretation from L
into U, and let a be an assignment function from L into U. Then the designation function, d,
associated with i and a is the function, d, satisfying the following conditions.

D the domain of d is set of al singular terms of L;

(2) iftisavariable/constant, then d(t)=a(t);

3 if t isaproper noun, then d(t)=i(t);

4 if t ismolecular, then t isof theform f t,...t,,, and d(t) = i(f )&d(t,),...,d(t,)i

In clause (4), the intuition isfairly smple. The denotation of a complex singular term is determined by the
denotations of its various parts. Consider a smple example; a one-place function sign ‘f’, and a proper
noun ‘k’. Then the denotation of ‘fk’ will be determined by what ‘f’ and ‘k’ individually denote, which
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are i(f) and d(k), respectively. The former is a one-place function; the latter is an individua in the
domain. The denotation of ‘fk’ is obtained by applying the function i(f) to the individual d(k), whichisto

Say
d(fk) = i(f)ad (k)R
or equivalently
if ‘k’ denotes object o,
and ‘f’ denotes function g,
then ‘fk’ denotes object g(0).

A simple example shows how simple the intuition is. Suppose the following.

‘k’ denotes Kay; i.e., d(k)=i(k) = Kay
‘f” denotes the father-function; i.e., i(f) = {&,yf y isx’sfather};

then ‘fk’ denotes Kay’ s father.

15.  Truth-Valuations — Non-Quantified Formulas

In the present section, we give an account of truth-values for all non-quantified formulas of the
language of CFOL. This is accomplished by first defining truth-value for atomic formulas, then
inductively extending it to SL-molecular formulas, as follows.

(D) LetL beafirgt-order language, let U be a non-empty set, let i/a be an
interpretation/assignment from L into U, and let d be the associated designation function.
Then the associated valuation function is defined as follows.

Atomic Formulas:

u(Pt,...t)
u(t=ty,)

i(PY&d(ty),...,d(t )
n(=)ad(ty),d(t,)i

SL-Molecular Formulas:

u(~a) = m(~)au(a)n
u@®b) =  mM@®)a(a)ulb)
etc.

Here, the function m(for ‘meaning’) assigns a fixed interpretation n{e) to each special logical symbol;
every semantic evaluation u will assign the same meaning to each special logical symbol.

We have already seentheway ‘~’, ‘® ', etc. are evaluated — as truth-functions. In particular,

n(~)
n®)
etc.

the truth-function associated with negation
the truth-function associated with the conditiona
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Thus far, we have not specifically given the official interpretation of ‘=", but this is fairly obvious; in
particular, we interpret ‘=" to mean ‘is numerically identical to’; aternatively stated, we interpret ‘=" so
that ‘t;=t,’ means‘t, and t, are one and the same thing’, or smply ‘t;ist,’.

Formally, m(=) is given asfollows.

T if U=y,
F otherwise.

(=) &, W

Alternatively, in its set-guise, we have:

M=) = {aud U

16. Evaluating Quantified Formulas

Our elegant categorial scheme works fine until we come to quantifiers. A universal formula has
the form:

"nfF

where n isavariable and [ isaformula. If wetreat *" * asafunctor that takes a variable and generates a
sentential adverb, then the categorial form looks thus.

[" &fdrn
If we apply the general categorial semantic scheme to this formulawe have:
[u )au(n)au(F)n

We have dready said that u(lF) and u(" nlF) are truth-values, this means that u(" n) must be a truth-
function. But the truth-value of " n[F is not afunction of the truth-value of F. So we are stymied.

We can save the situation by going back and re-doing the entire semantic scheme; thisis donein a
later chapter. Or, we can say that our semantics is categoria with respect to al syntactic items except
guantifiers, which are treated in a non-categorial manner [they are treated as syn-categorimatic].

In this chapter, to keep things as simple as possible, we follow the latter approach. In particular,
we treat quantifiers as follows.

u(" nfF)
u($nk)

minfu€rl) : ut=, u}
max{ u€fF) : u¢=, u}

Here, =, is defined as follows.
ut~yu =4 " ef{atomic[e] ® . een® [ude) =u(e)]}

In other words, u¢is“just like” u in respect to atomic symbols, except insofar asit assigns
adifferent semantic value to variable n, which of courseisthe variable bound by " n.

Also, ‘min’ isshort for ‘“minimum’, and ‘max’ is short for ‘maximum’. Theimplicit
ordering, with respect to which these two notions are construed, is obtained by identifying
T with 1 and F with 0. In other words, F<F<T<T.
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An dternative, even less algebraic, rendering of the quantifiers goes as follows.

T iff  "uqutr,u ® udb)=T}
T iff  $udut=,u & ugF)=T}

u(" nlF)
u($nik)

The proofs of these two theorems are |eft as an exercise.
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2.

1.

or universe, of discourse. The notion of semantic item, or simply item, is defined as follows.

Summary of

the Quasi-Categorial Semantics for CFOL

Semantic Iltems and their Categories

We begin with the set V of truth-values; i.e., V={T,F}, and a non-empty set U, caled the domain,

every dlement of V isan item of category V
every element of U isan item of category U;

every k-place function from V into V is an item of category (Vk=»V);
every k-place function from U into U is an item of category (Uk=>U);
every k-place function from U into V is an item of category (Uk=»V);

Conventional (Practical) Identifications

k=2 Uk>V subset of U*

k=1 ul-»Vv subset of U

k=0 uo-»v dement of V

k=2 Uk=->U function from
UintoU

k=1 ul-»u function from U
intoU

k=0 uo-u dement of U

Here, U is the set of all ktuples of elements of U; for example, U’ is the set of all ordered pairs of

gements of U. Also notethat U° = ZEand Ut = U.

U? = {&n,Wft u, i1 U}

U = { &, U, Ut Uy, Wy, U1 U}

etc.



18 Hardegree, Metalogic

3. Categorial Correspondence

Syntactic Category ~ Semantic Category

N U
S Vv
Nk=N Uk U
Nk=S Uk=»V
Sk S VkV
quantifiers not categorial
4. Semantic Evaluations; Algebraic Composition Principle

A semantic evauation on a quantifier language [L isafunction u that assigns a semantic item of the
appropriate category to each well-formed expression of [ (except for quantifiers).

In addition, u must satisfy the general algebraic-composition principle.

u(fée,....ad = u(f)au(ey,...,u(e)n

5. The Sub-Functions of a Semantic Evaluation

Semantic evaluation functions have a number of inter-related sub-functions that work on various
special types of grammatical terms.

1. Ordinary Valuation Function — sentences

An ordinary valuation function — also denoted u — assigns a truth-value to every sentence/formula.

2. Interpretation Function — atomic non-logical (proper) symbols
An interpretation function i assigns an item in the universe to each proper symbol.

Proper[e] ® u(e) =i(e)

3. Designation Function — singular terms
A designation function d assigns an element of U to each singular term.

SingTerm[e] ® u(e) = d(e)

4. Assignment Function — variables, constants
An assgnment function a assigns an element of U to each variable/constant.

Variable[e] U Congtant[e] .® u(e) = a(e)
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5. Fixed Logical Meaning Function — special logical symbols

We are interested in those evaluations that respect the meanings of the privileged logical symbols,
which in CQL include the SL-operators, the two quantifiers, and the identity sign. Accordingly, these
gpecial symbols have a fixed meaning across all semantic evaluations. The function that assigns these
fixed meaningsis denoted m

Logica[e] ® u(e) = n(e)

6. Determination of Semantic Evaluation

Given the fixed meanings of the special logical symbols, every semantic evaluation is uniquely
determined by two sub-functions — the interpretation i, and the assignment function a. In particular,

1. Evaluating Atomic Singular Terms

if t isatomic, then:
d(t) =1i(t) if  tisaproper noun
d(t)=a(t) if tisavariable/constant

2. Evaluating Molecular Singular Terms
dfé&y,...tdd = i(f)&(ty),....d(th
3. Evaluating Atomic Formulas

U(P&s,... .t ) = i(P)&(tY),...,d(t)f

Given our practical identifications, we have the following in effect.

if k=2

u(Pé,,...tH = T if &(ty),....d(t )il i(P)
u(Pa&,,...txH = F otherwise

if k=1:

u(Pt)y = T if dit)T i(P)

u(Pt) = F otherwise

if k=0:

uP = i(P)

Note that identity (‘=") isalogical predicate, so its meaning isfixed. In particular,
u= = nm= = IDy

Here IDy isthe identity relation on the set U, which is defined in the obvious way.
IDu = {aui:ul U}

Alternatively,
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IDy = {&Wiull U & u=w}
The characteristic function — also denoted ID, — is defined as follows.

T if U=l
F otherwise

| Dua,ll,U2ﬁ

4. Evaluating SL Compounds

u(~F) = n{~)a(k)n

u(F® G) = m®)au(lF),u(G)n
u(F&G) = m&)a(F),u(G)n
u(FUG) = mU)a(r),u(G)n
u(F« G) = nm«)au(F),u(G)n

Here, if eisan SL-operator, then n{e) is its fixed meaning, which is a truth-function. If we use the same
symbol for both the connective and its truth function, and we write two-place functions/functors in infix
notation, we can rewrite thisin the familiar algebraic form.

u(~F) = ~u(f)

u(f® G) = u(f)® u(G)
u(F&G) = u(F)&u(G)

u(FUG) = u(F)Uu(G)

u(F« G) = u(F« u(G)

5. Evaluating Quantified Formulas

u nfF) = min{fugfF): ut=,u}
u(dnfF) = max{ud€lF): ut=,u}

Here, =, is defined as follows.
ut=,u =4 " efatomicle] ® . een® [uge)=u(e)]}

In other words, u¢is “just like” u in respect to atomic symbols, except insofar as it assigns
adifferent semantic value to variable n, which of courseisthe variable bound by " n.

Also, ‘min’ isshort for ‘“minimun’, and ‘max’ is short for ‘maximum’. The implicit
ordering, with respect to which these two notions are construed, is obtained by identifying
T with 1 and F with O. In other words, F<F<T<T.

An dternative, even less algebraic, rendering of the quantifiers goes as follows.

T iff " uqutx,u ® ugF)=T}
T iff  $uque~,u & ugF)=T}

u(" nfF)
u($nk)



14: Semantics of Classical FOL 21

3. Appendix — Models and Satisfaction

1. Introduction

In the parent chapter, we have examined a mostly-categorial semantics for first-order logic, and in
the first appendix, we have examined a fully-categorial semantics for first-order logic. Although the
categoria approach has many advantages in terms of mathematical elegance and rigor, it is not the way
logicians have traditionally done semantics. For this reason, in the current appendix, we briefly look at
the completely traditional (non-categorial) approach to semantics.

2. Models and Interpretations in Sentential Logic

We start by going back and redoing the semantics of SL in the non-categorial manner. First, we
define the notion of interpretation.

Def
Let L bethelanguage of CSL. Then an interpretation on/of [ is, by definition, any
function | that assign atruth-value to every atomic formulas of L.

Notice that this is consistent with our usage in the parent chapter, where we define an interpretation as a
function that assigns semantic values to al (and only) atomic non-logical symbols. In SL, these are
precisely the atomic formulas.

Intimately associated with the notion of interpretation is the notion of model, which is defined as
follows.

Def
Let L bethelanguage of CSL. Then amodel on/of L is, by definition, any infinite
sequence avy, Vy, ...MAof truth-values.

A modd is semantically useful precisely because we presume a fixed enumeration 8A;, A,, ...Aof the
atomic formulasof L. In particular, the i-th truth-value v; is understood to be the truth-value of the i-th
atomic formula.

If we presuppose a given fixed enumeration 8A;, A,, ...fAiof atomic formulas, there isno practica
difference between a model and an interpretation. Given an interpretation I, one can easily construct the
associated model M(1) asfollows.

M) = A(A), I(A), ...f

Similarly, given any model M [= &, Vs, ...f, one can easily construct the associated interpretation |, as
follows.

lgvl(Ai) =v, 1i=12 ..
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3. Truth in an Interpretation/Model in SL

Given an interpretation |, we can define the notion of truth in an interpretation as follows.

Def

follows.
if f isatomic, then

| = f iff

| = ~a iff
| = a&b iff
| =alb iff
l=a®b  iff
l=a« b iff

Let L bethelanguage of CSL. Let | beaninterpretation of L. Define the predicate
‘I=f " (read “| satisfiesf”, or “1 verifiesf”, or “f istruein|”) inductively as

I(F)=T

I#=a

l=a
Il=a

lEa

l=a

if f ismolecular, then there are five cases;

and I=b
or l=b

or l=b

and I=b .or. I#Fa and b

We can of course give a corresponding definition of truth in a model as follows.
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Def
Let L bethelanguage of CSL. Let M [= &4, Vo, ...l beamodd of L. Definethe
predicate ‘' ‘M=f’ (read “M satisfiesf”, or “M verifiesf”, or “f istruein 2M”)
inductively asfollows.

if f isatomic,
thenf = A, (for exactly onei),
and
MET iff vi=T

if f ismolecular, then there are five cases;

ME ~a iff Mea

M= a&kb iff ME=a and MEeDb
MeEalb  iff MeE=a or Meb

MeEa®b iff Mra or MEDb
MEa« b iff Mea and ME=b .or. Mea and Meb

4. Validity in the Model Framework

Recall that we defined validity relative to a class V of admissible valuations. We can also define
validity relativeto aclass [ of al interpretations of [, or relative to the class M of all modelsof .

Def
Let L bethelanguage of CSL. Let [ be the set of all interpretationson L. Define
the predicates ‘' =a’ and ‘G=a’ asfollows.

Fa iff for every interpretation |, I=a
G=a iff for every interpretation |,

if I=gforevery d G,
then I=a
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Def
Let L bethelanguage of CSL. Let Ml bethe set of all modelson L. Definethe
predicates ‘=a’ and ‘G=a’ asfollows.
Fa iff for every modd ‘M, MEa
G=a iff for every model ‘M,
if Mi=gforevery d G,
then Mk=a
5. Models (and Interpretations) in the Context of First-Order Logic

Next, we turn to models of first-order languages. Notice that, whereasin SL, the notion of model
and interpretation are interchangeable, in FOL it is customary to use the notion of model, which will
conceptualy include the notion of interpretation.

Def
Let L be afirst-order language. Then amodel of [ isastructure &J, Iii where U is
anon-empty set — called the domain or universe of discourse—and | isan
interpretation function. Here, an interpretation function is afunction that assigns a
categorially-appropriate set-theoretic object “over” U to each proper (i.e., non
logical atomic) symbol of [.

Recall that the “proper” symbols of a FOL are those symbols that uniquely identify the language; the
remaining symbols are common to al FOL’'s. The term ‘categorialy-appropriate’ is defined (in a
somewhat ad hoc manner) as follows.

Def
Let L beaFOL, and let | be afunction from the set of proper symbolsof L. Then|
isan interpretation iff the following are true.

if eisaproper noun, thenl(e) T U

if eisa 1-place function sign, then I(e) isafunction from U into U
if eisak-place function sign, then I(e) is afunction from U*into U
if eisal-place predicate, then I(e) is asubset of U

if eis ak-place predicate, then I(€) is a subset of U

Thus, the notion of interpretation here is very similar to the notion of interpretation in the parent
chapter. In particular, an interpretation assigns a set-theoretic object to every proper symbol of [ .
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6. Assignment Functions; Designation Functions

As in the case of valuation semantics, we employ assignment functions to evaluate expressions
containing variables and constants. As before, an assgnment function assigns to every variable and
constant an element of the domain U.

Asin the case of valuation semantics, every combination of interpretation/assignment gives rise to
an associated designation function, which assigns a denotation to every singular termin [L. It isdefined as
follows.

If t isaproper noun, then
d(t) =1(t)

If t isavariable or constant, then
dt) =af(t)

If t ismolecular, then it hastheform f &4, ..., ti i and
d) =I1(f)a(ty), ..., d(t)n

Given amode ‘M, we can define the notion of /M -admissible designation function as follows.

Def
Let L beaFOL, and let M =4&J, Iibeamodel of L. Let d be afunction from the
singular termsof L into U. Then d is said to be 2M-admissible iff thereisan
assignment function a from L into U such that d is the designation function
determined by I/a.
7. Satisfaction by a Designation Function

Once we have the denotations of all the singular terms of 1., we can discuss the notion of
satisfaction. In particular, satisfaction is defined inductively as follows.
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Def
Let L beaFOL, let M beamodd of 1, andlet d bean M-admissible designation
function. Define‘d = f’ asinductively asfollows.

If f isatomic, thenf = P&, ..., t, A in which case
def iff a(ty), ..., d(t)nl 1(P)
orf =[ty=t,], inwhich case
def iff d(ty) =d(ty).

If f isan SL-molecule, then there are five cases to consider:

dEe ~a iff dw# a
dE a&b iff deaanddEeDb
de=alb iff dea o deb

d=a®b  iff dta o deb
d=a« b iff deaanddeb, ord#a and db
If f isaquantified formula, then there are two cases to consider:

d="ny iff deey, forevery dé¢=, d
d = $ny iff de¢=y, forsomedt=~,d

Here, the =~ relation is defined pretty much as before.

d,~,d, iff " e{Atomicle] & el n .® dy(e) =dye)

8. Satisfaction by a Model

Satisfaction by a model is defined in a natura manner based on the notion of satisfaction by a
designation function.

Def
Let L beaFOL, and let ‘M beamode of L. Then

Mef iff def for every ‘M-admissible d




