
10 
 

The Soundness Theorem for 
System AS1 

 
1. Introduction...........................................................................................................................2 
2. Soundness, Completeness, and Mutual Consistency .............................................................2 
3. The Weak Soundness Theorem.............................................................................................4 
4. The Strong Soundness Theorem............................................................................................6 
5. Appendix: Supporting Lemmas.............................................................................................7 

 
 



2 Hardegree, MetaLogic 

1. Introduction 

 In the current chapter, we begin examining the relation between the semantic (model-theoretic) 
characterization of classical sentential logic and the axiomatic (deductive, proof-theoretic) 
characterization. 

 So far, we have defined argument/formula validity both semantically and axiomatically.  Recall the 
official definitions. 

 

ëα =df ∀v{v∈V → v(α)=T} 

Γëα =df ∀v{v∈V →. ∀x(x∈Γ → v(x)=T) → v(α)=T} 
 
�α =df there is a proof of α in ´ 
Γ�α =df there is a derivation of α from Γ in ´ 
 

As usual, in order to avoid clutter, we drop reference to the set V of valuations and the axiom system ´, in 
the definiendum (i.e., left side of the definition).  If we were to write these more carefully, we might write 
them as follows. 

V: ëα =df ∀v{v∈V → v(α)=T} 
V: Γëα =df ∀v{v∈V →. ∀x(x∈Γ → v(x)=T) → v(α)=T} 
 
´: �α =df there is a proof of α in ´ 
´: Γ�α =df there is a derivation of α from Γ in ´ 

 These are generic definitions.  In our particular case, the relevant class V of valuations is given by 
the usual truth tables, and the relevant axiom system ´ is AS1. 

2. Soundness, Completeness, and Mutual Consistency 

 The obvious remaining question is whether these two characterizations are mutually consistent.  
Given that we have defined both formula validity and argument validity, mutual consistency can be defined 
both for formulas and arguments, as follows. 

Def 
Let V be a class of valuations, and let ´ be an axiom system, both defined over a 
common language.  Define � and ë as above.  Then:  
 

V and ´ are mutually consistent wrt formulas =df ∀α{ëα ↔ �α}. 
 

V and ´ are mutually consistent wrt arguments =df  ∀Γ∀α{Γëα ↔ Γ�α}. 
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[Note: ‘wrt’ is short for ‘with respect to’]  Concerning the relation between the two modes of consistency, 
recall that we have the following theorems about � and ë respectively. 

(1) �α ↔ ∅�α 
(2) ëα ↔ ∅ëα 

Given (1) and (2), it follows that, if V and ´ are mutually consistent wrt arguments, then they are 
automatically mutually consistent wrt formulas.  The converse, however, is not true; an axiom system may 
agree with a semantic system with regard to formula-validity without agreeing with regard to the 
argument-validity.  Of course, logic is ultimately concerned with argument-validity, so anything less than 
mutual consistency wrt arguments is not entirely satisfactory, although it might be abstractly interesting. 

 Mutual consistency naturally divides into two parts, which are called soundness and 
completeness, defined as follows. 

Def 
Let V be a class of valuations, and let ´ be an axiom system, both defined over a 
common language.  Define � and ë in the customary way.   Then:  
 

´ is sound relative to V wrt formulas  =df  ∀α{�α → ëα}. 
 

´ is complete relative to V wrt formulas =df ∀α{ëα → �α}. 
 

´ is sound relative to V wrt arguments =df ∀Γ∀α{Γ�α → Γëα}. 
 

´ is complete relative to V wrt arguments =df ∀Γ∀α{Γëα → Γ�α}. 
 

In other words: 

 
formula-sound =df  every deductively-valid formula is semantically-valid 
 
formula-complete =df  every semantically-valid formula is deductively-valid  
 
argument-sound =df every deductively-valid argument is semantically-valid 
 
argument-complete =df every semantically-valid argument is deductively-valid  
 

Note once again that, given the relation between argument-validity and formula-validity, soundness 
(completeness) wrt arguments entails soundness (completeness) wrt formulas.  Also note the following 
immediate theorems.   
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Th 
´ and V are mutually consistent wrt formulas (arguments) if and only if ´ is both 
sound and complete relative to V wrt formulas (arguments).  
 

3. The Weak Soundness Theorem 

 In the next two sections, we prove that AS1 is sound relative to the usual truth functional semantics 
for CSL.  First, we prove a weak soundness theorem, which states that AS1 is sound wrt formulas.  In a 
later section, we prove a strong soundness theorem, which states that AS1 is sound wrt arguments.  The 
following is the official statement of the weak soundness theorem. 

Weak Soundness Theorem 
 
Let V be the usual truth-functional semantics for CSL, and let ´ be AS1, as in 
previous sections; define ë and � in the customary manner.  Then for any formula 
α, 
 

 �α → ëα 
 

There are a number of ways to prove the Weak Soundness Theorem, all using some form of induction.  We 
employ strong induction.  Supporting lemmas are provided in a later section. 
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Proof:   
First, in virtue of the definition of ‘�’, what we want to prove amounts to the following. 
 
 ∀α{∃p[p is a proof of α]  →  ëα} 
 
The latter is equivalent by QL to: 
 
 ∀α∀p{p is a proof of α  →  ëα} 
 
A proof is a finite sequence, so every proof has a length, which is a natural number.  I.e., 
 
 ∀p∃n[n = len(p)] 
 
So, in virtue of QL, it is sufficient to prove the following. 
 
 ∀n ∀α∀p{p is a proof of α of length n  →  ëα} 
 
The latter can be proven by strong induction, as follows. 
 
Inductive Case: 
Where n is any number, suppose (IH) to show (IS), given as follows. 
 
 (IH) ∀m{m<n  →  ∀α∀p{p is a proof of α of length m  →  ëα}}, 
 (IS) ∀α∀p{p is a proof of α of length n  →  ëα}. 

 
Suppose P is a proof of α of length n, to show ëα.  Every line of P, including its last line 
(i.e., α) must either be (1) an axiom, or (2) follow from previous lines by MP.   
Case 1: α is an axiom.  So, in order to show ëα, it suffices to show that every axiom is 
semantically valid.  This is the content of Lemma 1.   
Case 2: α follows from previous lines by MP.  In virtue of the form of MP, one of the 
previous lines – call it i – is a conditional whose antecedent is the other line – call it j – 
and whose consequent is α.  Thus, P(i) = γ→α, and P(j) = γ.  Those lines up to and 
including P(i) constitute an i-long proof of γ→α.  Similarly those lines up to and including 
P(j) constitute a j-long proof of γ.  But i, j < n, so we can apply the inductive hypothesis 
(which is universally quantified over α) to these two derivations to obtain, respectively, 
(i) ëγ→α, and (j) ëγ.  From these two facts, and Lemma 2, we obtain ëα. 
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4. The Strong Soundness Theorem 

 Having warmed up by proving the weak soundness result, we now turn to the strong soundness 
theorem, which is proven nearly the same way. 

Strong Soundness Theorem 
 
Let V be the usual truth-functional semantics for CSL, and let ´ be AS1, as in 
previous sections; define ë and � as in Section 1.  Then for any formula α, and 
any set Γ of formulas, 
 

 Γ�α  →  Γëα 
 

Proof:   
In virtue of the definition of ‘�’, this amounts to the following, 
 
 ∀Γ∀α{∃d[d is a derivation of α from Γ]  →  Γëα}, 
 
which is equivalent by QL to: 
 
 ∀Γ∀α∀d{d is a derivation of α from Γ  →  Γëα} 
 
Now, every derivation d has a length len(d), so it is sufficient to prove the following. 
 
 ∀n∀Γ∀α∀d{d is a derivation of α from Γ of length n  →  Γëα} 
 
 The latter can be proven by strong induction, as follows. 
 
Inductive Case:  Where n is any number, suppose (IH) to show (IS), given as follows. 
 
(IH) ∀m{m<n  →  ∀Γ∀α∀d{d is a derivation of α from Γ of length m →  Γëα}}, 
(IS) ∀Γ∀α∀d{d is a derivation of α from Γ of length n →  Γëα}. 
 
Suppose D is a derivation of α from Γ of length n, to show Γëα.  Every line of D, includ-
ing its last line (i.e., α) must (1) be an axiom, or (2) be a premise (an element of Γ), or (3) 
follow from previous lines by MP.   
Case 1:  α is an axiom; so by Lemma 3, Γëα.  
Case 2: α is a premise (α∈Γ); so by Lemma 4, Γëα. 
Case 3: α follows from previous lines by MP.  In virtue of the form of MP, one of the 
previous lines – call it i – is a conditional whose antecedent is the other line – call it j – 
and whose consequent is α.  Thus, D(i) = γ→α, and D(j) = γ.  Those lines up to and 
including P(i) constitute an i-long derivation of γ→α from Γ.  Similarly those lines up to 
and including P(j) constitute a j-long derivation of γ from Γ.  But i, j < n, so we can apply 
the inductive hypothesis (which is universally quantified over Γ,α) to these two 
derivations to obtain, respectively, (i) Γëγ→α, and (j) ëγ.  From these two facts, and 
Lemma 5, we obtain ëα. 
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5. Appendix: Supporting Lemmas 

 The following are lemmas used in the proofs of the soundness theorem(s).  The proofs of these 
lemmas are left as an exercise. 

(L1) α is an axiom of AS1  →  ëα 

(L2) ëα→β  &  ëα  .→  ëβ 

(L3) α is an axiom of AS1  →  Γëα 

(L4) α∈Γ → Γëα 

(L5) Γëα→β  &  Γëα  .→  Γëβ 


