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1. Introduction

In the current chapter, we exhibit several deductive (axiom) systems for classical sentential logic
(CSL). One of these systems — AS1 — will play a prominent role in subsequent chapters on soundness and
completeness.

The choice of ASl islargely arbitrary. Ultimately, what we want to show is that
there is a deductive system that adequately characterizes CSL.

One way to prove this is by demonstrating that a particular deductive system adequately characterizes
CSL, from which we obtain the desired result smply by existential-introduction! We happen to choose
ASL for this task. If we were so inclined, we could go back and prove the same results for many other
axiom systems, including those listed below [and the inquisitive reader is urged to do just that!]

Basically, in writing down a deductive (axiom) system for alogic, the usua goal isto write down
a reasonably compact set rules that generate al and only the valid arguments of that logic. In this
connection, it is customary to write the system in minimal terms. Specifically, rather than write down
rules for al connectives, one writes down rules for arestricted subset of “primitive’ connectives. Thisis
acceptable insofar as, and only insofar as, the chosen subset is expressively complete (recall Chapter 4).
The remaining connectives are then introduced by way of definitions.

2. Axiom System AS1

Axiom system AS1 is written exclusvely in terms of just ‘~' and ‘®’. The remaining
connectives are introduced by way of definitions, which are given as follows.

AS1 Definitions:

(d) a Ub =df ~a®b

(d2) a&b =y ~(a® ~b)
@3 acb =y ~[(a® b)® ~(b® a)]
(d4) X =4f ~(a® a)

Note that ‘X’ may be regarded as a sentential constant (zero-place connective). See Section 4, for
examplesof axiom systemsthat utilizeit asa primitive.

In addition to definitions (d1)-(d4), axiom system AS1 prescribes four inference rules, given as
follows.
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AS1 Rules:

(R) - a® (b®a)

(R2) > [a® (b® 9]® [(a® b)® (a® Q)]
(R3) < (~a® ~b)® (b® a)

(R4) a,a®b>->b

For the sake of brevity, we write the rules horizontally, using the curvy arrow symbol (*>’) to divide the
input (which can be null) from the output (which cannot be null). Asusual, the lower case Greek letters
are metalinguistic variables ranging over formulas.

Notice that (R4) is smply modus ponens —from a and a® b, one is entitled to infer b. Also,
notice that (R1)-(R3) have no input; they are zero-place rules. [In elementary logic, the only zero-place
rule is the rule of reflexivity of ‘="]. In a zero-place rule, given nothing, one can write down the output.
An alternative, more traditional-sounding, description isto say that AS1 involves three axiom schemata —
(R1)-(R3) — plusthe rule of modus ponens.

3. Examples of Derivations in System AS1

Recall the definitions of ‘derivation’ and ‘ proof’, which may be stated as follows.

Def
Let S be adeductive system with formulas S and rules R..

A derivation of a fromGin S is, by definition, afinite sequence of formulas of S,
the last one of whichisa, and every line of which is either an element of Gor
follows from previouslines by arule of S.

A proof of a in S isafinite sequence of formulas of S, the last one of whichisa,
and every line of which follows from previouslinesby arule of S.

Notice, given these definitions, that every proof is automatically a derivation — specifically, a derivation
from the empty set.

The following are examples of derivations and proofs in AS1. We begin with a proof of ‘P® P'.
In elementary logic, the proof of ‘P® P isincredibly easy, since elementary logic employs the method of
conditional derivation. No such method is included in system ASL, so the proof of ‘P® P in AS1 is not
nearly so trivial.

Example 1:
Q) P® (P® P.® P) R1
(2 P® (PR P®P).®.(P®.P®P)® (P® P) R2

(3) (P®.P®P)® (PR P) 1,2,R4
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(4) (P® .P®P) R1
(5 P®P 3,4,R4

Note that, in order to reduce visua clutter, some parentheses are replaced by dots, according to the usual
custom.

Notice also in the above display that there are three columns.

(@D the column of line numbers
2 the column of formulas
3 the column of annotations.

Strictly speaking, only the column of formulas congtitute the derivation proper. [Recall the officia

definition of derivation.] On the other hand, the two flanking columns are not strictly speaking part of the
derivation. Rather, they constitute the surrounding informal metalinguistic argument to the conclusion that
the given sequence —i.e., the column of formulas—isin fact a derivation in the system.

The above proof appeals to al the rules except R3. The following example — which proves
‘~P® (P® Q)’ — utilizes R3.

Example 2:
D ~Q® ~P.®.P®Q R3
(2 (~Q® ~P® .PRQ)®.~P® (~Q® ~P.® .P® Q) R1
(©)) ~P® (~Q® ~P.® .P® Q) 1,2,R4
(4) ~P® (~Q® ~P.® .PRQ) .®.(~PR .~Q® ~P)® (~P® .P® Q) R2
(5) (~P®.~Q® ~P)® (~P® .P® Q) 34,R4
(6) (~P® .~Q® ~P) R1
(7 ~P® .P® Q 5,6,R4

Examples 1 and 2 are both proofs [derivations with no premises]. The following is a derivation
with asingle premise; in particular, it isaderivation of ‘(P® (P® Q))® (P® Q) from ‘P® P'.

Example 3:

D PR(PRQ).®.(PRP)® (P® Q) R2
2 {(PR(PRQ).®.(PRP® (P®Q))} ®

{[P® (P® Q).® .P® P] ® [P® (P® Q).® .P® Q]} R2
3 [P® (PR Q).® .PR Pl ® [P® (P® Q).® .P® Q] 1,2,R4
4 (PRP)® [P® (PR Q).® (P® P)] R1
5) P® P Pr
(6) [P® (P® Q).® .P® PJ 45R4
@) P® (P® Q).® (P® Q) 3,6,R4

Notice that Example 3 ostensively (* ostensibly!) demondtrates that ‘' (P® (P® Q))® (P® Q)’ is
derivable from ‘P® P. Thisresult can be summarized by the following metalanguage statement.

(ml) P®PH (P®(PRQ)® (PBQ)

Similarly, Example 1 ostensively demonstrates that ‘P® P is provable, which can be summarized as
follows.

(M2) +P®P
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Recall that, in Chapter 6, we proved the following general theorem about deduction.
(G6) Gra & GE{a}rb .® G-b

The following is an immediate corollary.
(©) a & arb .® b

In other words, if a is provable, and b can be derived from a, then b is provable [where, as usudl, it is
tacitly understood that ‘a’ and ‘b’ are universally quantified]. Combining (c) with (m1) and (m2), we
obtain the following result.

(m3) F (P® (P®Q))® (P® Q)
This, of course, saysthat ‘' (P® (P® Q))® (P® Q)’ is provable.

Notice carefully that, although we have shown that ‘ (P® (P® Q))® (P® Q)’ isprovablein system
AS1, we have not presented an actual proof of ‘(P® (P® Q))® (P® Q) insystem ASL. Rather, we have
demonstrated only that a proof exists.

However, recall that in proving (G6), we provide a general procedure for taking two derivations
— oneof a from G and one of b from GE{a} — and constructing a derivation of b from G, thereby
proving that such a derivation exists. How does this genera procedure work for derivations 1 and 3?
Quite simply, one takes derivation-3 — which derives ' (P® (P® Q))® (P® Q)’ from ‘P® P — and one
takes derivationr1 — which proves ‘P® P — and interleaves them in the prescribed manner.
Specifically, everywhere ‘P® P occurs in derivation-3, one inserts derivation-1. The following is the
result.

(1) PR(PRQ) .®.(PRP)® (PO Q) R2
2 {(PR(PRQ).®.(PRP® (PRQ))} ®

{[P® (P® Q). .PR P| ® [P® (P® Q).® .P® Q]} R2
(3) [P® (PR Q).®.P® F] ® [P® (P® Q).® .P® Q] 1,2,R4
4) (P®P)® [P® (PR Q).® (P® P)] R1
(51) P® (P® P® P) R1
(52) P® (P®P®P).®.(P®.P® P)® (PR P) R2
(53) (P®.P® P)® (P® P) 1,2,R4
(54) (P® .P® P) R1
(55) P®P 3,4,R4
6) [P® (PR Q).® .P® F| 4,5.5,R4
(7) P®(P® Q).® (PR Q) 3,6,R4

Asyou can readily see, the sequenceis (as promised!) a proof of ‘(P® (P® Q))® (P® Q)’!

Although the above sequence is indeed a proof of ‘(P® (P® Q))® (P® Q)’, it by no means the

only proof of thisformula. The following isasomewhat shorter proof.
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(1)
(2)

3)
(4)
(5)
(6)
(7)

PR (P® Q) .® . (P® P)® (P® Q)

PR (PR Q) .® . (P® P)® (PR Q) :®:
PR(PRQ)® (P®P)].®.P®(PRQ® (PR Q)
PR (PRQ)® (PRP).®.P® (PR Q)® (PR Q)
PR (PRQ®P) .®: PR (PR Q).® (PR P)

P® (P® Q.® P)
P® (P® Q) .® (P® P)
P® (PR Q) ® (P® Q)

4. Other Axiom Systems for CSL

R2

R2
1,2,R4
R2
R1
4,5R4
3,6,R4

In the present section, we present five other axiom systemsfor CSL. The first two are based on the
same connectives and connective definitions as ASL. The next two are based on * X’ and ‘® *. Thefina
oneisbasedon‘®’, ‘~’,‘&’, and ‘U. Notice that the only non-axiomatic rule is modus ponens.

AS2:
(R1)
(R2)
(R3)
(R4)

AS3:
(R1)
(R2)
(R3)
(R4)

AS4:
(R1)
(R2)
(R3)
(R4)

(d)

ASS5:
(R1)
(R2)
(R3)
(R4)
(R5)

(d)

> a® (b® a)

> [a® (b® g]® [(a® b)® (a® g)]
> (~a® ~b)® ((~a® b)® b)
a,a®b->b

> (~ra®a)®a

> a® (~a® b)

> (a® b)® [(b® 9® (a® g)]
a,a®b-b

> a® (b® a)

> [a® (b® g]® [(a® b)® (a® g)]
S [(a® X)® X]® a

a,a®b-Db

~a =g a® X

> a® (b® a)

> [a® (b® g]® [(a® b)® (a® g)]
S [(a® b)® a]® a

> X® a

a,a®bw-b

~a =g a® X
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AS6:

(R1)
(R2)
(R3)
(R4)
(RS)
(R6)
(R7)
(R8)
(R9)
(R10)
(R11)

(d)

> a® (b® a)

> [a® (b® g]® [(a® b)® (a® g)]
> (a&b)® a

> (a&b)® Db

S a® [b® (a&b)]

> a® (alb)

> b® (aUb)

> (a® g® [(b® g® ((aUb)® g]
> (a® b)® [(a® ~b)® ~a]

> ~~a®a

a,a®b-b

a« b =4 (a® b)&(b® a)



