
8 
 

Axiom Systems For Classical 
Sentential Logic 

 
1. Introduction...........................................................................................................................2 
2. Axiom System AS1...............................................................................................................2 
3. Examples of Derivations in System AS1 ..............................................................................3 
4. Other Axiom Systems for CSL..............................................................................................6 

 
 



2 Hardegree, MetaLogic 

1. Introduction 

 In the current chapter, we exhibit several deductive (axiom) systems for classical sentential logic 
(CSL).  One of these systems – AS1 – will play a prominent role in subsequent chapters on soundness and 
completeness.   

 The choice of AS1 is largely arbitrary.  Ultimately, what we want to show is that 

there is a deductive system that adequately characterizes CSL. 

One way to prove this is by demonstrating that a particular deductive system adequately characterizes 
CSL, from which we obtain the desired result simply by existential-introduction!  We happen to choose 
AS1 for this task.  If we were so inclined, we could go back and prove the same results for many other 
axiom systems, including those listed below [and the inquisitive reader is urged to do just that!]   

 Basically, in writing down a deductive (axiom) system for a logic, the usual goal is to write down 
a reasonably compact set rules that  generate all and only the valid arguments of that logic.  In this 
connection, it is customary to write the system in minimal terms.  Specifically, rather than write down 
rules for all connectives, one writes down rules for a restricted subset of “primitive” connectives.  This is 
acceptable insofar as, and only insofar as, the chosen subset is expressively complete (recall Chapter 4).  
The remaining connectives are then introduced by way of definitions. 

2. Axiom System AS1 

 Axiom system AS1 is written exclusively in terms of just ‘∼’ and ‘→’.  The remaining 
connectives are introduced by way of definitions, which are given as follows. 

AS1 Definitions: 
 
(d1) α∨β  =df ∼α→β 
(d2) α&β =df ∼(α→∼β) 
(d3) α↔β =df ∼[(α→β)→∼(β→α)] 
(d4) × =df ∼(α→α) 
 

Note that ‘×’ may be regarded as a sentential constant (zero-place connective).  See Section 4, for 
examples of  axiom systems that utilize it as a primitive. 

 In addition to definitions (d1)-(d4), axiom system AS1 prescribes four inference rules, given as 
follows. 
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AS1 Rules: 
 
(R1) å α→(β→α) 
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)] 
(R3) å (∼α→∼β)→(β→α) 
(R4) α, α→β å β 
 

For the sake of brevity, we write the rules horizontally, using the curvy arrow symbol (‘å’) to divide the 
input (which can be null) from the output (which cannot be null).  As usual, the lower case Greek letters 
are metalinguistic variables ranging over formulas. 

 Notice that (R4) is simply modus ponens – from α and α→β, one is entitled to infer β.  Also, 
notice that (R1)-(R3) have no input; they are zero-place rules.  [In elementary logic, the only zero-place 
rule is the rule of reflexivity of ‘=’].  In a zero-place rule, given nothing, one can write down the output.  
An alternative, more traditional-sounding, description is to say that AS1 involves three axiom schemata – 
(R1)-(R3) – plus the rule of modus ponens. 

3. Examples of Derivations in System AS1 

 Recall the definitions of ‘derivation’ and ‘proof’, which may be stated as follows. 

Def 
Let Σ be a deductive system with formulas S and rules R. 
 
A derivation of α from Γ in Σ is, by definition, a finite sequence of formulas of Σ, 
the last one of which is α, and every line of which is either an element of Γ or 
follows from previous lines by a rule of Σ. 
 
A proof of α in Σ is a finite sequence of formulas of Σ, the last one of which is α, 
and every line of which follows from previous lines by a rule of Σ. 
 

Notice, given these definitions, that every proof is automatically a derivation – specifically, a derivation 
from the empty set. 

 The following are examples of derivations and proofs in AS1.  We begin with a proof of ‘P→P’.  
In elementary logic, the proof of ‘P→P’ is incredibly easy, since elementary logic employs the method of 
conditional derivation.  No such method is included in system AS1, so the proof of ‘P→P’ in AS1 is not 
nearly so trivial. 

Example 1:  
 

(1) P→(P→P.→P) R1 
(2) P→(P→P.→P) .→. (P→.P→P)→(P→P) R2 
(3) (P→.P→P)→(P→P) 1,2,R4 
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(4) (P→.P→P) R1 
(5) P→P 3,4,R4 

 
Note that, in order to reduce visual clutter, some parentheses are replaced by dots, according to the usual 
custom.   

Notice also in the above display that there are three columns.   

(1) the column of line numbers 
(2) the column of formulas 
(3) the column of annotations.   

Strictly speaking, only the column of formulas constitute the derivation proper. [Recall the official 
definition of derivation.]  On the other hand, the two flanking columns are not strictly speaking part of the 
derivation.  Rather, they constitute the surrounding informal metalinguistic argument to the conclusion that 
the given sequence – i.e., the column of formulas – is in fact a derivation in the system. 

 The above proof appeals to all the rules except R3.  The following example – which proves 
‘∼P→(P→Q)’ – utilizes R3. 

Example 2:  
(1) ∼Q→∼P .→. P→Q R3 
(2) (∼Q→∼P.→.P→Q) →. ∼P→(∼Q→∼P.→.P→Q) R1 
(3) ∼P→(∼Q→∼P.→.P→Q) 1,2,R4 
(4) ∼P→(∼Q→∼P.→.P→Q) .→. (∼P→.∼Q→∼P)→(∼P→.P→Q) R2 
(5) (∼P→.∼Q→∼P) → (∼P→.P→Q) 3,4,R4 
(6) (∼P→.∼Q→∼P) R1 
(7) ∼P→.P→Q 5,6,R4 

 
 Examples 1 and 2 are both proofs [derivations with no premises].  The following is a derivation 
with a single premise; in particular, it is a derivation of ‘(P→(P→Q))→(P→Q)’ from ‘P→P’. 

Example 3:  
(1) P→(P→Q) .→. (P→P) → (P→Q) R2 
(2) {(P→(P→Q) .→. (P→P)→(P→Q))} →  

 {[P→(P→Q).→.P→P] → [P→(P→Q).→.P→Q]} R2 
(3) [P→(P→Q).→.P→P] → [P→(P→Q).→.P→Q] 1,2,R4 
(4) (P→P) → [P→(P→Q).→(P→P)] R1 
(5) P→P Pr 
(6) [P→(P→Q).→.P→P] 4,5,R4 
(7) P→(P→Q).→(P→Q) 3,6,R4 

 
 Notice that Example 3 ostensively (≠ostensibly!) demonstrates that ‘(P→(P→Q))→(P→Q)’ is 
derivable from ‘P→P’.  This result can be summarized by the following metalanguage statement. 

(m1) P→P � (P→(P→Q))→(P→Q) 

Similarly, Example 1 ostensively demonstrates that ‘P→P’ is provable, which can be summarized as 
follows. 

(m2) � P→P 
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 Recall that, in Chapter 6, we proved the following general theorem about deduction. 

(G6) Γ�α  &  Γ∪{α}�β  .→  Γ�β 

The following is an immediate corollary. 

(c) �α  &  α�β  .→  �β 

In other words, if α is provable, and β can be derived from α, then β is provable [where, as usual, it is 
tacitly understood that ‘α’ and ‘β’ are universally quantified].  Combining (c) with (m1) and (m2), we 
obtain the following result. 

(m3) � (P→(P→Q))→(P→Q) 

This, of course, says that ‘(P→(P→Q))→(P→Q)’ is provable.   

 Notice carefully that, although we have shown that ‘(P→(P→Q))→(P→Q)’ is provable in system 
AS1, we have not presented an actual proof of ‘(P→(P→Q))→(P→Q)’ in system AS1.  Rather, we have 
demonstrated only that a proof exists.   

 However, recall that in proving (G6), we provide a general procedure for taking two derivations 
— one of α from Γ, and one of β from Γ∪{α} — and constructing a derivation of β from Γ, thereby 
proving that such a derivation exists.  How does this general procedure work for derivations 1 and 3?  
Quite simply, one takes derivation-3 — which derives ‘(P→(P→Q))→(P→Q)’ from ‘P→P’ — and one 
takes derivation-1 — which proves ‘P→P’ — and interleaves them in the prescribed manner.  
Specifically, everywhere ‘P→P’ occurs in derivation-3, one inserts derivation-1.  The following is the 
result.   

(1) P→(P→Q) .→. (P→P) → (P→Q)  R2 
(2) {(P→(P→Q) .→. (P→P)→(P→Q))} →  
 {[P→(P→Q).→.P→P] → [P→(P→Q).→.P→Q]}  R2 
(3) [P→(P→Q).→.P→P] → [P→(P→Q).→.P→Q]  1,2,R4 
(4) (P→P) → [P→(P→Q).→(P→P)]  R1 
(5.1) P→(P→P.→P)  R1 
(5.2) P→(P→P.→P) .→. (P→.P→P)→(P→P)  R2 
(5.3) (P→.P→P)→(P→P)  1,2,R4 
(5.4) (P→.P→P)  R1 
(5.5) P→P  3,4,R4 
(6) [P→(P→Q).→.P→P]  4,5.5,R4 
(7) P→(P→Q).→(P→Q)  3,6,R4 

 
As you can readily see, the sequence is (as promised!) a proof of ‘(P→(P→Q))→(P→Q)’! 

 Although the above sequence is indeed a proof of ‘(P→(P→Q))→(P→Q)’, it by no means the 
only proof of this formula.  The following is a somewhat shorter proof. 
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(1) P→(P→Q) .→. (P→P)→(P→Q) R2 
(2) P→(P→Q) .→. (P→P)→(P→Q) :→: 
 P→(P→Q) → (P→P)] .→. P→(P→Q) → (P→Q) R2 
(3) P→(P→Q) → (P→P) .→. P→(P→Q) → (P→Q) 1,2,R4 
(4) P→(P→Q.→P)  .→:  P→(P→Q) .→ (P→P) R2 
(5) P→(P→Q.→P) R1 
(6) P→(P→Q) .→ (P→P) 4,5,R4 
(7) P→(P→Q) → (P→Q) 3,6,R4 

4. Other Axiom Systems for CSL 

 In the present section, we present five other axiom systems for CSL.  The first two are based on the 
same connectives and connective definitions as AS1.  The next two are based on ‘×’ and ‘→’.  The final 
one is based on ‘→’, ‘∼’, ‘&’, and ‘∨’.  Notice that the only non-axiomatic rule is modus ponens. 

 
AS2: 

(R1) å α→(β→α)  
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)]  
(R3) å (∼α→∼β)→((∼α→β)→β)  
(R4) α, α→β å β 

AS3: 
(R1) å (∼α→α)→α  
(R2) å α→(∼α→β) 
(R3) å (α→β)→[(β→γ)→(α→γ)] 
(R4) α, α→β å β 

AS4: 
(R1) å α→(β→α)  
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)]  
(R3) å [(α→×)→×]→α 
(R4) α, α→β å β 
 
(d) ∼α =df α→× 

AS5: 
(R1) å α→(β→α)  
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)]  
(R3) å [(α→β)→α]→α 
(R4) å ×→α 
(R5) α, α→β å β 

(d) ∼α =df α→× 
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AS6: 
(R1) å α→(β→α)  
(R2) å [α→(β→γ)]→[(α→β)→(α→γ)]  
(R3) å (α&β)→α  
(R4) å (α&β)→β  
(R5) å α→[β→(α&β)]  
(R6) å α→(α∨β) 
(R7) å β→(α∨β) 
(R8) å (α→γ)→[(β→γ)→((α∨β)→γ)]  
(R9) å (α→β)→[(α→∼β)→∼α]  
(R10) å ∼∼α→α 
(R11) α, α→β å β 

(d) α↔β  =df  (α→β)&(β→α) 

 


