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1. Single-Conclusion Logics 

 Logics can be characterized semantically (model theoretically) and deductively (axiomatically, 
proof theoretically). 

 In the former case, one defines validity in terms of truth; an argument is semantically valid iff it is 
impossible for the conclusion to be false while the premises are true.  Possibility is explicated in terms of 
admissible valuations; specifically, an argument Γ/α is invalid if there is at least one admissible valuation 
v such that v(Γ)=T and v(α)=F. 

 In the latter case, one defines validity in terms of deducibility; an argument is deductively valid iff 
it is possible to deduce the conclusion from the premises using the rules of the formal system in question. 

 Each method characterizes a logic.  The object characterized may also be characterized abstractly, 
simply as an ordered pair (S,í), where S is a non-empty set and í is a relation from P(S) to S; the 
former are the sentences; the latter is the entailment relation.  Of course, not just any pair (S,í) of this sort 
counts as a logic; logical entailment has various properties, which every abstract logic should satisfy.   

 The abstractly characterizable properties of all logics are made specific in the following definition 
of an SC-logic.  ‘SC’ stands for ‘single conclusion’; besides abstract logics of this category (multiple 
premises, single conclusion), there are other categories as well, which we examine later. 

D1 
A single-conclusion logic (SC-logic) is, by definition, a pair (S,í), where S is a 
non-empty set, and í is a relation from ℘(S) to S, satisfying the following 
restrictions. 
 
(r1) α∈Γ  →  Γíα 
(r2) Γ⊆∆  →.  Γ�α  →  ∆�α 
(r3) Γíα  &  Γ∪{α}íβ  .→  Γíβ 
 

Basically, condition (r1) says that a set entails each of its elements.  (r2) says that if a set entails a 
formula, then every superset of that set does as well; in other words, adding extra premises to a valid 
argument doesn’t make it invalid; this is known as monotonicity.  Finally, condition (r3) is a 
generalization of transitivity.  One can prove (exercise) that the associated binary entailment relation is 
transitive, which is to say that every SC-logic satisfies the following.  

(t) αíβ  &  βíγ  .→  αíγ 

Here, ‘αíβ’ is short for the official ‘{α}íβ’. 

2. Consequence Operators 

 Every entailment relation gives rise to a corresponding function, called a consequence operator.  
First of all, every relation R from A to B yields a corresponding function fR from A to ℘(B), implicitly 
defined as follows. 

(d1) fR(x) = {y: xRy} 



Hardegree, MetaLogic,  c7: Abstract Logics VII-3 

Similarly, every function f from A to ℘(B) yields a corresponding relation from A to B, implicitly 
defined as follows. 

(d2) x Rf y  iff:  y ∈ f(x) 

 Now, the entailment relation � described in Part 1 is a relation from ℘(S) to S, so there is an 
associated function from ℘(S) to ℘(S), denoted C (short for ‘consequence’), defined as follows. 

(d3) C(Γ) = {α: Γíα} 

In other words, C(Γ) (read “the consequences of Γ”) is the set of formulas entailed by the set Γ.   

 Consequence operators can also be abstractly defined, as follows. 

D2 
Let S be any non-empty set, and let C be a function from ℘(S) into ℘(S).  Then C 
is said to be a consequence operator on S iff it satisfies the following conditions. 
 
(c1) Γ ⊆ C(Γ) 
(c2) if Γ ⊆ ∆, then C(Γ) ⊆ C(∆) 
(c3) C(C(Γ)) ⊆ C(Γ) 
 

 Now, one can prove (exercise) that every SC-logic (S,�) gives rise to an associated consequence 
operator C on S, defined by (d3).  Similarly, one can prove (exercise) that every consequence operator C 
on S gives rise to an SC-logic (S,í), where í is implicitly defined as follows. 

[[[This has to be rewritten, since finitary-cut does not imply infinitary-cut, which is required for í to 
yield a consequence operator.]] 

(d4) Γíα  ↔  α∈C(Γ) 

In other words, Γ entails α iff α is a consequence of Γ. 

3. Deductive Entailment is a Species of Logical Entailment  

 Recall from Chapter 6 that we can define deductive entailment in terms of the notion of a deductive 
system.  The following are our official definitions. 

Def  
A deductive system is, by definition, a pair (S,R), where S is the set of sentences 
of a formal language, and R is a collection of inference rules on S. 
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Def  
A derivation of α from Γ in (S,R) is, by definition, a finite sequence of formulas 
of S, the last one of which is α, and everyone of which is either an element of Γ, or 
follows from previous formulas by a rule in R. 
 

 
 Given the notion of derivation in a deductive system, one can define the following notion of 
deductive entailment (relative to (S,R). 

(d) Γ�α =df there is a derivation of α from Γ [in system (S,R)] 

In this connection one can prove (exercise) the following theorem. 

Th 
Let (S,R) be a deductive system, and let � be defined as in (d).  Then the 
following are true, for any α, β, Γ, ∆. 
 
(1) α∈Γ → Γ�α 
(2) Γ⊆∆ →. Γ�α → ∆�α 
(3) Γ�α & Γ∪{α}�β  .→  Γ�β 
 

Comparing clauses (1)-(3) with the restrictions (r1)-(r3) defining SC-logics, we can informally restate 
this theorem as follows. 

 
Deductive entailment is a species of abstract logical entailment. 

 

4. Semantic Entailment is a Species of Logical Entailment 

 Recall from Chapter 5 that, at the minimum, a semantics for a language L, specifies a set V of ad-
missible valuations on the set of sentences of L.  The following are the relevant definitions. 

Def 
Let S be a non-empty set of sentences.  Then a valuation on S is, by definition, any 
function from S into {T,F}. 
 

 

Def 
Let S be a non-empty set of sentences.  Then V is a truth-value semantics on S iff 
every element of V is a valuation on S. 
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Here, V is the set of admissible valuations on S.  In this context, we will omit the modifier ‘truth-value’ 
and simply write ‘semantics’. 

 Every (truth-value) semantics gives rise to an associated semantic entailment relation, defined as 
follows. 

(d) Γëα =df ∼∃v∈V : ∀γ(γ∈Γ → v(γ)=ε)  &  v(α)=F 

In this connection one can prove (exercise) the following theorem. 

Th 
Let (S,V) be a truth-value semantic system, and let ë be defined as in (d).  Then the 
following are true, for any α, β, Γ, ∆. 
 
(1) α∈Γ → Γëα 
(2) Γ⊆∆ →. Γëα → ∆ëα 
(3) Γëα & Γ∪{α}ëβ  .→  Γëβ 
 

Comparing clauses (1)-(3) with the restrictions (r1)-(r3) defining SC-logics, we can informally restate 
this theorem as follows. 

 
Semantic entailment is a species of abstract logical entailment. 

 

5. Every SC-Logic can be Semantically Specified. 

 An interesting further question is whether logical entailment is a species of semantic entailment.  In 
other words, can every SC-logic be semantically specified?  In this connection, we introduce further 
definitions.   

Def 
Let L [=(S,í)] be an SC-logic, let V be a semantics for S, and let ë be the as-
sociated semantic entailment relation.  Then  
 
V is sound for L iff: for every Γ⊆S, α∈S, if Γëα  then Γíα. 
 
V is complete for L iff: for every Γ⊆S, α∈S, if Γíα then Γëα  
 

In other words, soundness amounts to the claim that every semantically valid argument is logically valid, 
and completeness amounts to the claim that every logically valid argument is semantically valid. 

V specifies L iff: V is both sound and complete for L, 
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L [=(S,í)]is semantically specifiable iff: there is a semantics V that is both sound and 
complete for L. 

[[Notice that the definitions could be reversed; we could define ‘L is sound/complete for V’ in a similar 
manner.  In that case we would obtain the following result:  L is sound/complete for V iff V is 
complete/sound for L.]] 

 The earlier question, whether every SC-logic can be semantically specified, can now be answered 
in the affirmative. 

(T) Let L be an SC-logic.  Then there exists a semantics V that is both sound and complete for 
L. 

Proof: Let L = (S,í) be an SCL.  Define C(L) = {Cn(Γ): Γ⊆S}.  For each A in C(L), define vA so that 
vA(α)=T iff α∈A.  Define V to be the set {vA: A∈C(L)}.  Claim:  V is sound and complete for L. 
 
Soundness: Suppose not(Γíα), to show for some v that v(Γ)= T, v(α)=F.  Consider vA, where A=Cn(Γ).  
Then vA(Γ)=T, since Γ ⊆ Cn(Γ), and vA(α)=F, since α ∉ Cn(Γ), by hypothesis. 
 
Completeness: Suppose Γíα, to show that there is no v such that v(Γ)=T and v(α)=F.  Suppose 
otherwise.  Then there is an A in C(L) such that vA(Γ)=T and vA(α)=F, where A=Cn(∆) for some ∆.  This 
amounts to: Γ ⊆ Cn(∆).  But then Cn(Γ) ⊆ Cn(Cn(∆)).  Also, Cn(Cn(∆)) ⊆ Cn(∆). so Cn(Γ) ⊆ Cn(∆).  By 
hypothesis, Γ�α, so α ∈ Cn(Γ), so α ∈ Cn(∆), so vA(α)=T, which contradicts an earlier assumption. 
 

6. Not Every SC-Logic is Categorical. 

 Every SC-logic has a semantic specification.  A remaining question is whether every SC-logic has 
a unique semantic specification.  This gives rise to the following definition. 

D 
Let L be an SC-logic.  Then L is categorical iff there is exactly one semantics V 
that is sound and complete for L. 
 

Given the earlier theorem that every logic is specified by at least one semantics V, to prove that a logic L 
is categorical, one must prove that V1 and V2 both specify L only if V1=V2.   

 The question, whether every SC-logic is categorical, is answered in the negative.  

(T) Not every SC-logic is categorical. 

Proof: it is sufficient to produce an SCL that is not categorical.  Consider the following SCL. 
 
 S = {a,b} a≠b 
 {a}íb, {a,b}ía, {a,b}íb, {a}ía, {b}íb 
 
Now, consider the following two sets of valuations. 
 
 V1 = {v1, v2} ;   
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 V2 = {v1} 
 
 v1(a) = F, v1(b) = T 
 v2(a) = T, v2(b) = T 
 
Routine calculation shows that the semantic entailments relative to V1 are the very same as the semantic 
entailments relative to V2, being the entailments of L, above. Both V1 and V2 specify L; yet V1≠V2. 
 
This is a simple example, but a counter-example to a claim doesn’t have to be complex.  If one doesn’t 
feel comfortable with “unreal” counterexamples, then one need merely consider any fragment of classical 
first order logic, ordinarily construed, to obtain a “real” counterexample.  Proving that classical logic is 
not categorical requires more work, which we postpone until we have more formal resources. 

7. Other Categories of Logics 

 As mentioned in Section 1, SC-logics are not the only category of logic.  They are perhaps the 
most natural, to the extent that they closely resemble the natural deduction characterization of logic.  Still, 
there are other categories; we list the three categories that interest us. 

(c1) single conclusion logics    category: (m,1) 
(c2) assertional logics     category: (0,1) 
(c3) multiple conclusion logics    category: (m,m) 

The category (c1,c2) refers to how many premises and conclusions the logic countenances.  For example, a 
single conclusion logic (category (m,1)) countenances multiple premises but a single conclusion; an 
assertional logic (category (0,1)) countenances no premises and a single conclusion.  Basically, an 
assertional logic says what formulas are logically true, but it does not say explicitly what arguments are 
valid.  Historically, a number of logics have been presented in this manner.  Finally, a multiple conclusion 
logic (category (m,m) countenances both multiple premises and multiple conclusions; logics of this sort 
were pioneered by Gentsen.   Semantically speaking, a multiple conclusion argument (Γ/∆) is invalid if it 
is possible for all the premises to be true while all the conclusions are false; otherwise, it is valid.   

 Notice, of course, that one can define other categories of logics; e.g., (m,0) :  multiple premise, no 
conclusion; or (1,m): single premise, multiple conclusion; however, these other categories are not 
historically instantiated, so we will ignore them. 

 We have already formally defined SC-logics; we now define assertional logics and MC-logics. 

D3 
An assertional logic is, by definition, a pair (S,í), where S is a non-empty set, and 
í is a subset of S. 
 

The elements of � are the theses (assertions) of the logic; it is customary to write ‘íα’ in place of ‘α  ∈ 
í’; intuitively, ‘í’ is treated as a one-place predicate ‘...is a thesis’.  Notice that there are no abstract 
restrictions on what counts as a thesis. 
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D4 
A multiple-conclusion logic (MC-logic) is, by definition, a pair (S,í), where S is 
a non-empty set, and í is a relation from ℘(S) to ℘(S), satisfying the following 
restrictions. 
 
(r1) if   α∈Γ and  α∈∆, then Γí∆ 
(r2) if Γí∆, and Γ⊆Γ′, and ∆⊆∆′, then Γ′í∆′ 
(r3) if Γ′í∆′, for every Γ′⊇Γ, ∆′⊇∆ s.t. Γ′∪∆′=S, then Γí∆ 
 

MC-logics are the most general category.  Given any MC logic, one can define an affiliated SC logic, 
simply by restricting the MC entailment relation to single-conclusion arguments.  Similarly, given any SC 
logic (and hence, given any MC logic), one can define an affiliated assertional logic, simply by 
considering those arguments with no premises.  This is formulated as follows, where ‘í’ is used 
ambiguously; on the right, it refers to MC-entailment relation; on the left, it refers to SC-entailment (resp., 
assertion “predicate”).  

(d5) Γíα =df Γí{α} 
(d6) íα =df ∅í{α} 

8. Generalized Semantic Entailment is a Species of MC-Entailment. 

 We now turn to MC-logics.  First we define generalized semantic entailment in a manner similar to 
ordinary semantic entailment. 

(D) Let S be a non-empty set of sentences, and let V be a semantics for S.  Then generalized 
semantic entailment w.r.t. V is the relation ë from ℘(S) to ℘(S) defined as follows. 
 
(d) Γë∆  iff:  no v in V is such that v(Γ)=T and v(∆)=F 

In other words, ∆ follows from Γ (relative to V) iff it is impossible (relative to V) for every sentence in Γ 
to be true while every sentence in ∆ is false. 

 One can prove that the generalized semantic entailment relation ë, as defined above, satisfies the 
restrictions on an MC-logic (exercise).  In other words, GS-entailment is a species of MC-entailment. 

9. Every MC-Logic can be Semantically Specified. 

 One is naturally led to ask whether MC-entailment is a species of GS-entailment, alternatively 
stated, whether every MC-logic can be can be semantically specified.  This is answered in the affirmative 
in the following theorem.  First, we introduce a definition and supporting lemma. 

(D) Let S be any non-empty set, and let S1 and S2 be (possibly empty) subsets of S.  Then 
(S1,S2) is a quasi-partition of S iff S1∩S2=∅ and S1∪S2=S 

(L) Let L = (S,í) be an MCL.  Suppose not(Γí∆).  Then there exists a quasi-partition (S1,S2) 
of S such that Γ⊆S1, ∆⊆S2, and not(S1íS2). 
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Proof: exercise. 
 

(T) Let (S,í) be an MCL.  Then there is a semantics V that is sound and complete for (S,í). 

Proof: Let L = (S,í) be an MCL.  Consider the subset P(L) of quasi-partitions of S defined as follows:  
P(L) = {(S1,S2): not(S1íS2)}.  For each P in P(L), define vP so that vP(α)=T if α∈S1, vP(α)=F if α∈S2.  
Evidently, given the definition of a quasi-partition, every such function is a valuation on S.  Define V to be 
the set {vP: P∈P(L)}.  Claim:  V is sound and complete for L. 
 
Completeness:  Suppose not(Γí∆), to show for some v in V, v(Γ)=T, v(∆)=F.  By Lemma (L), there exists 
a quasi partition (S1,S2) such that Γ⊆S1, ∆⊆S2, and not(S1íS2); call it P.  Consider vP.  Evidently, 
vP(Γ)=T, and vP(∆)=F. 
 
Soundness:  Suppose Γí∆, to show that no v in V is such that v(Γ)=T and v(∆)=F.  Suppose otherwise.  
Then there is a P in P(L) such that vP(Γ)=T and vP(∆)=F, where P = (S1,S2), and not(S1íS2).  This 
amounts to: Γ⊆S1, ∆⊆S2; so by (r2), S1íS2, which yields a contradiction. 
 

10. Every MC-Logic is Categorical. 

 In the previous section, we saw that every MCL is specified by at least one semantics.  Next, we 
show that, unlike SCL’s, every MCL is categorical; every MCL is specified by exactly one semantics.   

(T) Every MCL is categorical.   

Proof: Let (S,í) be an MCL; suppose that V1 and V2 both specify (S,í), to show V1=V2.  Suppose 
otherwise.  Then (without loss of generality) there is a valuation on S that is in V1 but not in V2; call it v.  
Consider the argument (Tv/Fv), where Tv = {α:v(α)=T}, and Fv = {α:v(α)=F}.  Clearly, this argument is 
refuted by v, and hence by V1; Tv does not entail Fv, relative to V1.  Since V1 specifies (S,í), by 
hypothesis, we have not(TvíFv).  But V2 also specifies (S,í), so V2 must also contain a valuation, call it 
w, which refutes the argument (Tv/Fv).  Insofar as w refutes (Tv/Fv), w(Tv)=T, and w(Fv)=F.  So by exten-
sionality, v=w, which means v ∈V2, which contradicts an earlier assumption. 
 


