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1. Single-Conclusion Logics

Logics can be characterized semantically (model theoretically) and deductively (axiomatically,
proof theoretically).

In the former case, one defines vaidity in terms of truth; an argument is semantically valid iff itis
impossible for the conclusion to be false while the premises are true. Possibility is explicated in terms of
admissible valuations; specifically, an argument G'a isinvalid if thereis at least one admissible valuation
v such that v(G=T and v(a)=F.

In the latter case, one defines validity in terms of deducibility; an argument is deductively valid iff
it is possible to deduce the conclusion from the premises using the rules of the formal system in question.

Each method characterizes alogic. The object characterized may also be characterized abstractly,
simply as an ordered pair (S,I-), where S is a non-empty set and I is arelation from P(S) to S; the
former are the sentences; the latter is the entailment relation. Of course, not just any pair (S,I-) of this sort
counts as alogic; logical entailment has various properties, which every abstract logic should satisfy.

The abstractly characterizable properties of al logics are made specific in the following definition
of an X-logic. ‘SC’ stands for ‘single conclusion’; besides abstract logics of this category (multiple
premises, single conclusion), there are other categories as well, which we examine later.

D1
A single-conclusion logic (SC-logic) is, by definition, apair (S,IF), where Sisa
non-empty set, and I- isarelation from A (S) to S, satisfying the following
restrictions.

(r1) alG® Gra
(r2) G D®.Ga® D-a
(r3) Gra & GE{a}rb .® Grb

Basically, condition (rl) says that a set entails each of its elements. (r2) says that if a set entails a
formula, then every superset of that set does as well; in other words, adding extra premises to a valid
argument doesn’'t make it invalid; this is known as monotonicity. Finally, condition (r3) is a
generaization of trangitivity. One can prove (exercise) that the associated binary entailment relation is
transitive, which isto say that every SC-logic satisfies the following.

® alFb & b-g .® al-g

Here, ‘al-b’ isshort for the officia ‘{a} I-b’.

2. Consequence Operators

Every entailment relation gives rise to a corresponding function, called a consequence operator.
First of all, every relation R from A to B yields a corresponding function fz from A to A (B), implicitly
defined as follows.

(d1)  fr(x) ={y: xRy}



Hardegree, Metalogic, c7: Abstract Logics VII-3

Similarly, every function f from A to A (B) yields a corresponding relation from A to B, implicitly
defined as follows.

(d2) xRy iff: yT f(x)

Now, the entailment relation + described in Part 1 is arelation from A (S) to S, so thereis an
associated function from A (S) to A (S), denoted C (short for ‘ consequence’), defined as follows.

(d3) (C(G ={a:Gra}
In other words, C(G) (read “the consequences of G’) isthe set of formulas entailed by the set G.

Consequence operators can also be abstractly defined, as follows.

D2
Let S be any non-empty set, and let C be afunction from A (S) into A (S). Then C
is said to be a consequence operator on Siff it satisfies the following conditions.

(cl) Gi CQ
(c2) ifGI DthenC(Q I C(D)
(c3) C(CO)I €

Now, one can prove (exercise) that every SC-logic (S,) givesrise to an associated consequence
operator C on S, defined by (d3). Similarly, one can prove (exercise) that every consequence operator C
on Sgivesriseto an SC-logic (S,IF), where I- isimplicitly defined as follows.

[[[This has to be rewritten, since finitary-cut does not imply infinitary-cut, which is required for I- to
yield a consequence operator.]]

(d4) Gra « al C(Q

In other words, Gentails a iff a isaconsequence of G

3. Deductive Entailment is a Species of Logical Entailment

Recall from Chapter 6 that we can define deductive entailment in terms of the notion of a deductive
system. Thefollowing are our official definitions.

Def
A deductive systemis, by definition, apair (S,R), where Sisthe set of sentences
of aformal language, and R is acollection of inferenceruleson S.
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Def
A derivation of a from Gin (S,R) is, by definition, afinite sequence of formulas
of S, the last one of which isa, and everyone of which is either an element of G or
follows from previous formulas by arulein R.

Given the notion of derivation in a deductive system, one can define the following notion of
deductive entailment (relative to (S,R).

(d) G-a =4 thereisaderivation of a from G[in system (S,R)]

In this connection one can prove (exercise) the following theorem.

Th
Let (S/R) be adeductive system, and let - be defined asin (d). Then the

following aretrue, for any a, b, G D.

(1) al G® G-a
(2) GdD®.G-a® Dra
(3) G-a&GE{a}+b .® G-b

Comparing clauses (1)-(3) with the restrictions (r1)-(r3) defining SC-logics, we can informally restate
this theorem as follows.

Deductive entailment is a species of abstract logical entailment.

4. Semantic Entailment is a Species of Logical Entailment

Recall from Chapter 5 that, at the minimum, a semantics for alanguage L, specifiesa set V of ad-
missible valuations on the set of sentences of L. The following are the relevant definitions.

Def
Let Sbe anonempty set of sentences. Then avaluation on Sis, by definition, any
function from Sinto { T,F}.

Def
Let Sbe anonempty set of sentences. ThenV isatruth-value semantics on Siff
every element of V isavauationon S,
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Here, V is the set of admissible valuations on S. In this context, we will omit the modifier ‘truth-value'
and simply write ‘ semantics'.

Every (truth-value) semantics gives rise to an associated semantic entailment relation, defined as
follows.

(d) G=a =g ~$vi V:" gd G® v(g=e) & v(a)=F

In this connection one can prove (exercise) the following theorem.

Th
Let (S\V) be atruth-value semantic system, and let = be defined asin (d). Then the

following aretrue, for any a, b, G D.

(1) al G® Gea
(2) G D®.G=a® D=a
(3) Gea&GE{a}=b .® G=b

Comparing clauses (1)-(3) with the restrictions (r1)-(r3) defining SC-logics, we can informally restate
this theorem as follows.

Semantic entailment is a species of abstract logical entailment.

5. Every SC-Logic can be Semantically Specified.

An interesting further question is whether logical entailment is a species of semantic entailment. In
other words, can every SC-logic be semantically specified? In this connection, we introduce further
definitions.

Def
Let £ [=(S,IF)] bean SC-logic, let V be asemanticsfor S, and let = be the as-
sociated semantic entailment relation. Then
V issound for L iff: forevery G S, al S, if G=a then Gr-a.

V iscomplete for £ iff: for every G S, al S, if Gi-a then G=a

In other words, soundness amounts to the claim that every semantically valid argument is logically valid,
and completeness amounts to the claim that every logically valid argument is semantically valid.

V specifies L iff: V is both sound and complete for L,
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L [=(S,IF)]is semantically specifiable iff: thereis a semantics V that is both sound and
complete for L.

[[Notice that the definitions could be reversed; we could define ‘ L is sound/complete for V' in a similar
manner. In that case we would obtain the following result: £ is sound/complete for V iff V is
complete/sound for L.]]

The earlier question, whether every SC-logic can be semantically specified, can now be answered
in the affirmative.

(T) Le L bean SC-logic. Then there existsasemanticsV that is both sound and complete for
L.

Proof: Let L = (S,I-) bean SCL. Define C(£) ={Cn(GQ): G S}. Foreach A in C(L), define v so that
va(a)=Tiff al A. DefineV tobetheset{va: Al C(L)}. Clam: V issound and completefor L.

Soundness: Suppose not(Gi-a), to show for somev that v(G=T, v(a)=F. Consider va, where A=Cn(G).
Thenva(G=T, since Gl Cn(G), and va(a)=F, sincea | Cn(G), by hypothesis.

Completeness. Suppose Gi-a, to show that thereis no v such that v(G=T and v(a)=F. Suppose
otherwise. Then thereisan A in C(L) such that va(G=T and va(a)=F, where A=Cn(D) for some D. This
amountsto: GI Cn(D). ButthenCn(G) I Cn(Cn(D)). Also, Cn(Cn(D)) I Cn(D). soCn(G) i Cn(D). By
hypothesis, G-a, soa 1 Cn(G),soal Cn(D), sova(a)=T, which contradicts an earlier assumption.

6. Not Every SC-Logic is Categorical.

Every SC-logic has a semantic specification. A remaining question is whether every SC-logic has
aunique semantic specification. This givesriseto the following definition.

D
Let £ bean SC-logic. Then L is categorical iff there is exactly one semanticsV
that is sound and complete for L.

Given the earlier theorem that every logic is specified by at least one semantics V, to prove that alogic £
is categorical, one must prove that V, and V, both specify £ only if V=V,.

The question, whether every SC-logic is categorical, is answered in the negative.
(M Not every SC-logic is categorical.
Proof: it is sufficient to produce an SCL that is not categorical. Consider the following SCL.

S={ab} atb
{al b, {ab}-a {ab}i-b, {a} i-a {b} b

Now, consider the following two sets of valuations.

Vi={vy, V3 ;
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Vo ={vyi}

vi(@ =F,vyb)=T
Vz(a) = T, Vz(b) =T

Routine cal culation shows that the semantic entailments relative to V, are the very same as the semantic
entailments relative to V,, being the entailments of £, above. Both V; and V, specify £; yet V{1 V..

This is a smple example, but a counter-example to a claim doesn't have to be complex. If one doesn’t
feel comfortable with “unreal” counterexamples, then one need merely consider any fragment of classical
first order logic, ordinarily construed, to obtain a “real” counterexample. Proving that classical logic is
not categorical requires more work, which we postpone until we have more formal resources.

7. Other Categories of Logics
As mentioned in Section 1, SC-logics are not the only category of logic. They are perhaps the

most natural, to the extent that they closely resemble the natural deduction characterization of logic. Still,
there are other categories; we list the three categories that interest us.

(cl) singleconclusion logics category: (m,1)
(c2) assertional logics category: (0,1)
(c3) multiple conclusion logics category: (m,m)

The category (c;,C;) refers to how many premises and conclusions the logic countenances. For example, a
single conclusion logic (category (m,1)) countenances multiple premises but a single conclusion; an
assertiona logic (category (0,1)) countenances no premises and a single conclusion. Basicaly, an
assertiona logic says what formulas are logically true, but it does not say explicitly what arguments are
valid. Historically, a number of logics have been presented in this manner. Finally, a multiple conclusion
logic (category (m,m) countenances both multiple premises and multiple conclusions; logics of this sort
were pioneered by Gentsen. Semantically speaking, a multiple conclusion argument (G'D) isinvalid if it
ispossible for all the premisesto be true while all the conclusions are false; otherwise, it isvalid.

Notice, of course, that one can define other categories of logics; e.g., (m,0) : multiple premise, no
conclusion; or (1,m): single premise, multiple conclusion; however, these other categories are not
historically instantiated, so we will ignore them.

We have already formally defined SC-logics; we now define assertional logics and MC-logics.

D3
An assertional logic is, by definition, apair (S,I-), where Sis anon-empty set, and
I- isasubset of S.

The elements of - are the theses (assertions) of the logic; it is customary to write ‘I-a’ in placeof ‘a 1
I-"; intuitively, ‘I’ is treated as a one-place predicate *...is a thesis'. Notice that there are no abstract
restrictions on what counts as athesis.
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D4
A multiple-conclusion logic (MC-logic) is, by definition, apair (S,I-), where Sis
anon-empty set, and I- isarelation from A (S) to A (S), satisfying the following
restrictions.

(r1) if al Gand al D,then G-D
(r2) if G-D,andd G and Di DG then Gi-D¢
(r3) if Gi-D for every GEG, DED sit. GE D¢=S, then Gi-D

MC-logics are the most general category. Given any MC logic, one can define an affiliated SC logic,
simply by restricting the MC entailment relation to single-conclusion arguments. Similarly, given any SC
logic (and hence, given any MC logic), one can define an affiliated assertional logic, smply by
considering those arguments with no premises. This is formulated as follows, where ‘I is used
ambiguoudly; on the right, it refers to MC-entailment relation; on the left, it refers to SC-entailment (resp.,
assertion “predicate”).

(d5) Gra =4t GI—{ a}
(d6) Fa =df /CEl—{ a}
8. Generalized Semantic Entailment is a Species of MC-Entailment.

We now turn to MC-logics. First we define generalized semantic entailment in a manner similar to
ordinary semantic entailment.

(D)  Let Sheanon-empty set of sentences, and let V be asemanticsfor S. Then generalized
semantic entailment w.r.t. V isthereation = from A (S) to A (S) defined as follows.

(d) G=D iff: novinV issuch that v(§G=T and v(D)=F

In other words, Dfollowsfrom G (relativeto V) iff it isimpossible (relative to V) for every sentencein G
to be true while every sentencein Disfalse.

One can prove that the generalized semantic entailment relation =, as defined above, satisfies the
restrictions on an MC-logic (exercise). In other words, GS-entailment is a species of M C-entailment.

9. Every MC-Logic can be Semantically Specified.

One is naturaly led to ask whether MC-entailment is a species of GS-entailment, alternatively
stated, whether every MC-logic can be can be semantically specified. Thisisanswered in the affirmative
in the following theorem. First, we introduce a definition and supporting lemma.

(D)  Let Sbeany non-empty set, and let S; and S; be (possibly empty) subsetsof S. Then
(S1,S,) isaquasi-partition of Siff S;CS,=Aand SES,=S

L) LetL =(Si-) bean MCL. Supposenot(G-D). Then there exists a quasi-partition (S,,S,)
of Ssuchthat A S;, DI S, and not(SyI-Sy).
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Proof: exercise.

(M Let (S-) bean MCL. Then thereisasemanticsV that is sound and complete for (S,I-).

Proof: Let £ = (S,I-) bean MCL. Consider the subset P(L) of quasi-partitions of S defined as follows:
P(L) = {(S1,S): not(S,-S,)}. For each Pin P(L), define vp so that ve(a)=T if al Sy, ve(a)=Fif al S,.
Evidently, given the definition of a quasi-partition, every such function isavauationon S. DefineV to be
the set {vp: PI P(£)}. Claim: V issound and complete for L.

Completeness: Suppose not(Gi-D), to show for somev inV, v(G=T, v(D)=F. By Lemma(L), there exists
aquas partition (S;,S;) suchthat G S, DI S, and not(SI-S,); call it P. Consider vp. Evidently,
vp(G)=T, and vp(D)=F.

Soundness. Suppose G D, to show that no v in V is such that v(G)=T and v(D)=F. Suppose otherwise.
Then thereisaPin P(£) such that ve(G)=T and ve(D)=F, where P = (S,,S;), and not(Sy-S;). This
amountsto: G S;, DI S;; so by (r2), S;I-S,, which yields a contradiction.

10. Every MC-Logic is Categorical.

In the previous section, we saw that every MCL is specified by at least one semantics. Next, we
show that, unlike SCL’s, every MCL is categorical; every MCL is specified by exactly one semantics.

(M Every MCL is categorical.

Proof: Let (S,I-) bean MCL; suppose that V, and V, both specify (S,I-), to show V,=V,. Suppose
otherwise. Then (without loss of generality) thereisavauation on Sthat isin V4 but not in'V,; cal it v.
Consider the argument (T,/F,), where T, = {a:v(a)=T}, and F, ={a:v(a)=F}. Clearly, thisargument is
refuted by v, and hence by V4; T, does not entail F,, relativeto V;. Since V; specifies (S,I-), by
hypothesis, we have not(T, IFF,). But V, also specifies (S,I-), so V, must also contain avaluation, cal it
w, which refutes the argument (T,/F,). Insofar asw refutes (T,/F,), w(T,)=T, and w(F,)=F. So by exten
sionality, v=w, which meansVv | V,, which contradicts an earlier assumption.



