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1. Derivations

Having provided a formal semantic (model-theoretic) characterization of logic, we now turn to the
deductive (proof-theoretic) characterization of logic. The analogy with introductory logic is
straightforward; in intro logic, the semantic characterization of SL is given in terms of truth tables,
whereas the deductive characterization of SL is given in terms of derivations in a natural deduction
sysem.

Whereas truth tables are easy to describe in a logically and mathematically rigorous manner, in
terms of vauations and truth-functions, derivations are more difficult to characterize mathematically. The
full derivation system of intro logic is quite complicated, involving as it does provisional assumptions,
show-lines, boxing, cancelling, etc.

On the aher hand, simple derivations, which form the backbone of al derivations, are not so
complicated. A simple derivation does not involve show-lines or provisional assumptions. You start
with the premises and apply inference rules (repeatedly, as necessary) until you reach the conclusion, at
which point you have a smple derivation of the conclusion from the premises. The following is the
official (but informal) definition.

Def
A simple derivation of conclusion C from premises P.,P.,...,P, is, by definition, a
list of formulas, the last line of which isthe conclusion C, and every line of which
is either apremise, or follows from previous lines by an inference rule.

Simple derivations serve as the archetype in the metalogical description of deductive g/stems.
Accordingly, we offer the following formal account. Notice that we drop the modifier ‘simple’; from the
point of view of metalogic, all derivations are “simple’.

Def
A derivation of a from Gis, by definition, afinite sequence of formulas, the last
one of which isa, and everyone of which is either an element of G, or followsfrom
previous formulas by an inference rule.

By way of formally rendering the notions of last and previous, we introduce explicit sequence notation, as
follows.

Def
A derivation of a from Gis, by definition, afinite sequence, & ;,...,S ,fi of formulas
satisfying the following restrictions.

(@) S,=a
2 for any k<n, s\ I G, or s, followsfrom {s;: i<k} by aninferencerule
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Formally, a finite sequence is just like a finite string, the difference being purely pragmatic. Generaly, a
sequence s hasafirst element s 1, asecond element s, etc. If s isn-long, then's, isthelast element of s.
Also, to say that s isasequence of so-and-so’sisto say that each s is a so-and-so.

But what is an inference rule? What doesit to say that something follows by one? We will largely
leave this open. Basically, an inference rule is a computable relation R from sets of formulas to formulas.
To say that a followsfrom Gby R isto say that the pair &5afistand in relation R. To say that arelation R
is computable means that a computer can, in principle, decide whether a given pair &afistand in the
relation. We will ignore this formal issue at the moment; suffice it to say that the rules one is accustomed
tousing in logic are all computable.

For example, modus ponens (MP) is an inference rule. Formally speaking, the pair &afibear the
MP-relation if and only if Gconsists of exactly two elements, one of which isa conditional c, the other of
which isthe antecedent of ¢, and such that a isthe consequent of c.

With thisin mind, we can now define what it means for something to follow by an inference rule.

Def
Let a beaformula, let Gbe aset of formulas, and let R be an inference rule. Then:

a follows from Gby R =« $D{DI G& &,afi R}.

Notice that, as an immediate consequence of the definition, if a followsfrom Gby R, and G D, then a
followsfrom Dby R.

2. Deductive Systems

In an earlier chapter, we saw how one can use aclass V of admissible valuations to define various
important logical notions, including validity and entailment. In what follows, we do the same in the
deductive context — we define corresponding notions, not in terms of admissible vauations, but rather in

terms of derivations.

First, we define the notion of deductive system.

Def
A deductive systemis, by definition, apair (S,R), where Sisthe set of sentences
of aformal language, and R is acollection of inferenceruleson S.

Def
A derivation of a fromGin (S,R) is, by definition, afinite sequence of formulas
of S, thelast one of which isa, and everyone of which is either an element of G, or
follows from previous formulas by arulein R.
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Def
A proof of a in (S,R) is, by definition, aderivation of a from the empty set /£

3. Axioms in Deductive Systems

Note carefully that we allow zero-place rules. A well-known example in elementary logic is the
reflexivity rule for identity (given “nothing”, one is entitled to write down ‘t = t’ for any singular term).
The existence of zero-place rulesis critical if we are to have a non-trivial notion of proof, as defined in
the previous section. In particular, a proof must have a first ling; since such a line is firgt, it has no
previous lines. Yet, by the definition of proof, it isstill required to follow from “previous’ linesby arule
of inference. The only way this can happen isfor there to be at least one zero-place rule.

We have specia terminology for such formulas — they are called axioms (of the deductive system).
This may be summarized as follows.

Def
An axiom of adeductive systemis, by definition, any formulathat is
delivered/generated by a zero-place rule.

For example, in the deductive system we propose for classical sentential logic [later chapter], we have the
following rule of inference. (Generaly, we use ‘>’ as an in-line rule marker; specificaly, ‘ey, ..., &>
ey meansthat oneisentitled to infer egfromey, ..., &.)

> a® (b® a)

Notice that the input side of this ruleis empty; it is a zero-place rule. Aswith all rules, we use schematic
letters from the metalanguage; in the above, a and b can be any formulas. If we substitute particular
formulas—say ‘P and ‘Q’ —for ‘a’ and ‘b’, then we obtain the following instance.

> P® (Q® P)
Sinceit is generated by a zero-place rule, the formula“P® (Q® P)’ isan axiom of this system.

Whereas the object language expression ‘P® (Q® P)’ is an axiom, the corresponding meta-
language expression ‘a® (b® a)’ is not, strictly speaking, an axiom, sinceit is not aformula of the object
language. Rather, it iswhat is called an axiom schema.
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Def

A formula schema is, by definition, a polynomial expression of the metalanguage
that ranges over formulas of the object language. In particular, when one substitutes
formula-names for all the schematic letters (metalinguistic variables), theresult isa
noun phrase that denotes aformula of the object language.

An axiom schema is, by definition, aformula schema every substitution instance of
which denotes an axiom.

Without going into laborious detail, a polynomial is afairly smple compound noun phrase built up pretty

much like polynomiasin agebra (e.g., & + 2ab + b?).

Suffice it to say that, at least in sentential logic, a schema may be obtained by “reverse
substitution” — take a formula of the object language, and appropriately replace each atomic letter by a

schematic letter.

4. Axiomatic Systems

Many texts on metalogic do not speak of deductive systems, but rather axiomatic systems. The
following is the customary definition of axiomatic system, which is followed by the affiliated definitions

of derivation and proof in an axiomatic system.

Def

An axiomatic systemis, by definition, atriple (S,/A,R), where Sis a set of
formulas of aformal language, A isa(computable) subset of S, and R isa
(computable) collection of (1-place, 2-place, etc.) relationson S.

Def

A derivation of a fromGin (S,/A,R) is, by definition, a finite sequence of
formulas of S, the last one of whichisa, and such that every lineis either an axiom
(i.e., an dement of AA), an eement of G, or follows from previouslinesby arulein
R.

Def

A proof of a in (S,/A,R) is, by definition, afinite sequence of formulas of S, the
last one of whichisa, and such that every lineis either an axiom (i.e., an element
of AA), or follows from previouslinesby arulein R.

The difference between axiomatic systems and deductive systems, as we have defined them, is
fundamentaly trivial. On the one hand, deductive systems do not officially have axioms; they have zero-
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place rules instead. On the other hand, axiomatic systems do not officially have zero-place rules; they
have axioms instead.

Axiomatic systems and deductive systems are not interestingly different. Accordingly, we will use
the terms *deductive system’ and ‘axiomatic system’ interchangeably; similarly, we will use the terms ‘0-
placerule’ and ‘axiom schema’ interchangeably.
5. Validity and Entailment in the Deductive Context

Now, we are in a position to define the deductive versions of validity and entailment.

In what follows, we presuppose a deductive system (S,R) relative to which all definitions are defined.

Def
Gdeductively entails a Notation:
if and only if
thereisaderivation of a G-a

alternative terminology:
a follows deductively from G
a isadeductive consequenceof G

Def
a isdeductively valid Notation:
if and only if
thereisaproof of a. Fa

alternative terminology:
a isprovable

a isatheorem

a isathesis

Def
Gis deductively inconsistent Notation:
if and only if
every formulais deductively entailed by G G-

Gisdeductively consistent Notation:
if and only if

Gis not deductively inconsistent. Gt
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Deductive entailment and deductive validity are the proof-theoretic counterparts of semantic
entailment and semantic validity. Deductive inconsistency does not correspond exactly to any particular
semantic notion; the closest semantic notion is the notion of unverifiability. The difficulty in providing an
exact match between deductive and semantic entailment concerns the second argument of the predicate. In
the case of semantic entailment, the second argument can be a set, even the empty set. However, in the
usua characterization of deduction, alowing the second argument to be a (possibly empty) set does not
make sense. What does it mean to derive the empty set from G?

[[Fortunately, however, the usual characterization of deduction is not the only one. In alater chapter, we
examine a deductive scheme that is equal in power to the semantic scheme.]]

6. Maximal Consistent Sets

In later chapters, we will prove two completeness theorems. In each case, we will prove a
critical subordinate lemma called Lindenbaum’s Lemma. This lemma claims that every deductively-
consistent subset can be extended to a maximal deductively-consistent set. In order to understand this
lemma, we must understand the term ‘maximal’, which is ageneral set theoretic term, defined as follows.

Def
Let K acollection of sets. Then aK-maximal set is, by definition, aset M
satisfying the following conditions.

() MIK
2 "X{XITK® ~[Mi X]}
i.e.,

(1*) MisaK-set
(2¥) M isnot properly included in any K-set.

The application of this concept to any particular situation involves identifying the relevant classK. Inour
particular case, K is the class of deductively-consistent sets of formulas, in which case we obtain the
following instance.

Def
Let Gbeaset of formulas. Then Gisamaxima consistent set if and only if:

D Gisconsistent
2 Gis not properly included in any consistent set.

Notation:

MC[G = Gisamaximal consistent set

One way to think of maximal consistent sets is as follows; if Gis maximal consistent, then “adding” any
formulaa to Gresultsin an inconsistent set. This may be formally stated as follows.
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MC[G & al G ® GE{a}r

Thisisagenera theorem about +; it does not depend upon the details of the axiom system. The following
isanother general theorem about .

MC[F & G-a ® alG
In other words, a maximal deductively-consistent set contains all its deductive consequences.

These two general theorems about +— are included in the next section, which gives amore complete list.

7. General Theorems about +

Go: aiG® G-a

GOc1: {a} -a

GOc2: {ab} -a

GOc3: {a,b,g - a
efc.

Gl:. dD®. Ga ® Dra

Glcc dD®. & ® D~

G2. ra ® G-a

G3 Fa « AMA-a

G4 tra « "({G-a]

G5 Axioma] ® Fa

G6: G-a & GE{a}+b .® G-b

G7. G-a & GE{a}+ .®B &

G8: "dHdD® G-d} & Db .® G-b
G%: G-a & arb .® G-b

G10: MC[G & ail G . ® GE{a}+

Gll: MCG & G-a ® aiG

Gl12: G-a ® $GEfinitefGf & Gi G & Gt-a}
G13: a+b & bra .®. GE{a}+g « CE{b}rg

G14: " d$n[length(d)=n] ['d’ ranges over derivations; ‘n’ ranges over numbers]
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G15 " P:" n" d(length(d)=n® P[d]) ® " dP[d]

G16: " P:" ' d" vi..vi(F[dVvi...v] & len(d)=n ® P) ® " d" v...vi(F[d,v1...v,]® P)

[* [P’ ranges over properties.]

8. Exercises

Prove every theorem in Section 7.

9. Answers to Selected Exercises
GO:
(1) sHow:al G® G-a
(2) al G
3 SHOW: G-a
(4) SHOW: $d[d derives a from G
5) SHEW: &afderivesa from G
(6) aSHOW: lastéafi=a
(7) b:sHew: " di &t di Gor dfollowsby arule....
(8) di &
9) sHew: di Gor dfollowsby arule. ...
(10) d=a
(11) d G

CD

As

Def +
50L
6,7, Def derives
ST

UcCbD

As
10,11,SL
8,ST
2,11,IL

Note: &afiis defined to be the singleton sequence of a ‘di &l meansdis“in” &af Notice that
sequences do not satisfy ordinary extensionality; for example, supposing at b, then &a,bfit &b,afieven though
&a,biand &,afhave the same “elements’ — namely, aand b.

G1:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

sHow: G D® . G-a ® Dra

G D

G-a

SHEW: Dra

SHOW: $d[d derives a from D]

$d[d derivesa from G

D derivesa from G

SHOW: D derivesa from D

aSHOW: last(D)=a

b:sHow: " dl D: dl Dor dfollowsby arule ...
" dl D:dl Gordfollowsby arule...
"x{x G® x D}

CCD

As

As

Def

8,QL

3, Def

6,$0

9,10,Def derives
7, Def derives[d]
11,12,QL

7, Def derives[b]
2, Def |
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corollary:

G2:

G3:

G4:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

sHow: G D® . - ® D~
G D
G_
SHOW: D+
SHEW: " a[Dra]
SHEW: Do
" a[G-a]
G-

sHew: -a ® G-a

Ha

SHOW: G-a

SHOW: $d[d derives a from G
$p[p provesa]
P proves a

P derivesa from G

SHOW: -a « /A-a
SHow: a ® /B-a
sHow: A-a ® +a
A-a

SHOW: a

SHOW: $p[p proves a]
$d[d derives a from A
D derivesa from A
SHOW: D proves a

a SHOW: last(D)=a

SHEwW: d follows by arule ...

~$x[xI A

SHOW: Fa €« " JG-a]
sHovw: ®

Fa

SHOW: " G-a]
SHOW: G—a

SHOW: —

" gG-a]

SHOW: -a

| B-a

last(P)=a & " di P:dfollowsby arule...
last(P)=a & " dl P:dl Gordfollowshy arule...

b: sHew: " dl D: dfollowsby arule ...

" di D:dl £Aordfollowsbyarule...

CCD

As

As

Def G-
ub
2,8,G1
3,Def G+
7,QL

CD

As

Def G-a
9,QL

2,Def Fa
5$0

6, Def proves
7.0L

8,Def derives

« D

G2

CD

As

Def -a

QL

4, Def /AH-a
9,$0

10,11Def proves
8, Def derives|[a]
ubD

13,14,QL

8, Def derives[b]
ST

« D
CD
As
ubD
3,G2
CD
As
9,G3
7,QL
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G5:

G6:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

sHow: Ax[a] ® Fa

Ax[a]

SHOW: a

SHOW: $p[p proves a]
SHOW: &afiprovesa
aSHOW: lastéafni=a

b:sHew: " di &ft dfollowsby arule....

di &

SHEW: d follows by arule ...
a follows by a zero-placerule
d=a
d follows by azero-placerule

SHOW: G-a & GE{a}+b .® G-b

G-a

CGE{a}+b

SHOW: G-b

SHOW: $d[d derives b from G
$d[d derives a from G
$d[d derives b from GE{a}]
D, derives a from G

D, derives b from GE{ a}
$d{d = D,[D+/a]}

D;= Dz[D]_/a]

SHOW: D; derives b from G
asSHeOW: last(Ds) = b

| last(D,) =b

di D,

dTADz[D]_/a] ~
{d1l Dy} or{dl D& d*a}
cl.dl D,

di Gor dfollowsby arule...
c2:dl D,& dta

cl: di GE{a}

d G

dl Gor dfollowsby arule...
c2: dfollowsby arule ...
| di Gor dfollowsby arule...

D, isreplaced by sequence D,.

b:sHew: " di Ds: dl Gor dfollowsby arule ...

sHew: di Gor d followsby arule ...

" di D{dl Gor dfollowsby arule}

" di DAdl GE{a} or dfollowsby arule}
dl GE{a} or dfollowsby arule

CD

As

Def
5QL

6,7, Def proves
ST

UCD

As

12,QL

2, Def Ax
8, Def &an
10,11,1L

&CD

As

As

Def

12,QL

2, Def +

3, Def

6,$0

7,$0

ST*

10,$0
13,15,Def derives
14,Def D3, ST

9, Def derives|[al
UCD

As
19-30,SC/SC
11,16,I1L

18, Def s[p/eg]
As

8,Def derives|[b]
20,21,QL

As

9,Def derives[b]
23,24,QL

As

23b,26,ST
27,SL

As

29,SL

*Note: D,[D4/a] is defined to be the sequence that results when every occurrence of a in
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G7:

G8:

G9:

G10:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(1)
(2)
(3)
(4)
(5)
(6)

SHOW: G-a & GE{a}- .® G-
G-a
CE{a}+
SHEW: G-
SHOW: " b[G—b]
SHOW: G—b
" p[GE{a} —b]
GE{a}rDb

sHow: " d{dl D® G-d} & Db .® G-b

"H{d D® G-d}

Db

SHOW: G-b

SHOW: $d[d derives b from G

$d[d derives b from D]

D, derives b from D

$d{ d= Do[ Dk/dk :Adk’[ D]}

D= Do[Dk/dk . dk I D]}

SHOW: D derivesb from G
unfinished

SHOW: G-a & a-b .® G-b
G-a

arb

SHOW: G—b

{a}rb

{a} | GE{a}

GE{a}rb

SHow: MC[G & al G.® GE{a}+
MC[G
al G
SHOW: GE{a}+
Gl GE{a}
"D{G D® D~}

&CD
As

As

Def +
ub
2,8,G6
3, Def
7,QL

&CD
As

As

Def
10,QL
3, Def
6,$0

8,$0

&CD
As

As
2,7,G8
3, Def
ST
5,6,G1

&CD
As

As

5,6,QL

3,ST

2, Def MC [b]
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G11:

G13:

G14:

G15:

10.

(1) sHew:MC[@ & G-a .® al G &CD

(2) MC[G As

(©)) G-a As

(4) SHew: al G ID

(5) a G As

(6) SHOW: X 8,11,SL

(7) Gl GE{a} 5,ST

(8) Gt 2, Def MC [4]
9) "D{G D® Dr} 2, Def MC [b]
(10) CE{a}+ 7,9,QL

(11) G- 3,10,G7

(1)  sHew: " d$n[len(d)=n] ubD

(2)  sHew: $n[len(d)=n] DD

(3) disaderivation
4) disafinite sequence
(5) $n[len(d)=n|

sortal assumption
3, Def derivation
4, Def finite sequence

(1)  sHew: " n' dlen(d)=n® F[d]) ® " dF[d] CD

2) "n" d(len(d)=n® F[d]) As

(3) sHew: " dF[d] uD

(4) SHeW: F[d] 2,6,QL
(5) $n[len(d)=n] G12,QL
(6) len(d)=n 5,$0

(1) SHew:" n' d" gé...vk(ﬂd,vl...vk]& len(d)=n.® P)

" d" vy i(F[ v v ® P) CD
(2 “n'd' v v(F[dvs... v & len(d)=n . B) P) As
3 SHOW: " d" vi...v(F[d,v1...v(]® P) UCD
4 F[d,Cy...C As
(5) SHEW: P 4,6,7,QL
(6) $n[len(d)=n] G12,QL
@) len(d)=n 6,$0

Here, F and P are formulas, v4,...,vi are variables, and ¢,,...,C, are constants appropriately
substituted for vy,... V.
Definitions Used in Proofs Above

In the following, we presuppose a given axiom system A with respect to which all deductive
notions are defined.

Axioms, Proofs, and Derivations

s isaproof =¢ S isafinite sequence of formulas every item of
which follows from previous lines by arule
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S provesa =df
s isaproof of a =df
s derivesfrom G =df
S isaderivation from G =t
s derivesa from G =df

s isaderivationof a from G =4

s isaproof, and last(s)=a

s isafinite sequence of formulas every item of
which follows from previous lines by arule, or isan
element of G

s derivesfrom G, and last(s)=a

a isan axiom =¢ a resultsfrom applying a zero-place rule
2. Theoremhood, Deductive Entailment, and Deductive Consistency
Fa =qf $p[pisaproof of a] [a isatheorem/thesis]
G-a =qf $d[d derivesa from G [Gdeductively entailsa]
G- =qf " a[G-a] [Gis deductively inconsistent]
Gt =qf ~[G-] [Gis deductively consistent]
3. Maximal Consistent Sets
MC[G =¢ G+&"D{G D® D~} [Gis maximal consistent]

G D = G D& ~[D g

[proper inclusion]



