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1. Derivations 

 Having provided a formal semantic (model-theoretic) characterization of logic, we now turn to the 
deductive (proof-theoretic) characterization of logic.  The analogy with introductory logic is 
straightforward; in intro logic, the semantic characterization of SL is given in terms of truth tables, 
whereas the deductive characterization of SL is given in terms of derivations in a natural deduction 
system. 

 Whereas truth tables are easy to describe in a logically and mathematically rigorous manner, in 
terms of valuations and truth-functions, derivations are more difficult to characterize mathematically.  The 
full derivation system of intro logic is quite complicated, involving as it does provisional assumptions, 
show-lines, boxing, cancelling, etc.   

 On the other hand, simple derivations, which form the backbone of all derivations, are not so 
complicated.  A simple derivation does not involve show-lines or provisional assumptions.  You start 
with the premises and apply inference rules (repeatedly, as necessary)  until you reach the conclusion, at 
which point you have a simple derivation of the conclusion from the premises.  The following is the 
official (but informal) definition. 

Def  
A simple derivation of conclusion C from premises P1,P2,...,Pn is, by definition, a 
list of formulas, the last line of which is the conclusion C, and every line of which 
is either a premise, or follows from previous lines by an inference rule. 
 

 Simple derivations serve as the archetype in the metalogical description of deductive systems.  
Accordingly, we offer the following formal account.  Notice that we drop the modifier ‘simple’; from the 
point of view of metalogic, all derivations are “simple”. 

Def  
A derivation of α from Γ is, by definition, a finite sequence of formulas, the last 
one of which is α, and everyone of which is either an element of Γ, or follows from 
previous formulas by an inference rule. 
 

By way of formally rendering the notions of last and previous, we introduce explicit sequence notation, as 
follows. 

Def  
A derivation of α from Γ is, by definition, a finite sequence, 〈σ1,...,σn〉, of formulas 
satisfying the following restrictions. 
 
(1) σn = α 
(2) for any kÔn, σk∈Γ, or σk follows from {σi: i<k} by an inference rule 
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Formally, a finite sequence is just like a finite string, the difference being purely pragmatic.  Generally, a 
sequence σ has a first element σ1, a second element σ2, etc.  If σ is n-long, then σn is the last element of σ.  
Also, to say that σ is a sequence of so-and-so’s is to say that each σi is a so-and-so. 

 But what is an inference rule?  What does it to say that something follows by one?  We will largely 
leave this open.  Basically, an inference rule is a computable relation R from sets of formulas to formulas.  
To say that α follows from Γ by R is to say that the pair 〈Γ,α〉 stand in relation R.  To say that a relation R 
is computable means that a computer can, in principle, decide whether a given pair 〈Γ,α〉 stand in the 
relation.  We will ignore this formal issue at the moment; suffice it to say that the rules one is accustomed 
to using in logic are all computable.   

 For example, modus ponens (MP) is an inference rule.  Formally speaking, the pair 〈Γ,α〉 bear the 
MP-relation if and only if Γ consists of exactly two elements, one of which is a conditional χ, the other of 
which is the antecedent of χ, and such that α is the consequent of χ. 

 With this in mind, we can now define what it means for something to follow by an inference rule. 

Def  
Let α be a formula, let Γ be a set of formulas, and let R be an inference rule.  Then:  
 
α follows from Γ by R  =df ∃∆{∆⊆Γ & 〈∆,α〉∈R}. 
 

Notice that, as an immediate consequence of the definition, if α follows from Γ by R, and Γ⊆∆, then α 
follows from ∆ by R. 

2. Deductive Systems 

 In an earlier chapter, we saw how one can use a class V of admissible valuations to define various 
important logical notions, including validity and entailment.  In what follows, we do the same in the 
deductive context — we define corresponding notions, not in terms of admissible valuations, but rather in 
terms of derivations.   

 First, we define the notion of deductive system.   

Def  
A deductive system is, by definition, a pair (S,R), where S is the set of sentences 
of a formal language, and R is a collection of inference rules on S. 
 

 

Def  
A derivation of α from Γ in (S,R) is, by definition, a finite sequence of formulas 
of S, the last one of which is α, and everyone of which is either an element of Γ, or 
follows from previous formulas by a rule in R. 
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Def  
A proof of α in (S,R) is, by definition, a derivation of α from the empty set ∅. 
 

3. Axioms in Deductive Systems 

 Note carefully that we allow zero-place rules.  A well-known example in elementary logic is the 
reflexivity rule for identity (given “nothing”, one is entitled to write down ‘τ = τ’ for any singular term).  
The existence of zero-place rules is critical if we are to have a non-trivial notion of proof, as defined in 
the previous section.  In particular, a proof must have a first line; since such a line is first, it has no 
previous lines.  Yet, by the definition of proof, it is still required to follow from “previous” lines by a rule 
of inference.  The only way this can happen is for there to be at least one zero-place rule.   

 We have special terminology for such formulas – they are called axioms (of the deductive system).  
This may be summarized as follows. 

Def 
An axiom of a deductive system is, by definition, any formula that is 
delivered/generated by a zero-place rule. 
 

For example, in the deductive system we propose for classical sentential logic [later chapter], we have the 
following rule of inference.  (Generally, we use ‘å’ as an in-line rule marker; specifically, ‘ε1, …, εk å 
ε0’ means that one is entitled to infer ε0 from ε1, …, εk.) 

å α→(β→α) 

Notice that the input side of this rule is empty; it is a zero-place rule.  As with all rules, we use schematic 
letters from the metalanguage; in the above, α and β can be any formulas.  If we substitute particular 
formulas – say ‘P’ and ‘Q’ – for ‘α’ and ‘β’, then we obtain the following instance. 

å P→(Q→P) 

Since it is generated by a zero-place rule, the formula ‘P→(Q→P)’ is an axiom of this system. 

 Whereas the object language expression ‘P→(Q→P)’ is an axiom, the corresponding meta-
language expression ‘α→(β→α)’ is not, strictly speaking, an axiom, since it is not a formula of the object 
language.  Rather, it is what is called an axiom schema. 
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Def 
A formula schema is, by definition, a polynomial expression of the metalanguage 
that ranges over formulas of the object language.  In particular, when one substitutes 
formula-names for all the schematic letters (metalinguistic variables), the result is a 
noun phrase that denotes a formula of the object language. 
 
An axiom schema is, by definition, a formula schema every substitution instance of 
which denotes an axiom. 
 

Without going into laborious detail, a polynomial is a fairly simple compound noun phrase built up pretty 
much like polynomials in algebra (e.g., a2 + 2ab + b2). 

 Suffice it to say that, at least in sentential logic, a schema may be obtained by “reverse 
substitution” — take a formula of the object language, and appropriately replace each atomic letter by a 
schematic letter.   

4. Axiomatic Systems 

 Many texts on metalogic do not speak of deductive systems, but rather axiomatic systems.  The 
following is the customary definition of axiomatic system, which is followed by the affiliated definitions 
of derivation and proof in an axiomatic system. 

Def 
An axiomatic system is, by definition, a triple (S,A,R), where S is a set of 
formulas of a formal language, A is a (computable) subset of S, and R is a 
(computable) collection of (1-place, 2-place, etc.) relations on S. 
 

 

Def 
A derivation of α from Γ in (S,A,R) is, by definition, a finite sequence of 
formulas of S, the last one of which is α, and such that every line is either an axiom 
(i.e., an element of A), an element of Γ, or follows from previous lines by a rule in 
R. 
 

 

Def 
A proof of α in (S,A,R) is, by definition, a finite sequence of formulas of S, the 
last one of which is α, and such that every line is either an axiom (i.e., an element 
of A), or follows from previous lines by a rule in R. 
 

 The difference between axiomatic systems and deductive systems, as we have defined them, is 
fundamentally trivial.  On the one hand, deductive systems do not officially have axioms; they have zero-
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place rules instead.  On the other hand, axiomatic systems do not officially have zero-place rules; they 
have axioms instead.   

 Axiomatic systems and deductive systems are not interestingly different.  Accordingly, we will use 
the terms ‘deductive system’ and ‘axiomatic system’ interchangeably; similarly, we will use the terms ‘0-
place rule’ and ‘axiom schema’ interchangeably.   

5. Validity and Entailment in the Deductive Context 

 Now, we are in a position to define the deductive versions of validity and entailment.   

In what follows, we presuppose a deductive system (S,R) relative to which all definitions are defined.   

Def 
Γ deductively entails α   Notation: 
if and only if  
there is a derivation of α Γ�α 
 
alternative terminology: 
α follows deductively from Γ 
 α is a deductive consequence of  Γ 
 

 

Def 
α is deductively valid   Notation: 
if and only if  
there is a proof  of α. �α 
 
alternative terminology: 
α is provable 
 α is a theorem 
 α is a thesis 
 

 

Def 
Γ is deductively inconsistent Notation: 
if and only if 
every formula is deductively entailed by Γ. Γ� 
 
Γ is deductively consistent Notation: 
if and only if 

Γ is not deductively inconsistent.  ΓÒ 
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 Deductive entailment and deductive validity are the proof-theoretic counterparts of semantic 
entailment and semantic validity.  Deductive inconsistency does not correspond exactly to any particular 
semantic notion; the closest semantic notion is the notion of unverifiability.  The difficulty in providing an 
exact match between deductive and semantic entailment concerns the second argument of the predicate.  In 
the case of semantic entailment, the second argument can be a set, even the empty set.  However, in the 
usual characterization of deduction, allowing the second argument to be a (possibly empty) set does not 
make sense.  What does it mean to derive the empty set from Γ? 

[[Fortunately, however, the usual characterization of deduction is not the only one.  In a later chapter, we 
examine a deductive scheme that is equal in power to the semantic scheme.]] 

6. Maximal Consistent Sets 

 In later chapters, we will prove two completeness theorems.  In each case, we will prove a 
critical subordinate lemma called Lindenbaum’s Lemma.  This lemma claims that every deductively-
consistent subset can be extended to a maximal deductively-consistent set.  In order to understand this 
lemma, we must understand the term ‘maximal’, which is a general set theoretic term, defined as follows. 

Def 
Let K a collection of sets.  Then a K-maximal set is, by definition, a set M 
satisfying the following conditions. 
 
(1) M∈K 

(2) ∀X{X∈K → ∼[M⊂X]} 
i.e., 
(1*) M is a K-set 
(2*) M is not properly included in any K-set. 
 

The application of this concept to any particular situation involves identifying the relevant class K.  In our 
particular case, K is the class of deductively-consistent sets of formulas, in which case we obtain the 
following instance. 

Def 
Let Γ be a set of formulas.  Then Γ is a maximal consistent set if and only if:  
 
(1) Γ is consistent  
(2) Γ is not properly included in any consistent set. 
 
Notation: 
 
 MC[Γ]  =df Γ is a maximal consistent set 
 

One way to think of maximal consistent sets is as follows; if Γ is maximal consistent, then “adding” any 
formula α to Γ results in an inconsistent set.  This may be formally stated as follows. 
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MC[Γ]  &  α∉Γ  .→  Γ∪{α}� 

This is a general theorem about �; it does not depend upon the details of the axiom system.  The following 
is another general theorem about �. 

MC[Γ]  &  Γ�α  .→  α∈Γ 

In other words, a maximal deductively-consistent set contains all its deductive consequences. 

These two general theorems about � are included in the next section, which gives a more complete list. 

7. General Theorems about ��  

G0: α∈Γ  →  Γ�α 
 
G0c1:  {α} � α 
G0c2:  {α,β} � α 
G0c3:  {α,β,γ} � α 
  etc. 
 
G1: Γ⊆∆  →.  Γ�α  →  ∆�α 
 
G1c: Γ⊆∆  →.  Γ�  →  ∆� 
 
G2: �α  →  Γ�α 
 
G3: �α  ↔  ∅�α 
 
G4: �α  ↔  ∀Γ[Γ�α] 
 
G5: Axiom[α]  →  �α 
 
G6: Γ�α  &  Γ∪{α}�β  .→  Γ�β 
 
G7: Γ�α  &  Γ∪{α}�  .→  Γ� 
 
G8: ∀δ{δ∈∆ → Γ�δ}  &  ∆�β  .→  Γ�β 
 
G9: Γ�α  &  α�β  .→  Γ�β 
 
G10: MC[Γ]  &  α∉Γ  .→  Γ∪{α}� 
 
G11: MC[Γ]  &  Γ�α  .→  α∈Γ 
 
G12: Γ�α → ∃Γ′{finite[Γ′]  &  Γ′⊆Γ  &  Γ′�α} 
 
G13: α�β  &  β�α  .→.  Γ∪{α}�γ  ↔  Γ∪{β}�γ 
 
G14: ∀d∃n[length(d)=n] [‘d’ ranges over derivations; ‘n’ ranges over numbers.] 
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G15: ∀Ã: ∀n∀d(length(d)=n → Ã[d])  →  ∀dÃ[d] 
 
G16: ∀Ã: ∀n∀d∀v1…vk(¹[d,v1…vk] & len(d)=n .→ Ã)  →  ∀d∀v1…vk(¹[d,v1…vk]→Ã) 
 
 [‘Ã’ ranges over properties.] 

8. Exercises 

 Prove every theorem in Section 7. 

9. Answers to Selected Exercises 

G0: 
(1) �: α∈Γ → Γ�α CD 
(2) |α∈Γ As 
(3) |�: Γ�α Def � 
(4) |�: ∃d[d derives α from Γ] 5,QL 
(5) |�: 〈α〉 derives α from Γ 6,7, Def derives 
(6) |a:�: last〈α〉 = α ST 
(7) |b:�: ∀δ∈〈α〉: δ∈Γ or δ follows by a rule … UCD 
(8) ||δ∈〈α〉 As 
(9) ||�: δ∈Γ or δ follows by a rule … 10,11,SL 
(10) |||δ=α 8,ST 
(11) |||δ∈Γ 2,11,IL 

 
Note:  〈α〉 is defined to be the singleton sequence of α  ‘δ∈〈α〉’ means δ is “in” 〈α〉.  Notice that 
sequences do not satisfy ordinary extensionality; for example, supposing a≠b, then 〈a,b〉≠〈b,a〉 even though 
〈a,b〉 and 〈b,a〉 have the same “elements” – namely, a and b. 
 
G1: 

(1) �: Γ⊆∆ →. Γ�α → ∆�α CCD 
(2) |Γ⊆∆ As 
(3) |Γ�α As 
(4) |�: ∆�α Def � 
(5) |�: ∃d[d derives α from ∆] 8,QL 
(6) |∃d[d derives α from Γ] 3, Def � 
(7) |D derives α from Γ 6,∃O 
(8) |�: D derives α from ∆ 9,10,Def derives 
(9) |a:�: last(D)=α 7, Def derives [a] 
(10) |b:�: ∀δ∈D: δ∈∆ or δ follows by a rule … 11,12,QL 
(11) |∀δ∈D: δ∈Γ or δ follows by a rule … 7, Def derives [b] 
(12) |∀x{x∈Γ → x∈∆} 2, Def ⊆ 
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corollary: 
(1) �: Γ⊆∆ →. Γ� → ∆� CCD 
(2) |Γ⊆∆ As 
(3) |Γ� As 
(4) |�: ∆� Def Γ� 
(5) |�: ∀α[∆�α] UD 
(6) |�: ∆�ω 2,8,G1 
(7) ||∀α[Γ�α] 3,Def Γ� 
(8) ||Γ�ω 7,QL 

 
G2: 

(1) �: �α → Γ�α CD 
(2) |�α As 
(3) |�: Γ�α Def Γ�α 
(4) |�: ∃d[d derives α from Γ] 9,QL 
(5) ||∃p[p proves α] 2, Def �α 
(6) ||P proves α 5,∃O 
(7) ||last(P)=α  &  ∀δ∈P: δ follows by a rule … 6, Def proves 
(8) ||last(P)=α  &  ∀δ∈P: δ∈Γ or δ follows by a rule … 7,QL 
(9) ||P derives α from Γ 8,Def derives 

 
G3: 

(1) �: �α ↔ ∅�α ↔D 
(2) �: �α → ∅�α G2 
(3) �: ∅�α → �α CD 
(4) |∅�α As 
(5) |�: �α Def �α 
(6) |�: ∃p[p proves α] QL 
(7) ||∃d[d derives α from ∅] 4, Def ∅�α 
(8) ||D derives α from ∅ 9,∃O 
(9) ||�: D proves α 10,11Def proves  
(10) ||a: �: last(D)=α 8, Def derives [a] 
(11) ||b: �:  ∀δ∈D: δ follows by a rule … UD 
(12) ||�: δ follows by a rule … 13,14,QL 
(13) ||∀δ∈D: δ∈∅ or δ follows by a rule … 8, Def derives [b] 
(14) ||∼∃x[x∈∅] ST 

 
G4: 

(1) �: �α ↔ ∀Γ[Γ�α] ↔D 
(2) |�: → CD 
(3) ||�α As 
(4) ||�: ∀Γ[Γ�α] UD 
(5) ||�: Γ�α 3,G2 
(6) |�: ← CD 
(7) ||∀Γ[Γ�α] As 
(8) ||�: �α 9,G3 
(9) |||∅�α 7,QL 
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G5: 
(1) �: Ax[α] → �α CD 
(2) |Ax[α] As 
(3) |�: �α Def � 
(4) |�: ∃p[p proves α] 5,QL 
(5) |�: 〈α〉 proves α 6,7, Def proves 
(6) |a:�: last〈α〉 = α ST  
(7) |b:�: ∀δ∈〈α〉: δ follows by a rule …  UCD 
(8) ||δ∈〈α〉 As 
(9) ||�: δ follows by a rule … 12,QL 
(10) |||α follows by a zero-place rule 2, Def Ax 
(11) |||δ=α 8, Def 〈α〉 
(12) |||δ follows by a zero-place rule 10,11,IL 

 
G6: 

(1) �: Γ�α & Γ∪{α}�β .→ Γ�β &CD 
(2) |Γ�α As 
(3) |Γ∪{α}�β As 
(4) |�: Γ�β Def � 
(5) |�: ∃d[d derives β from Γ] 12,QL 
(6) ||∃d[d derives α from Γ] 2, Def � 
(7) ||∃d[d derives β from Γ∪{α}] 3, Def � 
(8) ||D1 derives α from Γ 6,∃O 
(9) ||D2 derives β from Γ∪{α} 7,∃O 
(10) ||∃d{d = D2[D1/α]} ST* 
(11) ||D3 = D2[D1/α] 10,∃O 
(12) ||�: D3 derives β from Γ 13,15,Def derives  
(13) ||a:�: last(D3) = β 14,Def D3, ST 
(14) |||last(D2) = β 9, Def derives [a] 
(15) ||b:�: ∀δ∈D3: δ∈Γ or δ follows by a rule … UCD 
(16) |||δ∈D3 As 
(17) |||�: δ∈Γ or δ follows by a rule … 19-30,SC/SC 
(18) ||||δ ∈ D2[D1/α] 11,16,IL 
(19) ||||{δ ∈ D1} or {δ∈D2 & δ≠α} 18, Def σ[π/ε] 
(20) ||||c1: δ ∈ D1 As 
(21) |||||∀δ∈D1{δ∈Γ or δ follows by a rule} 8,Def derives [b] 
(22) |||||δ∈Γ or δ follows by a rule … 20,21,QL 
(23) ||||c2: δ∈D2 & δ≠α As 
(24) |||||∀δ∈D2{δ∈Γ∪{α}  or  δ follows by a rule} 9,Def derives [b] 
(25) |||||δ∈Γ∪{α}  or  δ follows by a rule 23,24,QL 
(26) |||||c1: δ∈Γ∪{α} As 
(27) ||||||δ∈Γ 23b,26,ST 
(28) ||||||δ∈Γ or δ follows by a rule … 27,SL 
(29) |||||c2: δ follows by a rule … As 
(30) ||||||δ∈Γ or δ follows by a rule … 29,SL  

 
*Note: D2[D1/α] is defined to be the sequence that results when every occurrence of α in 
D2 is replaced by sequence D1. 
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G7: 
(1) �: Γ�α & Γ∪{α}� .→ Γ� &CD 
(2) |Γ�α As 
(3) |Γ∪{α}� As 
(4) |�: Γ� Def � 
(5) |�: ∀β[Γ�β] UD 
(6) |�: Γ�b 2,8,G6 
(7) ||∀β[Γ∪{α}�β] 3, Def � 
(8) ||Γ∪{α}�b 7,QL 

 
G8: 

(1) �: ∀δ{δ∈∆ → Γ�δ} & ∆�β .→ Γ�β &CD 
(2) |∀δ{δ∈∆ → Γ�δ} As 
(3) | ∆�β As 
(4) |�: Γ�β Def � 
(5) |�: ∃d[d derives β from Γ] 10,QL 
(6) |∃d[d derives β from ∆] 3, Def � 
(7) |D0 derives β from ∆ 6,∃O 
(8) |∃d{d = D0[Dk/δk : δk ∈ ∆]} ST 
(9) |D = D0[Dk/δk : δk ∈ ∆]} 8,∃O 
(10) |�: D derives β from Γ  
(11) unfinished 

 
G9: 

(1) �: Γ�α & α�β .→ Γ�β &CD 
(2) |Γ�α As 
(3) |α�β As 
(4) |�: Γ�β 2,7,G8 
(5) ||{α}�β 3, Def � 
(6) ||{α} ⊆ Γ∪{α} ST 
(7) ||Γ∪{α}�β 5,6,G1 

 
G10: 

(1) �: MC[Γ] & α∉Γ .→ Γ∪{α}� &CD 
(2) |MC[Γ] As 
(3) |α∉Γ As 
(4) |�: Γ∪{α}� 5,6,QL 
(5) ||Γ ⊂ Γ∪{α} 3,ST 
(6) ||∀∆{Γ⊂∆ → ∆�} 2, Def MC [b] 
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G11: 
(1) �: MC[Γ] & Γ�α .→ α∈Γ &CD 
(2) |MC[Γ] As 
(3) |Γ�α As 
(4) |�: α∈Γ ID 
(5) ||a∉Γ As 
(6) ||�: Ð 8,11,SL 
(7) |||Γ ⊂ Γ∪{α} 5,ST 
(8) |||ΓÒ 2, Def MC [a] 
(9) |||∀∆{Γ⊂∆ → ∆�} 2, Def MC [b] 
(10) |||Γ∪{α}� 7,9,QL 
(11) |||Γ� 3,10,G7 

 
G13: 

(1) �: ∀d∃n[len(d)=n] UD 
(2) �: ∃n[len(δ)=n] DD 
(3) |δ is a derivation sortal assumption 
(4) |δ is a finite sequence 3, Def derivation 
(5) |∃n[len(δ)=n] 4, Def finite sequence 

 
G14: 

(1) �: ∀n∀d(len(d)=n → ¹[d])  →  ∀d¹[d] CD 
(2) |∀n∀d(len(d)=n → ¹[d]) As 
(3) |�: ∀d¹[d] UD 
(4) |�: ¹[δ] 2,6,QL 
(5) ||∃n[len(δ)=n] G12,QL 
(6) ||len(δ)=n 5,∃O 

 
G15: 

(1) �: ∀n∀d∀v1…vk(¹[d,v1…vk] & len(d)=n .→ Ã)   
| →  ∀d∀v1…vk(¹[d,v1…vk]→Ã) CD 

(2) |∀n∀d∀v1…vk(¹[d,v1…vk] & len(d)=n .→ Ã) As 
(3) |�: ∀d∀v1…vk(¹[d,v1…vk]→Ã) UCD 
(4) ||¹[δ,c1…ck] As 
(5) ||�: Ã 4,6,7,QL 
(6) |||∃n[len(δ)=n] G12,QL 
(7) |||len(δ)=n 6,∃O 

 
Here, ¹ and Ã are formulas, v1,…,vk are variables, and c1,…,ck are constants appropriately 
substituted for v1,…,vk. 

10. Definitions Used in Proofs Above 

In the following, we presuppose a given axiom system ´ with respect to which all deductive 
notions are defined. 

1. Axioms, Proofs, and Derivations 

σ is a proof =df σ is a finite sequence of formulas every item of 
which follows from previous lines by a rule  



6: Deductive Characterization of Logic 14 

σ proves α =df 
σ is a proof of α =df σ is a proof, and last(σ)=α 

σ derives from Γ =df 
σ is a derivation from Γ =df σ is a finite sequence of formulas every item of 

which follows from previous lines by a rule, or is an 
element of Γ 

σ derives α from Γ =df 
σ is a derivation of α from Γ =df σ derives from Γ, and last(σ)=α 

α is an axiom  =df α results from applying a zero-place rule 

2. Theoremhood, Deductive Entailment, and Deductive Consistency 

�α =df ∃p[p is a proof of α] [α is a theorem/thesis] 
 
Γ�α =df ∃d[d derives α from Γ] [Γ deductively entails α] 
 
Γ� =df ∀α[Γ�α] [Γ is deductively inconsistent] 
 
ΓÒ =df ∼[Γ�] [Γ is deductively consistent] 

3. Maximal Consistent Sets 

MC[Γ] =df ΓÒ & ∀∆{Γ⊂∆ → ∆�} [Γ is maximal consistent] 

Γ⊂∆ =df Γ⊆∆ & ∼[∆⊆Γ] [proper inclusion] 

 


