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2 Hardegree, Metalogic

1. Introduction

We have now examined Classical Sentential Logic (CSL). Aswe are well aware, CSL is not all
thereisto logic. At the very least, CSL has nothing to say about alarge number of very important logical
concepts, including quantification, identity, descriptions, etc. Second, it has nothing to say about non-truth
functional connectives, such as the subjunctive conditional and the multitude of modal operators. Third, it
does not speak directly about all truth-functional connectives, but only the privileged five. Finally, CSL is
not universally accepted as the correct sententia logic. In opposition to CSL are a host of “deviant”
logics that have been proposed as dternatives to CSL. These include multi-valued logic, super-
valuationa logic, intuitionistic logic, relevance logic, quantum logic, fuzzy logic, to name the most
prominent examples.

Given that the subject of logic is not monolithic, it is useful to distinguish between ‘Logic’ and
‘logic’. The former refers to a scholarly discipline — the “science of reasoning”; the latter refers to an
abstract kind, and can be sensibly pluralized to form ‘logics . This leads to the following slogan.

Logic studies|ogics.

Here, we can read this aloud as:

logic with acapital-L studieslogics with alittle-L.

Once we have the general term ‘logics’, we must ask the following question.
what isalogic?

We propose that,

a aminimum,
alogic specifies aclass of valid argument forms.

This means that a logic £ can be (minimally) characterized as a structure (L,A), where L is a formal
language over which L is written, and A is a set of argument forms in L — namely those argument forms
deemed valid by L. [Henceforth, we use the script letter ‘L’ as a schematic name for logics, and we use
ordinary ‘L’ as aschematic name for formal languages.]

We aready know what a formal language is. So what isit to be an argument (form) in a (formal)
language L? Thisisdefined officially asfollows.

Df
Let L beaformal language, and let S be the sentences (sentence forms; formulas) of
L. Then an argument (form) in L is, by definition, any (ordered) pair (G'a) such
that Gisasubset of S, and a isan element of S.
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Notice that we use the forward slash symbol ‘/’ to delineate the items of the ordered pair. This particular
choiceis madein order to remind us that, in canonical form, an argument consists of premises followed by
the word ‘therefore’ followed by the conclusion. Thus, the slash-symbol has two roles: formally, it is
simply a punctuation mark; however, heuristically, it is short for ‘therefore’.

Before continuing, it is important to realize our definition of argument deviates from ordinary
usage in two ways. In ordinary usage, an argument has one or more premises, and has only finitely many
premises. According to our official definition, for abstract purposes, an argument can have any number of
premises, including zero-many and infinitely-many

2. The Semantic Characterization of Logics

So far, we have said that alogic £ specifies a class of L-valid argument forms. We haven't said
how thisis accomplished. We do have amode of this process, however — Classical Sententia Logic.

Recall that CSL is characterized in two steps. First, one specifies the formal language L over
which CSL is written to be the “standard” sentential language (ZOL) based on the five standard SL
connectives. Second, one specifies the class V of CSL-admissible valuations, with respect to which all
the usual logical notions are defined. A valuation is deemed CSL-admissible if and only if it complies
with the truth-functional interpretation of the five standard SL connectives.

This serves as a general model for the semantic specification of alogic.

A logic £ issemantically specified by apair (L,V), where L isaformal language,
andV isaset of valuationson L.

Recall the definition of valuation on formal language L.

Df
Let L beaformal language, and let S be the set of sentences (formulas) of L. Then
avauation on L is, by definition, any function from Sinto { T,F}.

In other words, avauation on L assigns atruth-value, T or F, to every sentence of L.

Once we have the class V of admissible valuations, we are in a position to define argument-
validity, asfollows.

Df
Let £ bealogic semantically specified by (L,V). Let (Ga) bean argumentin L.
Then
(Fa)isL-vaid =¢ "V{vI V®." gd G® v(g=T) ® v(a)=T}
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An dternative account of validity employs an intermediate notion of refutation.

Df

Let L beaformulalanguage, and let v beavaluationon L. Let (Ga) bean

argumentinL. Then

v refutes (Ga) =¢ " o{d G® v(g9=T} & v(a)=F

In other words, a valuation refutes an argument if and only if it makes every premise true but makes the
conclusion false. Thisdefinition alows usto prove the following theorem (exercise).

Th
Let £ bealogic semantically specified by (L,V). Let (Ga) bean argumentin L.
Then
(Fa)is L-valid « ~$v{vl V & v refutes (Ga)}
3. Semantically Characterizing Other Standard Logical Notions

In addition to the central concept of logic — argument validity — other logical notions can be
defined (even in intro logic!), including tautology, contradiction, consistency, logical implication, and
logical equivalence.

Each of these can be given a genera definition in the context of logical semantics;, some of them
are given different names. In the following, we suppose that logic £ is semantically specified by (L,V).
Also, Gisasubset of formulasof L, and a isaformulaof L.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

aisL-vaid

a is L-contra-valid

a is L-contingent

a L-entailsb

a and b are L-equivalent
Gis L-consistent

Gis L-inconsistent

=df

=df

=df

=df

" vl V,v(@)=T

" vl V, v(a)=F

a isneither L-valid nor L-contra-valid
" vl V{v(@)=T ® v(b)=T}

" vl V{v(a)=T « v(b)=T}

$vi V," d G v(9=T

Gisnot L-consistent
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4. Validity etc. Revisited

In the present section, we formulate a number of logical notions in terms of a set V of admissible
valuations. Asusud, it is understood that a valuation on language L is a function that assigns exactly one
truth-value, T or F, to every sentencein L. We assume aso, of course, that T* F.

The relevant forma semantic notions are presented in a series of definitions. We begin with
matters of terminology. In what follows, we presuppose a formal language L, with sentences S, and we
presuppose aset V of admissible valuations. All definitions arerelativeto L and V.

(D)

Leta beaformula(i.e, al S), let Gbeasubset of formulas (i.e, G S), and let W be a
subset of valuations (i.e., WI V).

(1)
(2)
(3
(4)
(5)
(6)

v<a
v<G
W<G
vh a
vh G
WAH G

=f v(a)=T [v verifiesa]
= " d Gv<g [v verifiesG
= "Wl W,w<G [W verifiesq
=4 v(a)=F. [v falsifiesa]
=gf " (j Gvig [v falsifiesq
= "wiW,wrG [Wfdsifiesd

Having introduced the basic terminology, we next define a variety of logica concepts, including
validity and entailment, all defined relative to aset VV of admissible valuations.

(D)

Let a, b beformulas, and let G, D be subsets of formulas.

(1)
(2)
(3
(4)
(5)
(6)
(7)
(8)
(9)
(10)

a isvalid =% V<a

a iscontra-valid = V" a
Gisfalsifiable = VI V,V\G
Gisunfalsifiable = ~$vl V,VA G
Gisverifiable = SV V,v<G
Gisunverifiable = ~$vl V,v<G

a entailsb = " vl V{v<a ® v<h}
Gentailsa = " VI V{v<G® v<a}

aandb areequivalent =y " vi V{v<a « v<b}
GandDareequivdent =4 " vl V{v<G« v<D}

Note: ‘entails here is short for ‘semantically entails with respect to V’; the adverbs are omitted in this
context. When the omission is troublesome, we will dutifully restore the modifiers.

In order to symbolize some of these predicates, we use a single symbol, the double turnstile ‘=’
ambiguoudly. Asshown later, thisambiguity is harmless; indeed, it isfruitful.

(1)
(2)
(3
(4)
(5)
(6)
(7)
(8)

Fa
aE
=G
G=
aEb
G=a
a°hb
G°D

a isvalid

a iscontra-valid
Gisunfasifiable
Gisunverifiable

a entailsb

Gentalsa

a and b are equivalent
Gand D are equivalent
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The notions of validity and contra-validity correspond to the customary logica notions of logical
truth and logical falsehood. The notions of unfasifiability and unverifiability are generalizations of
validity and contra-validity, respectively. Specifically, to say that a set Gof sentencesis“valid” isto say
that the sentences of G cannot all be made false. Similarly, to say that Gis“contra-valid” isto say that the
sentences of G cannot al be made true. Notice that a formula a is valid (resp., contra-valid) iff the
singleton {a} isunfasifiable (resp., unverifiable).

In addition to the notions of validity and contra-validity, as well astheir generalizations, there are
two notions of entailment — binary entailment, and ordinary entailment. Ordinary entailment corresponds
to the notion of argument validity.

Gentailsa  « (Ga)isvalid

Finally, there are two notions of logical equivalence, one pertaining to individual formulas, the
other pertaining to sets of formulas. Note carefully that *°’ is a meta-linguistic two-place predicate, that
should not be confused with the symbol employed by some logic authors (but currently no one outside
philosophy!) as the object language connective for ‘if and only if’. We will never use ‘°’ in this
unfortunate manner. Similarly, ‘E’ is a meta-linguistic two-place predicate, borrowed from set theory,
and used to mean ‘properly includes. Again, ‘E’ should not be confused with the symbol employed by
some logic authors (but currently no one outside philosophy!) as the object language symbol for ‘if...then'.
We will never use‘E’ in this unfortunate manner.

5. The Mother of All Logical Notions

As used in the previous section, then symbol ‘=’ is used ambiguously; specificaly, it represents
two different two-place predicates, and four different one-place predicates. It was suggested that thisisa
harmless, indeed useful, ambiguity. In the present section, we examine a genera abstract concept of
‘entails’ [symbolized by ‘=’] from which all the usual logica notions can be derived. The following is
the official definition, understood relativeto V.

GeED =4 ~%$vi V{v<G& v"D}
In other words, set Gentails set Dif and only if no admissible valuation verifies Gand falsifies D.

As we see in a later chapter, the symmetry of this notion of entailment plays a crucia role in the
general completeness theorem for abstract logics. At the moment, however, we can use this symmetrical
entailment to define al previous logical notions. This is the content of the following theorems, whose
proofs are |eft as exercises.

(1) Fa « EE {a}
2 akE  « {a} = A
(©)) G= « GE A

4 EG  « =G

5) akb « {a} = {b}
6) G=a « Gk {a}

Note: in the above theorems, on the left-hand side, the turngtile is used ambiguously, but on the right-hand
side, the turnstile refers exclusively to the symmetric entailment relation. The convention seems clear
enough: a single formula can stand in place of its singleton, and the null expression can stand in place of
the empty set.
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6. Atomic Assignments

Df
Let L beaformal language, and let A be the set of atomic formulasof L. Then

(D) an atomic assignment on L isany function from A into { T,F}.
2 afinite atomic assignment on L isany function from A¢into { T,F},
where Ac¢is afinite subset of A

Notice that every valuation on L gives rise to an associated atomic assignment, defined in the
obvious manner.

(T) LetvbeavauationonL. Thenthereisaunique aomic assgnment o, on L, satisfying the
following.

for any atomic formulaa, o,(a) = v(a)

In other words, the atomic assignment function w, is simply the restriction of the valuation function v to the
atomic formulas of L. Noticethat o, and v are not identical, since their respective domains are different —
assuming of coursethat L has at least one non-atomic formula.

Every valuation gives rise to an atomic assignment. Does every atomic assignment giveriseto a
valuation? In this connection, we propose the following definitions.

Df
Let L be alanguage with formulas S and atomic formulas A. Let V be aclass of
valuationsonL. Let ® be an atomic assignment [resp., finite atomic assgnment] on
L. Then o isV-consstent if and only if o can be extended to avauationinV. In
other words:

o isV-consistent =4 $vi V" al dom(w)[w(a)=v(a)]
Here, dom(w) isthe domain of function .

V issaid to be atomically-free if and only if every finite atomic assignment is V-
consistent.

In other words, to say that V is atomically-freeisto say that every finite atomic assignment givesrise to at
least one valuation in V. It is, of course, a fundamental assumption of elementary SL that every finite
atomic assignment gives rise to at least one vauation — no assgnment of truth-values to finitely-many
atomic formulasis logically prohibited. Thisisrelated to a central feature of logics — formality —which
we discuss in greater detail later. For the moment, however, suppose logic L is specified by (L,V).
Suppose there is a finite atomic assignment o on L that is not V-consistent. There are a number of ways
this could happen, but let us smply suppose o(P)=T and o(Q)=F. Since » cannot be extended to a
vauation in V, it follows that the argument form (P/Q) is L-valid. Thisis a highly undesirable result,
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because it entails that we have an L-valid argument form that has no internal structure in virtue of which it
isvalid.

So far, we have discussed whether every atomic assignment can be extended to at least one
valuation. Another interesting question is whether every atomic assignment can be extended to at most
one valuation. In this connection, we propose the following definition.

Df
Let L be alanguage with formulas S and atomic formulas A. Let V be aclass of
valuationson L. ThenV issaid to be atomically determined if and only if:

"vvll V{" al A[va(a)=vy(a)] ® vi=vo}

Observe that, given that v; and v, are valuations on L, the sentence ‘v,=v,” amounts to the following.

" al Svi(a)=vy(a)]

So, if asemanticsis atomicaly determined, then if two valuations agree on all atomic formulas, then they
agree on al formulas, and are therefore identical.

Combining atomic-freedom and atomic-determination yields the following notion.

Df
Let L be alanguage with formulas S and atomic formulas A. Let V be aclass of
valuationson L. ThenV issaid to be atomistic if and only if V is both atomically-
free and atomically determined.

Given the definition of ‘atomistic’, we have the following immediate theorem.

(M Let L bealanguage and let V be aclass of valuationson L. SupposeV isatomically
determined. Then every atomic assignment on L givesriseto aunique valuation on L.

The following is not automatic, but it is the sort of result we should expect.
(T) LetLbeaZOL. SupposeV istruth-functional. ThenV isatomigtic.

A remaining question, in this regard, is whether truth-functionality and atomicity are equivalent. They are
not.

(T)  Not every atomistic semanticsis truth-functional.

In order to seethis, we offer the following example.
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(EX) LetL beaprefix-formatted ZOL specified by the usual CSL-connectives, plus a one-place
connective ©. DefineV sothat vl V iff v satisfies the usual truth-functional conditions,
plus the following condition pertaining to the extra connective.

v(©a) =T if w(a)=T for every wi V
=F otherwise

To see that thisis not truth-functional, we smply note that v(©a)=F for every atomic formula; no atomic
formulais an SL-tautology. Thereis, of course, a valuation v such v(p)=T and v(g)=F. This means that,
insofar as © is truth-functional, its truth-function is given by: [©T=F; ©F=F]. So, if © istruth-functional,
then v(©a)=OCv(a)=F, for every formula a. On the other hand, v(©ODpNp) = T [notice that DpNp
(=~PU~P) is an SL-tautology].

On the other hand, this semantics is atomistic. This is because al vauations are truth-functional with
respect to the standard CSL-connectives, and all valuations agree on al formulas whose main connective
is©. Thisisthebasic idea; aformal proof requiresinduction.

7. Locality

As we have seen, an atomic assignment is the abstract counterpart of a line in the guide table for a
truth-table. Of course, in intro logic, we never assign truth-values to all atomic formulas [why bother?).
Rather, in doing truth-tables, we only assign truth-values to those atomic formulas that are involved in the
specific argument under consideration. If we insist on evaluating al atomic formulas, we can smply say
that every atomic formulanot explicitly mentioned isassigned T (or F, as we wish; it doesn’t matter).

This smplification is based on the very plausible assumption that what truth-values we assign to
all other atomic formulas is completely irrelevant to the computation of the truth-values of the formulas
involved. Thisis certainly a feature of intro logic, and indeed of all truth-functional logics, but it is not
built into the concept of valuation. Noting this assumption, we propose the following definition.

Df
Let L be alanguage with formulas S and atomic formulas A. Let V be aclass of
valuationsonL. ThenV issaidto belocal if and only if:

"vivsl V' al S b{bl A& bZa .® vi(a)=v,(a)}
® vy(a)=vq(a)]

This says that, if two vauations agree on all the atomic subformulas of a formula, then they agree on the
formula. Here, we use the symbol ‘<’ as the subformula predicate. It is defined inductively as follows,
for general ZOL’ s written in prefix notation.

aza

aib&bzg®axg

if c isa1-place connective, thena < ca

if ¢ isa2-place connective, thena,b < cab

if ¢ isa3-place connective, then a,b,g < cabg
etc.

that's all!



10 Hardegree, Metalogic

If we define formulas to be strings of characters, as is customary, then we might define subformula
smply to be a sub-string which is a formula. The sub-string predicate is defined using the string
concatenation operation as follows.

S13S, =gi $S554S2=S3tS11S/]

[Note: this definition assumes that our theory of strings includes a null-string 4 then every string is a sub-
string of itself.]

[[Defining sub-formula to be a specia kind of sub-string works for ZOL's. However, for more
complicated languages, including quantified languages, the notion of sub-formula can be construed in a
more subtle manner. For example, one can construe subformulas so that ‘" xFx' has infinitely many
immediate subformulas—‘Fa, ‘Fb’, ‘Fc’, etc.]]

Let us consider an extremely smple example. Consider a forma language L with just two
formulas, ‘p’ and ‘©p’; so the language L is both minuscule and odd. Next, define V so that it contains
exactly three valuations, depicted in the following table.

p Op
Vi T T
Vo T F
V3 F F

Notice first that this semantics is not atomistic — v, and v, agree on the sole atomic formula‘p’, but do not
agree on al formulas; in particular, they do not agree on the “molecular” formula‘©p’. Notice aso that
this semanticsis not local either —v; and v, agree on al the atomic sub-formulas of ‘©p’, but do not agree
on‘Op’.

The previous language isnot aZOL ; it'sway too small! The example can be corrected as follows.
Consder aZOL L with just one connective, ©, a one-place connective. Next, defineV so that it contains
exactly three valuations, depicted in the following schematic table.

p* ©Op* ©OCp* ©OOp*
V1 T T F F
Vs T F F F
V3 F F F F

Here, ‘p*’ stands for ‘p’ followed by some number of sharps; in other words, p* is an arbitrary atomic
formulaof L. Notice that this semanticsis neither atomistic nor local.

One might naturally wonder whether locality and atomicity are equivaent. The answer is
conveyed in the following theorem.

(T)  Every atomistic semanticsislocal, but not every local semanticsis atomistic.

Proof???
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8. Valuation-Completeness and Super-Valuations

We now consider an interesting question. Once logic L is semantically specified by a set V of
valuations, is there any room for extra valuations? In order to make this idea more precise, we propose
the following definitions.

D1. Let L bealogic semanticaly specified by (L,V). Let v beany valuationonL. Thenvis
said to be L-consistent [also, V-consistent] if and only if v does not refute any L-valid [V-
valid] argument.

D2. Let L bealogic semanticaly characterized by (L,V). ThenV issaid to be complete if and
only if V contains every L-consistent [V-consistent] valuation.

Here is how these ideas work. We start with alogic £ characterized by aset V of L-admissible
valuations; in particular, V generates the set of L-valid [V-valid] arguments. This set in turn generates a
set of L-consistent [V-consistent] valuations. Obvioudly, every valuation in V is V-consistent (exercise).
The question is whether every V-consistent valuation isin V. If itis, then V is complete; otherwise, it is
incomplete.

1. Example 1
First, we consider a“degenerate” example. Define vauation vy as follows.
vo(a) =T, for every sentencea in S

This is a kooky vauation, to be sure, but notice that v is L-consistent for any logic £. Thisis because vq
refutes no argument whatsoever, because v, does not falsify any formula

2. Example 2

Next, we consider a non-degenerate example. In particular, consider classical sentential logic
(CSL), and the valuation v, defined as follows.

vi(a) =T if every CSL-valuation verifies a; vi(a)=F, otherwise.

First, v, is not CSL-admissible, because w(P)=v.(~P)=F, and no CSL-admissible valuation has this
property. Although v is not an official CSL valuation, it is nevertheless CSL-consistent. To see this, we
argue asfollows.

Suppose v, is not CSL-consistent. Then v, refutes at least one CSL-valid argument, call it
(Gla). Then v, verifies every element of G, but falsifiesa. Let gbe an element of G Then
v1(Q=T, so by the definition of v, every CSL-vauation verifies a; in other words, a is
CSL-valid —itisalogica truth, atautology. Thus, every dement of Gis CSL-valid. At this
point, we can prove the following general lemma (exercise).

L1 Gea & "9gd G® =g .® Fa

In other words, if an argument is valid, and every premise is a logical truth, then its
conclusion isalso alogical truth. Applying this general result to CSL, we conclude that a is
CSL-valid, so every CSL-vauation verifies a, so vi(a)=T. This contradicts our earlier
assumption that v falsifies a.
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What we have shown is that the standard set of CSL-admissible valuationsis not complete. There
are at least two valuations (counting the degenerate one) that can be added without changing the logic, at
least so far as argument validity is concerned.

3. Super-Valuations

Are there other valuations that are CSL-consistent but not CSL-admissible? As it turns out, there
are infinitely-many such valuations. Thisisin fact a specia case of amore general theorem.

In this connection, we offer the following definition.

D3. Let L bealogic characterized by (L,V). Let W be any subset of V. Definev,, asfollows.

vw(@) =T if "w{wl W® w(a)=T}
=F otherwise

Terminology: following van Fraassen, we call vy the super-val uation associated with, or
determined by, W.

D4.  LetV beasetof valuationson language L, and let v beavaluationon L. Thenvissadto
be a super-valuation over V if and only if thereisaWI V such that v = vy.

Example 1:

if W=/ then obtain Example 1 of the previous subsection.
Example 2:

if W=V, then we obtain Example 2 of the previous subsection.
Example 3:

if W={v}, then vy =v.

This means that, technically speaking, every ordinary valuation is also a supervaluation.

4. General Theorems
The following theorems sum up the important facts about superval uations and compl eteness.

Tl Le L bealogic characterized by V. Let W be any subset of V, and let vy be the
super-valuation determined by W. Then vy is L-consistent.

In other words, every super-valuation over V is V-consistent.

T2. Let L bealogic characterized by V. Let v be avaluation that is £-consistent.
Then thereisa subset W of V, and associated super-valuation vyy, such that v = vy.

In other words, V-consistent valuation is a super-valuation over V.

T3. Alogic(L,V) iscomplete if and only if every super-valuation over V is an element
of V (if other words, V contains al its super-valuations).
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9. Elementary Classes and Valuation Spaces

Associated with every formula f, there is a subset of valuations that verify f. This prompts the
following official definition.

d V() =« {viv<f}
=ar  {V:V(f)=T}

V(f) is caled the elementary class associated with f ; evidently, V(f) isthe set that consists precisely of
those valuationsin V that verify f .

This concept can be extended to sets in the obvious manner, as follows.
d V(O =« {viv<G
Once we have the basic notion, we can define the general notion of elementary class as follows.

(D) A subset W of valuationsis said to be an elementary classiff there existsaformulaf such
tha W =V(f).

(D)  Thevaluation space associated with language L and semanticsV is, by definition, the
ordered pair (V,E), where E isthe set of al elementary classes; in other words,

E={V(f): f1 S}.

Notice that, although every elementary class is a subset of V, not every subset of V is an elementary class.
For example, if V isinfinite, then P (V) is uncountable. On the other hand, the number of elementary
classesis no larger than the number of formulas, which is denumerable.

By way of concluding this section, we note that the notions of elementary class and valuation space
may be used to formulate the various forma semantic notions. We state the basic theorems, leaving the
proofs as exercises. We begin with a theorem describing the relation between V(f ) and V(G).

O VO = NV9:daG

2 Fa « V@)=V

B) ak « V@)=£&

4 EG « UVO:dG=V
B G « VOQ=£

(6) arb « V(@) V(b)

(7) Gea « V(I V()

(8 G=D « V(I U{V(d):d D}
9 a’b « V(a)=V(b)

(100 @D « V(G=V(D)

In thisregard, the following are relevant set-theoretic facts about “big” intersection and union.

1) al {V(@:d G « "dgdae® a Vg}
2 al UV@@:d G « $gd G& d V(g}
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10.

Exercises

Definitions

Presupposing a formal language L and a set V of admissible vauations on L, define the following
in primitive notation.

Note 1. For these purposes, set-theoretic notation, including function application notation, is
considered part of the primitive vocabulary.

Note 2: Thereis nothing special about the exact form of the definition. The definiens can be any
primitive formulathat islogically equivalent to the “official” definition. If thereisa particular
formulation that seems memorable to you, then useiit.

1. a isvalid Fa
2. a iscontra-valid aE
3. Gisunfalsifiable =G
4, Gisunverifiable G=
5. a entailsb aEb
6. Gentalsa G=a
7. GentallsD G=D
8. a and b are equivalent ab
9. Gand D are equivalent &D
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2.

General Theorems

In the following alogic £ semantically specified by (L,V) isassumed. Itisaso assumedthat a, b,
etc. areformulas of L, and G, D, etc. are sets of formulasof L.

Note 1. There are three different notions of semantic entailment employed here: binary, ordinary,
and symmetric entailment. Similarly, the double turnstile ‘=" is used in seven different ways (see
Part 1 above). Asusua, the context determines which one is meant.

Note 2: You may use sortal variables and constants — ‘v’ (etc.) for valuationsin V, ‘a’ (etc.) for
formulasof L, and ‘G (etc.) for sets of formulas of L.

1. GCD'A® G=D

2. al G® G=a

3. G=D & " ¢{d G® SkEg .® SED

4. G=D& G Gt& Di D¢.® G=D

5. G=a & GE{a}=b.® G=b if Gentailsa, and GE{a} entailsb,
then Gentailsb

6. G=a « G={a} Gentailsa iff Gentalls{a}

7. akEb « {a}={b} a entailsb iff {a} entails{b}

8. Fa « fA=a a isvalid iff Aentailsa

0. akE « {a}l=A a iscontravalid iff {a} entails A&

10. EG« A=G Gisunfalsifiableiff AentailsG

11. G« G=& Gisunverifiable iff Gentails A&

12. a°b« {a}°{b}
13. a°b« .aEb & bea
14. (O&D« ." a{G=a « Dea}

15. @D« ." d{dl D® G=d} & " g{d G® D=g
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3. Theorems Pertaining to CSL

In the following, assume that the set of admissible valuations is given by the standard semantics for CSL.
Note: in the proposed formalization, the symbols ‘~’ and ‘® * are used in three different ways, as names
of object language symbols, as names of the associated truth-functions, and as the metaanguage
connectives. The writer and reader of such proofs must be alert to context in reading these symbols.

1.

2.

10.
11.
12.

13.

Give a counterexampl e to the following:

1.

2.

G=a « GE{~a}E
aEb« =a®b
CE{a}=b« G=a®b
GE{a}=D« G=DE{~a}
G=DE{a} « GE{~a}ED
{a®b,a} b

{a® b, ~b} E-a
~akFa®b

brFa®b

{a, ~a} =

={a, ~a}

$a$b~[{a® b, b} = a]
$a$b~[{a® b, ~a} = ~b]

Counterexamples

G=D® $d{dl D& G=d}

D« .G=D& D=G

Gentailsa iff GE{~a} isunverifiable
a entailsb iff a® bisvalid

CGE{a} entailsb iff Gentailsa® b
CGE{a} entailsD iff GentailsDE{~a}

GentailsDE{a} iff GE{~a} entailsD
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11. Answers to Selected Exercises

1. Definitions in Primitive Notation

1. Ea = " v{vl V® v(a)=T}

2. akE = " v{vl V® v(a)=F}

3. =G =¢ " Vvl V® $g{d G& v(9=T}}

4.  G= = ~$v{vli V&" gd G® v(9=T}}

5. aEb = " VvVl V®.v(a)=T ® v(b)=T}

6. Gea =g "V{VIV®."gd G® v(g=T} ® v(a)=T}

7. G=D =4 ~$v{viV&"gd G® v(g=T}& " d{di D® v(d)=F}}

8. a°b =g " v{vi V®.v(a)=v(b)}

9. D =4 "vViV®." dd D® v(d)=T} « " gd G® v(9=T}]
2. General Theorems

Note: Inwhat follows, many variables and constants are used sortally, as follows.

Vv, W

a,b,g

GD

vauationsin V
formulasin S
sets of formulasin S

This means that we are presupposing the following shorthand.

" v
$vIF
"alF
$alF
" GF
$GF

"v{vi V® [}
$v{vi V& F}
"af{al S® [}
$a{al S& F}
"G d sS® [}
$G(d S& F)

See later sections for axioms, definitions, and subordinate lemmas.
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#1:

#H2:

#3:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

SHoW: GCDt £® G=D
GCD A

SHOW: G=D

SHOW: ~$v{v<G& v D}
$v{v<G& v D}
SHOW: X

w<G& w” D}
$x{xI G& xi D}

a G&d D

"x{xI G® w<x}
"x{xI G® w"x}
w<a

w”a

w(a)=T

w(a)=F

T=F

TF

sHow: al G® G=a

al G

SHOW: G=a

SHOW: " V{v<G® v<a}
w<G
SHOW: w<a
| " x{xXI G® w<x}

SHOW: G=D & " x{xl G® SkEXx} .® SED

G=D & " x{xl G® SEx}
SHEW: S=D

SHOW: ~$v{v<S & v D}
$v{v<S & v* D}

SHOW: X

w<S & wrD
~$v{v<G& V" D}
~[w<@

~" x{xI G® w<x}
~(d G® w<g)

d G& ~[w<d

SEg

" v{v<S ® v<g

w<g

CD

As

Def G=D
ID

As
16,17,SL
5$0

2,ST (short for * Set Theory’)
8,$0

7,Def v<G

7,Def VA G
93,10,QL
9b,11,QL
12,Def <
13,Def A
14,15,IL
Axiom 0

CD

As

Def G=a
UCD

As

2,7,QL
5,Def v<G

CD

As

Def G=D

ID

As
12b,15,SL
5%$0

2a,Def G=D
7b,8,QL
9,Def v<G(-)
10,~" O
11,SL
2b,12a,QL
13, Def G=a
7a,14,QL
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#4:

#5:

#6:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

SHOW: G=D& G Gt& DI D¢.® Gi=D¢

G=D& G Gt& Di D¢
SHOW: G&=D¢

SHOW: ~$v{v<Gt& v D¢
$v{v<CGt& v* D¢
SHOW: X

w<Gt& w” D¢

" x{xI Gt® w<x}
"x{xI G® x G}
"x{xI G® w<x}
w<G

" x{xI DE® w” x}
"x{xI D® xi D§
"x{xI D® w"x}
w” D

~$v{v<G& V" D}

SHOW: G=a & GE{a}=b.® G=b
G=a & GE{a}E=b
SHEW: G=b
SHOW: " v(v<G® v<b)
w<G
SHOW: w<b
"v(v<G® v<a)
" v(v<GE{a} ® v<b)
w<a
w < GE{a}
w<b

SHOW: G=a « G={a}
SHOW: ®

G=a

SHOW: G={a}

SHOW: ~$v(v<G& v*{a})
Pv(v<G& v~ {a})
SHOW: X

w<G& w”{a}

" v{v<G® v<a}
w<a

"x{xl {a} ® wx}
al {a}

w”a

w(a)=T

w(a)=F

T=F

TF

CD
As
Def G=D
ID
As
11,15,16,QL
5%$0
7a,Def v<G
2b,Def |
8,9,QL
10,Def v<G
7a,Def v G
2c,Def |
12,13,QL
14,Def VA G
2,Def G=D

CD

As

Def G=a
UCD

As

DD

23, Def G=a
2b, Def G=a
5,7,QL
59Lemma?2
8,10,QL

« D

CD

As

Def G=D
ID

As
16,17,SL
6,50

3,Def G=a
8a,9,QL

8b,Def v G
ST
11,12,QL
10,Def <
13,Def A
14,15,IL
Axiom O
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#oa:

#H7:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

SHOW: -

G={a}

SHOW: G=a

SHOW: " V{v<G® v<a}
w<G

SHOW: w<a

~Pv(v<G& v~ {a})

" V(v<G® ~[v*{a}])
~[w{a}]

~" x{xl {a} ® w"x}
$x{xl {a} & ~[w"x]}
a {a} & ~[wr 4]
a=a

~[w"a]

w(a)lF

w(a)=T

SHOW: ak=b « {a}E={b}
SHOW: ®

akEb

sHow: {a} ={b}

SHOW: ~$v(v<{a} & v*{b})
$v(v<{a} & v*{b})
SHOW: X

w<{a} & w”{b}
"x{xl {a} ® w<x}
al {a}

w<a

" x{xl {b} ® wrx}
bl {b}

w” b

w(b)=F

" v{v<a ® v<b}
w<b

w(b)=T

T=F

TLF

CD

As

Def G=a
UcCbD

As

16,Def <

2, Def G=D
7,QL

58,QL
9,Def v G(-)
10,QL
11,$0
12a,ST
12b,13,I1L
14,Def A (-)
15,Lemma0

« D

CD

As

Def G=D
ID

As
19,10,SL
6,50
8a,Def v<G
ST

9,10,QL
8a,Def VA G
ST
12,13,QL
14, Def vt a
3,Def a=b
11,16,QL
17,Def v<a
15,18,IL
Axiom O
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#7b:

#8:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

SHOW: -

{a} ={b}

SHOW: ak=b

SHOW: " v{v<a ® v<b}
w<a

SHOW: w<b

SHOW: w<{a}

el {a}

SHOW: w<e

| e=a
~[w” {b}]

el {b} & ~[w"€]
e=b

~[w” b]
~[w(b)=F]
w(b)=T

SHOW: Ea « A=a
SHOW: ®

Fa

SHOW: /AB=a

w<A

SHOW: w<a

} " v[v<a]
w<a

SHOW: —

A=a

SHOW: =a

SHOW: " v[v<a]

SHOW: w<a

} " V(V<AE® v<a)
w<A

~$v(v<{a} & v*{b})
"v(v<{a} ® ~[v*{b}])

sHow: " x{xI {a} ® w<x}

~" x{xl {b} ® w”x}
$x{xl {b} & ~[w"X]}

SHOW: " v(V<AE® v<a)

CD

As

Def aE=b
UucCbD

As

2,Def G=D
7,QL

Def

UucbD

As

513,IL

11,ST

8,9,QL

14, Def wN G(-)
15,QL

16,50

17a,ST
17b,18,I1L

19, Def v a (-)
20,Lemma0

« D

CD

As

Def G=a
UCD

As

DD

3,Def Fa
8,0L

CD

As

Def =a
ub
15,16,QL
11,Def G=a
Lemmab
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D SHOW: a= « {a}=A& « D
(2) sHoW: ® CD
(©)) akE As
4 SHOW: {a} =A Def G=D
(5) SHEW: " v(v<{a} ® $d{dl E& v<d}) UCh
(6) w<{a} As
(7) SHow: $d{dl £& w<d} 15,16,SL
(8 "v[vha]l 3, Def ak=
9 " v[v(a)=F] 8, Def ©
(20 w(a)=F 9,QL
(11) "x{xl {a} ® v<x} 6, Def <
(12) al {a} ST
(13) w<a 11,12,QL
(14 w(a)=T 13, Def <
(15) T=F 10,14,IL
(16) T F Axiom 0
(A7) sHowW: - CD
(18) {a} =/ As
(19) SHOW: ak= Def al=
(20) | SHoEwW: ~$v[v<a] ~$D
(21) w<a As
(22) SHOW: X 27a,28,QL
(23) w<{a} 21,Lemma6
(24) ~$v{v<{a} & v* A& 18,Def G-D
(25) ~[w™ A 21,24,QL
(26) ~" x{xl £® w"x} 25, Def v* G(-)
(27) a A& ~[w" 4 26,~" ® O
(28) ~$x[xl A ST
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#10:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

SHOW: =EG« A=G
SHOW: ®
=G
SHOW: AB=G
SHOW: ~$v{v</AE& V' G
wW</E& wM G
SHOW: X
| ~$v[vr G
SHOW: -
A=G
SHOW: =G
SHOW: ~$v[v" G
wh G
SHOW: X
"x(XI G® wx)
~SV{Vv<E& V) G
w</AE
~[wrg
~" x{xI G® w"x}
$x{xI G& ~[w" x]}
a G& ~[w” 4]
w”a

« D

CD

As

Def G=D
~$D

As

6b,8,QL
3,Def EG
CD

As

Def EG
~$D

As
21b,22,SL
13, Def v G
10, Def G=D
Lemmab
16,17,QL
18, Def VA G(-)
19,QL

26, $0
15,21a,QL
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11:

#12:

#13:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

SHOW: G=« G=/A
SHOW: ®

G=

SHOW: G=/A

w<G

SHEW: $x(XI A£& V<X)
~$v[v<g

~[w<(g

X

SHOW: -

G=A

SHOW: G=

SHOW: ~$v[v<(g
$v[v<g

SHOW: X

w<G

~$v{v<G& v\ A
N[W/\ /E

~" x{xI £® w"x}
$x(xl £& ~[wX])
$x[xI A

~$x[x A

SHOW: a®b « {a}°{b}
SHOW: ®

ab

SHOW: {a}°{b}

SHOW: w<{a} « w<{b}
" v{v<a « v<b}
w<a « w<b

SHOW: a®b « .akEb & bka

SHOW: ®

a°b

" v{v<a « v<b}

SHOW: a=b & b=a
SHEW: ak=b
SHOW: " v{v<a ® v<b}
SHEW: bi=a
SHOW: " v{v<b ® v<a}

SHOW: -

akEb & b=a

" v{v<a ® v<b}

" v{v<b ® v<a}

SHOW: a°b

SHOW: " v{v<a « v<b}

SHEW: " V{v<G® $x(xI & v<x)}

SHOW: " v(v<{a} « v<{b})

« D

CD

As

Def G=D
UucbD

As

ID

2, Def G=
7,QL

58

CD

As

Def G=
ID

As
22,23,SL
15, $O
12, Def G=D
17,18,QL
19,Def VA G
20,QL
21,0L

ST

« D

CD

As

Def @D

ubD

8, Lemma6,SL
3,Def a®b
7,QL

« D

CD

As

3,Def a®b
&D

Def aE=b
4,0L

Def aE=b
4,0L

CD

As

11a,Def aEb
11b,Def ak=b
Def a®b
12,13,QL
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#14:

#14b:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

SHOW: P D«
SHOW: ®
&D

SHOW: ®
G=a

w<D

| w<G
SHOW: -

SHOW: -

SHOW: & D

SHOW: ®
w<G

d D

D=d
G=d
SHOW: =

SHOW: v<a

" x{G=x« DEx}

" v{v<G« v<D}
SHEW: " x{ G=x « DE=x}
SHOW: G=a « Dka

" v{v<G® v<a}
SHOW: D=a
SHOW: " v{v<D® v<a}

| 8-14 mutatis mutandis

" X{G=x« De=x}
SHOW: " V{v<G« v<D}
SHOW: w<G« w<D

"x{xI G® w<x}
SHOW: w<D
SHOW: " x{xl D® w<x}

SHOW: w<d

| 7-14 mutatis mutandis

« D

CD

As

3,Def @D
ubD

« D

CD

As

8,Def G=a
Def G=a
ucb

As
9,14,QL
4,11,0QL
CD

CD

As

Def @D
uD

« D

CD

As

7,Def v<G
Def v<G
Uucb

As
8,14,QL
11,Th#2,QL
2,13,QL
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#15:

#15b:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

SHOW: @D« ." x{XI D® G=x} & " x{xI G® D=x}

SHOW: ®
&D
" v{v<G« v<D}
SHow: " x{xI D® G=x} & " x{XI G® De=x}
SHow: " x{xIl D® G=x}
di D
SHOW: G=d
SHOW: " V{v<G® v<d}
w<G
SHEW: w<d
w<D
"x{xXI D® w<x}
SHOW: " o{d G® D=g
| 6-13 mutatis mutandis

SHOW: -
"x{xIl D® G=x} & " x{xI G® D&=x}
SHOeW: @D
SHOW: " V{v<G« v<D}
SHOW: ®
w<G
SHEW: w<D
SHEW: " x{xI D® w<x}
di D
SHOW: w<d
G=d
" v{v<G® v<d}
SHOW: -
| 6-12, mutatis mutandis (2b/2ain line 11)

« D

CD

As

3,Def @D
&D

UucbD

As

Def G=a
UucbD

As
12,13,QL
4,10,QL
12, Def v<G
CD

CD

As

Def @D
uBD
CD

As

Def v<G
UCD
As
6,12,QL
2a,9,QL
11, Def G=a
CD
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3.

#1:

#1b:

Theorems Pertaining to CSL

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

SHOW: G=a « GE{~alE
SHOW: ®

G=a

SHOW: GE{ ~a}E

SHOW: ~$v[v < GE{~a}]
$v[v < GE{~a}]

SHOW: X

w < GE{~a}

" x(XI GE{~a} ® w<x))
"v(v<G® v<a)

w<G

w<a

w(a)=T

~al GE{~a}

w<~a

w(~a)=T

w(~a) = ~w(a)
T=~T

T=F

TLF

SHOW: -

CE{~a}E

SHOW: G=a

SHOW: " v(v<G® v<a)
w<G

SHOW: w<a

~$v[v < GE{~a}]
~[w < GE{~a}]

~" x(xT GE{~a} ® w<Xx)
al GE{~a} & ~[w<ad]
al GUal {~a}
casel: al G

"x(XI G® w<Xx)
w<a

X

w<a

case 2: a {~a}
a=~a

~[w<~a]
w(~a)rT
w(~a)=F

w(~a) = ~w(a)
~w(a)=F
w@)=T

w<a

« D

CD

As

Def G=

ID

As

19,20,SL
6,50

8, Def <

3, Def G=a
8, Lemma3, ST
10,11,QL
10, Def <
ST

9,14,QL

15, Def <
Def CSL-vd
13,16,17,IL
18, Def —
Axiom O

CD

CD

Def G=a
UcCbD

As
11,12-16,17-25,SC
2,Def G=
7,QL

8, Def v<G (-)
9,~" 0O
10a,Def E
As

5, Def <
12,13,QL
10b,14,SL
15,SL

As

17, ST
10b,17,IL
Def < (-)
20, LemmaO
Def CSL-val
21,22,I1L

23, Def —
24, Def <
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#H2:

#2b:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

SHOW: aEb« Ea®b
SHOW: ®

akEb

SHOW: Fa® b
SHOW: " v[v < a® b]
SHOW: w<a® b
SHOW: w(a® b) =T
w(@® b))t T

w(a® b)=F

w(a)® w(b) =F
w(a)=T & w(b)=F
"v(v<a ® v<b)
w<a

w<b

w(b)=T

T=F

TF

SHOW: =
Ea®b
SHOW: ak=b

w<a

SHOW: w<b
SHOW: w(b)=T
w(b)r' T
SHOW: X
w(b)=F

"v[v < a® b]
w<a®b
w(@®hb)=T

w@)®w(b)=T
w(a)=F
w(a)=T

T=F

TF

w(a® b) =w(a)® w(b)

SHOW: " v(v<a ® v<b)

w(a® b) =w(a)® w(b)

« D

CD

As

Def Ea
ub

Def <

ID

As

8, LemmaO
Def CSL-val
9,10,IL

11, Def -
3,Def aEb
123, Def <
13,14,QL
15, Def <
12b,16,IL
Axiom O

CD

As

Def aEb
UCD

As

Def <

ID

As
18,19,SL
8Lemma0
2, Def =a
11,QL

12, Def <
Def CSL-vd
13,14,IL
10,15, Def =
5, Def <
31,32,IL
Axiom O
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#3:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

SHOW: GE{a}=b« G=a®b
SHOW: ®
SHOW: GE{a}=b® G=a®b
GE{a} =b
SHOW: GE=a® b
SHOW: " v(v<G® v < a® b)
w<G
SHOW: w < a® b
SHOW: w(a® b)=T
w(@® b)) T
SHOW: X
w(a® b)=F
w(a® b) =w(a)® w(b)
w(a)® w(b) =F
w(a)=T & w(b)=F
w<a
w(b)t T
~[w<b]
"v(v < GE{a} ® v<b)
~[w < GE{a}]
~" x(xT GE{a} ® w<x)
al GE{a} & ~[w<4d]
al GUa {a}

casel: al G

"x(XI G® w<Xx)

w<a

X

case2: a {a}

a=a

~[w<al]

X

« D

CD

CD

As

Def G=a
UucbD

As

Def <

ID

As
23,24-31,SC
10, LemmaO
Def CSL-val
12,13,IL

14, Def -
153, Def <
15b, Lemma 1l
17, Def <
4, Def G=a
18,19,QL
20, Def < ()
21,~" O
22a,ST

As

7, Def <
24,25,QL
22b,26

As

28, Def {}
22b,29,I1L
16,30
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#3b:

#4:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

SHOW: -

GE=a®b

SHeW: GE{a} £ b

SHOW: " v(v < GE{a} ® v<b)
w < GE{a}

SHEW: w<b

"V(v<G® v < a®hb)
w<G

w<a®b

w(@®h)=T

"x(x1 GE{a} ® w<Xx)
al GE{a}

w<a

w(a)=T

w(a® b) =w(a)® w(b)
T=T® w(b)

w(b)=T

w<b

SHEW: GE{a} =D« G=DE{~a}
SHOW: ®

CGE{a}ED

SHOW: G=DE{ ~a}

SHOW: ~$v[v<G& v* DE{ ~a}]
w<G& w” DE{~a}

SHOW: X

" x{xi DE{~a} ® w"x}
~al DE{~a}

wh ~a

w(~a)=F

w(~a) = ~w(a)
~w(a)=F

w@)=T

w<a

w<GE{a}

~$v{v<GE{a} & v* D}
~[w” D]

DI DE{~a}

w” D

CD

As

Def G=a
UcCbD

As

DD

2, Def G=a
5, Lemma3,ST
7,8,QL

9, Def <

5, Def <
ST
11,12,SL
13, Def <
Def CSL-val
10,14,15,IL
16, Def —
17, Def <

« D

CD

As

Def G=D

~$D

As

18,20,SL
6b,Def v G
ST

8,9,QL

10,Def v a
Def CSL-valuation
11,12,IL
13,Def —

14, Def <
6a,15,Lemma 2
3,Def G=D
16,17,QL

ST
6b,19,Lemma4
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#4b:

#5:

#6:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

(1)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

SHOW: -
G=DE{ ~a}
SHeW: GE{a} =D
SHeW: ~$v{v<GE{a}& v D}
w<GE{a}& w" D
SHOW: X
" x{xI GE{a} ® w<x}
"x(xI G® xI GE{a})
"x(XI G® w<x)
w<G
~$v(v<G& v* DE{ ~a})
~[w” DE{ ~a}]
~" X(xI DE{~a} ® w"X)
el DE{~a} & ~[w" €]
el DU e=~a
cl:el D
"x{xI D® w"x}
whe
X
c2:.e=~a
~[w" ~a]
w(~a)! F
w(~a) = ~w(a)
~w(a)! F
~w(@)=T
w(a)=F
al GE{a}
w<a
w(a)=T
T=F
X

G=DE{a} « GE{~a}ED
Very smilar to #4.

SHOW: {a® b,a} = Db
SHOW: " v(v<{a® b, a} ® v<b)
w<{a® b, a}

SHOW: w<b

"x(xl {a® b, a} ® w<x)
a®b,al{a®b,a}
w<a® b

w<a

w(a® b)=T

w(a)=T

w(a® b)=w(a)® w(b)
T=T->w(b)

w(b)=T

CD

As

Def G=D
~$D

As
15,16-31,SC
5a, Def v<G
ST

7,8,QL
9,Def v<G
2,Def G=D
10,11,QL
12, Def wN G(-)
13,~" ® 0
14a, ST

As

5b,Def v D
16,17,QL
14b,18,SL
As
14b,20,1L
21, Def vt a (-)
Def CSL-valuation
22,23,IL

24, emmaO
25,Def —

ST

7,27,QL
28,Def v<a
26,29,IL
30,Axiom O

Def G=a
UcD

As

13, Def <
3, Def v<G
ST
5,6a,QL
5,6b,QL
7,Def <
8,Def <
Def CSL-val
9,10,11,IL
12, Def -
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#H7:

#8:

#9:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

SHOW: {a® b, ~b} = ~a

SHOW: " v(v<{a® b, ~b} ® v<~a)

w<{a® b, ~b}

SHOW: w<~a
"x(Xl {a® b, ~b} ® w<x)
a®b, ~bT {a® b, ~b}
w<a® b
w<~b
w(a® b)=T
w(~b)=T
w(~b) = ~w(b)
~w(b)=T
w(b)=F
w(a® b)=w(a)® w(b)
T=w(@)®F
w(a)=F
w(~a) = ~w(a)
w(~a)=~F
w(~a)=T

SHOW: ~a = a®b

SHOW: " v{v<~a ® v<a® b}
w<~a

SHEW: w<a® b

SHOW: w(a® b)=T
SHOW: w(a)® w(b) =T
w(~a)=T

w(~a) = ~w(a)
~w(a)=T

w(a)=F

w(a)® w(b) = F® w(b)
FOwb)=T

bEa®b

SHOW: b = a®b

SHOW: " v{v<b ® v<a® b}

w<b

SHEW: w<a® b

SHOW: w(a® b)=T

SHOW: w(a)® w(b) =T
w(b)=T
w(a)®w(b) =w(@)® T
w@)®T=T

Def G=a
UCD

As

19,Def <
3,Def v<G
ST

5,6a,QL
5,6b,QL
7,Def <
8,Def <

Def CSL-val
10,11,IL
12,Def —
Def CSL-valuation
9,13,14,IL
15, Def -
Def CSL-val
16,17,IL

18, Def —

Def a=b
UcD

As

Def <

Def CSL-vd
11,12,1L

3, Def <

Def CSL-vd
7,8,IL

9,Def —
10,IL

Def >

Def aE=b
UucCbD

As

Def <

Def CSL-val
9,10,IL

3, Def <
10,I1L

Def >
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#10:
(1)  sHow:{a, ~a} = Def G=
(2)  sHewW: ~$v" x{xI {a, ~a} ® v<x} ~$D
(3) "x{xl {a, ~a} ® w<x} As
(4) SHOW: X 13,Axiom 0
(5) a,~al {a,~a} ST
(6) w<a 3,5a,QL
(7) w<~a 3,5b,QL
(8) w(a)=T 6,Def <
(9) w(~a)=T 7,Def <
(10) w(~a)=~w(a) Def CSL-val
(11) ~w(@)=T 9,10,IL
(12) w(a)=F 11,Def —
(13) T=F 8,12,IL

#11:
(1)  sHow: ={a, ~a} Def =G
(2)  sHow: ~$v" x{xl {a,~a} ® v x} ~$D
(©)) "x{xI {a,~a} ® w*x} As
(4) SHEW: X 13,Axiom 0,SL
(5) a,~al {a, ~a} ST
(6) w”a 3,5a,QL
(7) wh ~a 3,5b,QL
(8) w(a)=F 6,Def <
(9) w(~a)=F 7,Def <
(10) w(~a) = ~w(a) Def CSL-val
(11) ~w(a)=F 9,10,IL
(12) w(a)=T 11,Def —
(13) T=F 8,12,IL

#12:
(1) SHew: $a$b~[{a® b, b} E a] 2,QL
(2) sHow: ~[{P® Q, Q} F F] ID
(3) {PRQ,Q}EP As
(4) SHOW: X 18,Axiom 0,SL
(%) "v{v{P® Q, Q} ® v<P} 2,Def G=a
(6) $v{V(P)=F & v(Q)=T} Big Lemma
(7) w(P)=F & w(Q)=T 6,$0
(8) w(P® Q) = w(P)® w(Q) Def CSL-val
(9) wP®Q)=F®T 7.8,IL
(10) wP®Q)=T 9,Def >
(11) w<P® Q 10, Def <
(12) w<Q 7b,Def <
(13) "x{XI {P®Q, Q} « .x=P® QU x=Q} ST
(14) "x{xI {P®Q, Q} ® w<x} 11,12,13,0QL
(15) w<{P® Q, Q} 14,Def v<G
(16) w<P 5,15,QL
(17) w(P)=T 16,Def <
(18) T=F 7,17,IL
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#13:
(1) %$asb~[{a®b, ~a} = ~b] 2,QL
(2) sHoW: ~[{P® Q, ~P} = ~Q] ID
3 {PRQ, ~P} E ~Q As
4 SHOW: X 25,Axiom 0,SL
(5) "V{v<{P® Q, ~P} ® v<~Q} 2,Def G=a
(6) Sv{v(P)=F & v(Q)=T} Big Lemma
@) w(P)=F & w(Q)=T 6,$0
(8 w(P® Q) = w(P)® w(Q) Def CSL-val
9 wP®Q =F®T 7,8,IL
(20 wP®Q)=T 9,Def >
(11) w<P® Q 10, Def <
(12) w<Q 7b,Def <
(13) w(~P) = ~w(P) Def CSL-va
(14 w(~P) = ~F 7a,13,IL
(15) w(~P)=T 14,Def —
(16) w<~P 15,Def <
(17) "x{xXI {P®Q, ~P} « .x=P® QU x = ~P} ST
(18) "x{xl {P® Q, ~P} ® w<x} 11,16,17,1L
(19) w<{P® Q, ~P} 18,Def v<G
(20) w<~Q 5,19,QL
(21) w(~Q)=T 20, Def <
(22 w(~Q) = ~w(Q) Def CSL-va
(23) ~w(Q) =T 21,22,1L
(24) w(Q)=F 23,Def —
(25) T=F 7b,24,1L
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4. Official Definitions for Purposes of Doing Proofs of Theorems:

(1) v<a = Vv(@)=T
(2 v<G = "x{xXI G® v<x}
3) vta =  Vv(a)=F
@ VG =g "x{xI G® vix}

(5) G=a =g "v(v<G® v<a)

6) G=D =g ~$v(v<G& V'D)
(7) Fa =df " V[V<a]
(8) aFE =qf " v[vra]

9 =G =df ~$v[v" G
(100 G- =df ~$v[v<g
(11) a°b =4 " viV{v<a « v<b}

(12) &@D =4 " vl V{v<G« v<D}

(13) Def ~
~T =qf F
~F S
(14) Def ®
T®T =df T
T® F =df F
F®T =df T
F® F =df T

(15) Def CSL-val
v isa CSL-vauation =4
"afv(~a)=~v(a)] & " ab[v(a® b) =v(a)® v(b)] & ...
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5. Supporting Lemmas

Axiom O:
TLF

Thisistaken for granted in formal semantics. Logicaly speaking, it is an axiom (primitive thesis,
fundamenta postulate) of formal semantics.

Lemma O:
(1) sHew:v(a)=T Uv(a)=F
2 visafunction from Sinto { T,F} Def of valuation on L
(3 "x(x S® v(x)I {T,F}) 2, Def function from A to B
(4) al S sortal assumption
(5) v@@)l {T,F} 3,4,QL
(6) v(a)=T Uv(a)=F 5, Def {}
Lemma 1:
v(@)=T® v(a)tF
v(@)=F® v(a)*T
Both are immediate corollaries to Axiom O.
Lemma 2:
(1) SHeW:v<G& v<a .® v<GE{a} CcD
2 v<G& v<a As
(3 SHOW: v < GE{a} Def <
(4) SHowW: " x(x1 GE{a} ® v<Xx) UCh
(5) al GE{a} As
(6) SHOW: v<a SC
(7) a GUd {a} 5, Def E
(8) casel:al G As
9) "x(XI G® v<Xx) 2a, Def <
(10 v<a 8,9,QL
(11) case2: al {a} As
(12) a=a 11, Def {}
(13) v<a 2b,12,1L
Lemma 3:
(1) SHeW:d D®.v<D® v<G CD2
(2 G D As
(©)) v<D As
4 SHOW: v<G Def <
(5) SHEW: " x(xI G® v<X) DD
(6) "x(xI G® xI D) 2, Def |
(7) "X(xXI D® v<X) 3, Def <
(8) "X(xXI G® v<X) 6,7,QL
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Lemma 4:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Lemma 5:

(1)
(2)
(3)

Lemma 6:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

Big Lemma:

SHow: G D® . vAD® VA G
@D
vAD
SHOW: VA G
SHOW: " x(XI G® v~ X)
"x(xI G® xI D)
"x(XI D® vAX)
"x(XI G® vAX)

SHOW: v</E
SHOW: " x{xI AE® v<x}
| ~$x[xI A

SHOW: w<{a} « w<a
SHOW: ®

w<{a}

SHOW: w<a

" x{xl {a} ® w<x}
al {a}

SHOW: -

w<a

SHOW: w<{a}

el {a}
SHOW: w<e
| e=a

sHow: " x{xI {a} ® w<x}

CD2
AS
AS

Def ~
DD

2, Def |
3, Def A
6,7,QL

Def v<G
3,0L

« D
CD

As
5,6,QL
3, Def v<G
ST

CD

As

Def v<G
UucbD
As
8,13,IL
11,ST

In CSL, the (syntactically) atomic formulas are also semantically atomic. In other
words, any assignment of truth values to any subset of atomic formulas can be extended to

an admissible valuation.

Proof: by induction!
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#1:

#H2:

#3:

#4:

#4:

#5:

#6:

Theorems of Set Theory

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)
(5)
(6)

(1)
(2)
(3)
(4)
(5)
(6)

sHow: al GE{a}
sHew: a GUal {a}

SHewW: GI GED

SHow: " x(XI G® xI GED)
a G

SHew: al GED
SHew: al GUa D

el GED« .el GUel D
el GE{a} « .el GUe=a

GCD AE® $x{Xl G& xI D}

Def E
DD

IL

3, Def {}
4,SL

DD
IL
2, Def {}

DD
IL

2,5L

2, Def {}

Def |
UCD
As
Def E
DD
3,SL

ID

As
5,6,SL
2,$0

3, Def /E
IL



