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2 Hardegree, MetaLogic 

1. Introduction 

 In presenting a logic, the customary procedure involves four steps. 

(1) specify the syntax of the underlying formal language, L, over which the logic is defined;  
(2) specify the semantics for L, in virtue of which semantic entailment is defined;  
(3) specify a deductive system for L, in virtue of which deductive entailment is defined; 
(4) show that semantic entailment and deductive entailment are mutually consistent.   

In the present chapter, we discuss steps 1 and 2 for classical sentential logic. 

2. The Language of Classical Sentential Logic 

 Classical sentential logic (CSL) can be formulated in a ZOL, either in prefix (Polish) format or in 
infix (algebraic) format.  In the former case, the formal language, L1, is specified as follows, using 
minimal notation. 

(0) The vocabulary consists of the following:  p, Ø, N, K, D, C, B. 
(a1) p is an atomic formula. 
(a2) if σ is an atomic formula, then so is σØ. 
(a3) nothing else is an atomic formula. 
(f1) every atomic formula is a formula. 
(f2) if σ is a formula, then so is Nσ. 
(f3) if σ1 and σ2 are formulas, then so are:  
  Kσ1σ2 
  Dσ1σ2 
  Cσ1σ2 
  Bσ1σ2 
(f4) nothing else is a formula. 

The prefix connectives correspond to negation (N), conjunction (K), disjunction (D), conditional (C), and 
biconditional (B), respectively. 

 On the other hand, the infix formulation of the language of CSL is given by formal language L2, 
which is specified as follows. 

(0) The vocabulary consists of the following: P, #, ∼, &, ∨, →, ↔, (, ). 
(a1) P is an atomic formula. 
(a2) if σ is an atomic formula, then so is σØ. 
(a3) nothing else is an atomic formula. 
(f1) every atomic formula is a formula. 
(f2) if σ is a formula, then so is ∼σ. 
(f3) if σ1 and σ2 are formulas, then so are: 
  (σ1&σ2) 
  (σ1∨σ2) 
  (σ1→σ2) 
  (σ1↔σ2) 
(f4) nothing else is a formula. 

 Notice that we have employed minimal notation in the metalanguage, rather than the grammatically 
more explicit quote/plus notation.  In particular, rather than use quotes, we simply use the very same 
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symbol in the metalanguage as the name of the symbol in the object language (one symbol, two meanings).  
Also, rather than use ‘+’, we adopt the implicit juxtaposition method for denoting complex expressions 
(strings) of the object language.   

 As a further notational simplification, from now on, we adopt the following official metalinguistic 
definitions. 

p0 =df p P0 =df P 
p1 =df pØ P1 =df PØ 
p2 =df pØØ P2 =df PØØ 
etc.   etc. 

Notice that the numerical subscript is short for the number of occurrences of the sharp sign. 

 What’s more, we will further adopt the following informal definitions of the customary atomic 
formulas of elementary logic. 

P =df  P0 
Q =df  P1 
R =df  P2 
S =df  P3 
etc.[?] 

[Alternatively, we could officially include all upper case Roman letters in our vocabulary, and declare 
that each of them is an atomic formula.] 

3. Truth-Values 

 Ordinary sentential logic is not concerned with all sentences, but only declarative sentences, thus 
ignoring interrogative, imperative, exclamatory, and performative sentences.  The simplest definition of a 
declarative sentence is that it is a sentence that is capable of being true or false.  Basically, a declarative 
sentence is intended, when uttered, to declare something, which in turn is either true or false.  It is 
furthermore customary to say that the sentence itself is true (resp., false)  when what it declares is true 
(resp., false).   

 Associated with the adjectives ‘true’ and ‘false’ are the abstract proper nouns ‘True’ and ‘False’, 
which refer to what are known as truth-values [more about reference later]. 

 An analogy might be useful here.  Consider the difference between the adjective ‘blue’ and the 
proper noun ‘Blue’, as used in the following two sentences 

my favorite shirt is blue 

my favorite color is Blue 

Observe that we capitalize the noun, in a Germanesque fashion, in order to further distinguish it from its 
corresponding adjective.  On the other hand, we don’t adopt Germanesque ontological sentiments; in 
particular, we do not automatically assume that there really is a thing (abstract or otherwise) to which the 
proper noun ‘Blue’ refers.  Rather, we allow (but don’t require) that the nominal use of ‘blue’ is merely a 
grammatical convenience.   
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 In order to hear the difference between the adjectival and nominal uses of ‘blue’, it is useful to see 
what happens when we invert the above sentences. 

blue is my favorite shirt 

Blue is my favorite color 

The first one sounds funny (poetic, if you like); the second one sounds rather ordinary (prosaic, if you 
like). 

 Veterans of elementary logic can render the distinction in the starkest terms, by symbolizing the 
two sentences, as follows. 

B[s(i)] 

c(i) = b 

B[α] : α is blue 
s(α) : α’s the favorite shirt 
c(α) : α’s the favorite color 
i : I/me/my 
b : Blue 

 Notice also that there is a natural semantic correspondence between the adjective ‘blue’ and the 
noun ‘Blue’, given as follows. 

object x is blue B[x] 

if and only if ↔ 

the color of object x is Blue c(x) = b 

Notice that this is not a logical truth (at least, not according to “standard” logic).  On the other hand, it is 
analytically true, which is to say it is true in virtue of the meanings of its terms.   

 Now back to truth-values.  Just as there is a conceptual relation between ‘blue’ and ‘Blue’, there is 
a relation between ‘true’ and ‘True’, and between ‘false’ and ‘False’.  This is given as follows. 

sentence Æ is true/false 
 

if and only if 
 

the truth-value of Æ is True/False 
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4. Truth-Functions 

 The customary semantics for CSL employs the notion of truth-function, which is a function that 
takes truth-values as input and yields truth-values as output.  Formally stated: 

Df 
A truth-function is, by definition, an n-place function on {T,F}, for some number n. 
 

For an account of functions, see the appendix on set theory.  Basically, an n-place truth-function takes a n-
tuple of truth-values as input and delivers a truth-value as output; for example, a 2-place truth-function 
takes a 2-tuple (ordered pair) of truth-values and delivers a truth value as output. 

 The following are examples of 1-place, 2-place, and 3-place truth-functions. 

(e1.1) f1(T) = T [f1 assigns T to T] 
f1(F) = F [f1 assigns F to F] 

(e1.2) f2(T) = F 
f2(F) = T 

(e1.3) f3(T) = T 
f3(F) = T 

(e1.4) f4(T) = F 
f4(F) = F 

(e2.1) g1(T,T) = T 
g1(T,F) = F 
g1(F,T) = F 
g1(F,F) = F 

(e2.2) g2(T,T) = F 
g2(T,F) = T 
g2(F,T) = T 
g2(F,F) = T 

(e3.1) h1(T,T,T) = T   
h1(T,T,F) = T   
h1(T,F,T) = F   
h1(T,F,F) = F   
h1(F,T,T) = T   
h1(F,T,F) = F   
h1(F,F,T) = T   
h1(F,F,F) = F   
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(e3.2) h2(T,T,T) = T 
h2(T,T,F) = F 
h2(T,F,T) = F 
h2(T,F,F) = T 
h2(F,T,T) = T 
h2(F,T,F) = F 
h2(F,F,T) = T 
h2(F,F,F) = F 

How many truth-functions are there.  Standard combinatorial reasoning yields the following finite results 
(1)-(n).  Set theory yields the general result. 

(1) The number of 1-place truth-functions:  4 
(2) The number of 2-place truth-functions:  16 
(3) The number of 3-place truth-functions:  256 
(4) The number of 4-place truth-functions:  64k  [k = 1024] 
(5) The number of 5-place truth-functions:  4096m  [m = k2] 
 
(n) The number of n-place truth-functions: 2 exp (2 exp n) 
 
(g) The number of truth-functions:  infinitely-many 

For example, in (2) there are four 2-tuples of truth-values; each one can be assigned T or F; so for each 2-
tuple there are 2 possible assignments.  Accordingly, the total number of possible assignments is 
2×2×2×2, which is 16.  In the case of an n-place truth-function, there are 2n (i.e., 2 exp n) different n-
tuples; for each n-tuple, there are 2 possible assignments, so the total number of possible assignments is 2 
exp (2 exp n).  The latter can be quite large. 

5. Truth-Functional Semantics for CSL 

 Intimately related to truth-functions are truth-functional connectives.  A connective is not in and of 
itself truth-functional, but is truth-functional only relative to a semantics.  A semantics for a formal 
language L provides, at the minimum, a set of admissible valuations on L, which are defined as follows. 

Df 
Let L be a language, and let S(L) be the set of sentences (formulas) of L.  Then a 
valuation on L is any function from S(L) into {T,F}.  A truth-value semantics on 
L is, by definition, any set of valuations on L. 
 

In this context, let us drop the prefix ‘truth-value’, and simply refer to a set V of valuations as a semantics. 

 We are now in a position to define truth-functionality. 
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Df  
Let χ be an n-place connective in a prefix-formatted language L.  Let V be a (truth-
value) semantics for L.  Then χ is truth-functional relative to V iff:  there is an n-
place truth-function, call it fχ, such that, for every valuation v in V, for any formulas 
φ1,...,φn, 
 
 v(χφ1...φn) = fχ(v(φ1),...,v(φn)) 
 

The basic idea is simple; a connective is truth-functional iff it corresponds to a truth-function.  Insofar as 
connective χ corresponds to truth-function fχ, the truth-value of any χ-formula is a function (specifically, 
fχ) of the respective truth-values of its constituents. 

 If every connective of L is truth-functional relative to V, we say that V is a truth-functional 
semantics for L.  This is made official in the following. 

Df  
Let L be a ZOL, and let V be a semantics for L.  Then V is truth-functional iff 
every connective χ of L is truth-functional relative to V. 
 

 The usual semantics for CSL is truth-functional.  The following is a semi-formal definition of this 
semantics, for the prefix-formatted language L1. 

Df 
The usual semantics for CSL, in prefix-format, countenances as admissible all and 
only those valuations on L1 that satisfy the following restrictions. 
 
(N) v(Nα) = n(v(α)) 
(K) v(Kαβ) = k(v(α),v(β)) 
(D) v(Dαβ) = d(v(α),v(β)) 
(C) v(Cαβ) = c(v(α),v(β)) 
(B) v(Bαβ) = b(v(α),v(β)) 
 
Here, the truth-functions are defined as follows. 
 
(n) n(T)=F; n(F)=T 
(k) k(T,T)=T; k(T,F)=F; k(F,T)=F; k(F,F)=F 
(d) d(T,T)=T; d(T,F)=T; d(F,T)=T; d(F,F)=F 
(c) c(T,T)=T; c(T,F)=F; c(F,T)=T; d(F,F)=T 
(b) b(T,T)=T; b(T,F)=F; b(F,T)=F; b(F,F)=T 
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The functions n,k,d,c,b are of course the familiar truth-functions associated, respectively, with negation, 
conjunction, disjunction, conditional, and biconditional.  For example, the fact that k(T,T)=T amounts to 
the fact that the “conjunction” of T and T is T.   

 Whether we actually call the function k conjunction depends upon how precise we wish to be.  If 
we insist that conjunction is a connective, then the function k is not conjunction, since it is not a 
connective; rather, k is the truth-function that corresponds to conjunction.  Of course, in intro logic, the 
connective and the truth-function were both called conjunction. [Intro students have enough trouble without 
having to worry about the distinction between (set theoretic) functions and (syntactic) functors.] 

 On the other hand, it is convenient (if somewhat sloppy) to use the term ‘conjunction’ to refer to 
both the functor K and the function k.  This allows us to describe the truth conditions for the functor K as 
follows. 

(t) the truth-value of the conjunction of two formulas is the conjunction of the truth-values of 
the two formulas. 

The latter statement can be made more precise, if we distinguish between syntactic conjunction and 
semantic conjunction, in which case (t) is rewritten as follows. 

(t*) the truth-value of the syntactic conjunction of two formulas is the semantic conjunction of 
the truth-values of the two formulas. 

Writing both “conjunctions” in infix notation, and using the same symbol ‘&’ for both, we can re-write (t) 
as follows. 

(t**) v(α&β) = v(α) & v(β) 

Here, ‘&’ is ambiguous:  the first occurrence of ‘&’ is the name of the ampersand symbol of the object 
language; the second occurrence is the name of the truth-function k, which is a set of ordered pairs.  The 
difference between syntactic and semantic conjunction is striking; whereas (α&β) is a string consisting of 
‘(’ followed by α followed by ‘&’ followed by β followed by ‘)’, v(α)&v(β) is not a string but a truth-
value; for example, T&T is not a string consisting of T followed by & followed by T; T&T is just T 
[T&T=T]. 

 The usual semantics for CSL is truth-functional.  A simple example of a non-truth-functional 
semantics for L1 is easy to construct. 

(D) The semantics NTFS for L1 countenances as admissible exactly one valuation, namely w 
defined as follows. 
 
w(α)=T  if  v(α)=T for every v ∈ V(TFS); v(α)=F, otherwise. 

 Here, V(TFS) is the set of admissible valuations of the usual truth-functional semantics, mentioned 
above. 

In other words, the valuation w assigns T to all tautologies of ordinary classical SL, but F to all non-
tautologies. 

 To show that NTFS is not truth-functional, we need merely show that one connective is not truth-
functional.  Consider negation; first, consider the formula Np; the input formula p is not a tautology of 
classical logic, so p is false in NTSF; similarly, the output formula Np is not a tautology, so Np is also 
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false in NTSF.  Input: false; output: false.  Now, consider the negation NKpNp; the input formula KpNp is 
not a tautology of CL, so it is false in NTSF; on the other hand, NKpNp is a tautology of CL, so the output 
formula NKpNp is true in NTSF; input: false; output: true.  Thus, relative to this semantics, the truth-value 
of a negation is not a function of the truth-values of its constituents. 

 In order to produce a somewhat more interesting example of a non-truth-functional semantics, let 
us first enlarge L1 by adding the one-place connective ‘L’; then let us modify the semantics TFS, to 
produce TFS+, by adding the following clause to the definition of admissible valuation. 

(L) v(Lα) = T  if  ∀w(w∈V → w(α)=T);  v(Lα) = F  otherwise. 

‘L’ corresponds roughly to the English “it is necessary that...”; Lα is true if α is true in every valuation, 
and is false otherwise.   

 To see that the added connective L is not truth-functional relative to TFS+, consider the formulas 
LDpNp and Lp.  Since p is atomic, some valuations make p true and others make p false; since some 
valuations make p false, every valuation makes Lp false.  On the other hand, every valuation makes DpNp 
true, so every valuation makes LDpNp true.  Consider a valuation, call it v, that makes p true; then 
v(p)=v(DpNp)=T, but v(Lp)=F, and v(LDpNp)=T.  Thus the truth-value of Lα is not a function of the 
truth-value of α. 

6. Expressive Completeness 

 Ordinary classical sentential logic (CSL) employs only five connectives, so the semantics of CSL 
only involves five truth-functions.  Yet there are infinitely many truth-functions, and hence there are (in 
principle) infinitely many truth-functional connectives.  As you already know from intro logic, many “non-
standard” truth-functional connectives can be paraphrased using “standard” truth-functional connectives.  
For example, ‘neither...nor’ sentences can be paraphrased using ‘not’ and ‘and’; specifically, ‘neither P 
nor Q’ may be  paraphrased as ‘not-P and not-Q’.   

 The obvious question that arises is whether every truth-functional connective (explicit or 
otherwise) can be paraphrased using standard connectives.  If the answer is ‘yes’, then the standard 
connectives are expressively complete; if the answer is ‘no’, then the standard connectives are 
expressively incomplete.   

 In formalizing this idea, we present the following definitions.  Note carefully:  In what follows, we 
presuppose a ZOL L and a semantics V for L; all definitions are relative to L and V. 

Df 
Two formulas α and β are said to be semantically equivalent iff v(α)=v(β) for 
every admissible valuation. 
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Df 
Let ¶ be a collection of connectives, and let χ be a connective.  Then χ is ex-
pressible in terms of  ¶ iff every formula involving χ is semantically equivalent to 
a formula involving just the connectives in ¶. 
 

Examples: 
 
Relative to the usual semantics for CSL, we have the following. 

(1) & is expressible in terms of {∨,∼}, and {→,∼} 

(2) ∨ is expressible in terms of {&,∼}, and {→,∼} 

(3) → is expressible in terms of {∨,∼}, and {&,∼} 

(4) ↔ is expressible in terms of {∨,∼}, and {&,∼}, and {→,∼} 

(5) ∼ is not expressible in terms of {→,↔,∨,&} 

(6) &,∨,→ are not expressible in terms of {↔,∼} 

For example, & is expressible in terms of {∨,∼} since (α&β) is semantically equivalent to ∼(∼α∨∼β) for 
any formulas α, β. 

 Our next definition is a modification of the previous definition, in which we substitute ‘truth-
function’ for ‘connective’.  It takes into account that not every truth-function need be explicitly captured in 
a given language. 

Df 
Let ¶ be a collection of connectives, and let f be an n-place truth-function. Then f is 
expressible in terms of ¶ iff there is a formula ¹[P1,...,Pn] involving n atomic 
formulas P1,...,Pn and just the connectives of ¶ such that for every admissible 
valuation v, 
 
  v(¹[P1,...,Pn]) = f(v(P1),...,v(Pn)) 
 

 We can now give the general definition of expressive completeness. 

Df 
A collection ¶ of connectives is expressively complete iff every truth-function is 
expressible in terms of ¶. 
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 In what follows, we argue that every truth-function is expressible in terms of {∼, ∨, &}.  Consider 
an arbitrary n-place truth-function, call it f.  There are 2 cases to consider; Case 1:  f is a constant function 
f(i)=F for every possible input; Case 2:  f assigns T to at least one input.  The first case is trivial; any 
contradiction (P&∼P) expresses the truth-function.  So let’s move to Case 2.  By hypothesis, f is an n-
place function, so there are 2n possible input; enumerate these.  By doing so, we have in effect the guide 
table for a truth table.  Now, go through the enumeration (truth table) as follows.  Consider the input 
(v1,...,vn) truth-values; if f(v1,...,vn) = F, then skip this item; on the other hand, if f(v1,...,vn) = T, then write 
down the following sequence of formulas: 

φ1, ... , φn 

where  

φi = Pi  if vi=T  
φi = ∼Pi  if vi=F 

Here, Pi is the ith atomic formula.  Next, take the conjunction of the resulting sequence (φ1,...,φn) of 
formulas.  Then go to the next line in the truth table.  Having gone through the truth table, take all the 
resulting conjunctions, and form their disjunction.  Claim:  the resulting disjunction of conjunctions is a 
formula whose truth table corresponds to the function f.  (The proof of the latter claim is left as an 
exercise.) 

 Terminology:  a formula constructed in the above manner is said to be in disjunctive normal form 
(DNF). 

 At this point, let us do a few examples, to see how the DNF technique works.  Consider the 
following 2-place truth-functions. 

f(T,T) = F 
f(T,F) = F 
f(F,T) = T 
f(F,F) = F 

The corresponding DNF formula is:  (∼P1 & P2) 

f(T,T) = T 
f(T,F) = F 
f(F,T) = T 
f(F,F) = F 

The corresponding DNF formula is:  (P1 & P2) ∨ (∼P1 & P2) 

f(T,T) = T 
f(T,F) = T 
f(F,T) = T 
f(F,F) = F 

The corresponding DNF formula is:  (P1 & P2) ∨ (P1 & ∼P2) ∨ (∼P1 & P2) 

 Next, consider the following 3-place functions. 



12 Hardegree, MetaLogic 

f(T,T,T) = T  f(F,T,T) = T 
f(T,T,F) = T  f(F,T,F) = F 
f(T,F,T) = F  f(F,F,T) = T 
f(T,F,F) = F  f(F,F,F) = F 

The corresponding DNF formula is: 

(P1 & P2 & P3) ∨ (P1 & P2 & ∼P3) ∨ (∼P1 & P2 & P3) ∨ (∼P1 & ∼P2 & P3). 

f(T,T,T) = T  f(F,T,T) = T 
f(T,T,F) = F  f(F,T,F) = T 
f(T,F,T) = T  f(F,F,T) = F 
f(T,F,F) = F  f(F,F,F) = F 

The corresponding DNF formula is: 

(P1 & P2 & P3) ∨ (P1 & ∼P2 & P3) ∨ (∼P1 & P2 & P3) ∨ (∼P1 & P2 & ∼P3). 

 Finally, we observe that the connectives ∼, &, ∨ can all be expressed in terms of a single 
connective “nor”, which corresponds to ‘neither...nor’ (exercise).  Similarly, they are expressible in terms 
of “nand”, which corresponds to ‘not both...and...’.  Given the earlier theorem, it follows that every truth-
function is expressible in terms of a single truth-functional connective. 

7. Exercises 

1. Truth-Functions 

Define function; define truth-function; give examples from English of a 1-place, a 2-place, and a 3-place, 
truth-functional connective.  In each case, write down the corresponding truth function in ‘f(a)=v’ notation. 

 

2. Expressing Connectives in Terms of Each Other 

a. Express the five standard truth-functional connectives in terms of ‘∼’ and ‘&’. 

b. Express the five standard truth-functional connectives in terms of ‘∼’ and ‘∨’. 

c. Express the five standard truth-functional connectives in terms of ‘∼’ and ‘→’. 

d. Express the five standard truth-functional connectives in terms of the “nor” connective ‘↓’, 
which corresponds to ‘neither...nor...’. 

e. Express the five standard truth-functional connectives in terms of  the “nand” connective 
‘↑’, which corresponds to ‘not both...and...’ 

3. Disjunctive Normal Form 

Convert each of the following formulas into canonical disjunctive normal form; in other words, first 
construct the associated n-place truth function, then write down the DNF formula that yields this truth 
function.  You may use ‘P’, ‘Q’, ‘R’, etc. in place of ‘P0’, ‘P1’, ‘P2’, etc. 
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P→Q;  P∨Q;  P↔Q;  P→(Q&R);  P&(Q∨R) 
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8. Answers to Selected Exercises 

2a. 
a. P∨Q ≡ ∼(∼P&∼Q) 

P→Q ≡ ∼(P&∼Q) 
P↔Q ≡ ∼(P&∼Q)&∼(Q&∼P) 

b. P&Q ≡ ∼(∼P∨∼Q) 
P→Q ≡ ∼P∨Q 
P↔Q ≡ ∼[∼(∼P∨Q)∨∼(∼Q∨P)] 

c. P&Q ≡ ∼(P→∼Q) 
P∨Q ≡ ∼P→Q 
P↔Q ≡ ∼[(P→Q)→∼(Q→P)] 

d. ∼P  ≡ P↓P 
P∨Q ≡ (P↓Q)↓(P↓Q) 
P&Q ≡ (P↓P)↓(Q↓Q) 
P→Q ≡ [(P↓P)↓Q]↓[(P↓P)↓Q] 
P↔Q ≡ {[(P↓P)↓(Q↓Q)]↓(P↓Q)}↓{[(P↓P)↓(Q↓Q)]↓(P↓Q)} 

e. ∼P ≡ P↑P 
P&Q ≡ (P↑Q)↑(P↑Q) 
P∨Q ≡ (P↑P)↑(Q↑Q) 
P→Q ≡ P↑(Q↑Q) 
P↔Q ≡ {[P↑(Q↑Q)]↑[Q↑(P↑P)]}↑{[P↑(Q↑Q)]↑[Q↑(P↑P)]} 

3. 
P→Q ≡ (P&Q) ∨ (∼P&Q) ∨ (∼P&∼Q) 
P∨Q ≡ (P&Q) ∨ (P&∼Q) ∨ (∼P&Q) 
P↔Q ≡ (P&Q) ∨ (∼P&∼Q) 
P→(Q&R) ≡ (P&Q&R)∨(∼P&Q&R)∨(∼P&Q&∼R) ∨ 
  (∼P&∼Q&R)∨(∼P&∼Q&∼R) 
P&(Q∨R) ≡ (P&Q&R) ∨ (P&Q&∼R) ∨ (P&∼Q&R) 

 


