Mathematical Induction

o O

1 gL [H o1 o o ISR 2
2. EXPlICIE DEFINITIONSeeveeieciecee ettt e e esreeste e e e sneenneeneenneenes 2
3. INAUCEIVE DEFINITIONS ..ottt b et sre et s e nne e 3
4, WY AN T (=X = 110011 oo oo 1Y/ 3
5. INAUCEION TN AFTTNMELIC ...t 3
6. Inductive ProofS in AFTRMELIC...........cooiiiiie s 4
7. INAUCtiVE ProofS TN MEI@-LOGICoieeiiieiiiieie ettt 5
8. Expanded INduction in AFITRMELIC........ceeiiiiesice e 7
9. Expanded INduCtion iN MEta-LOGQIC........cooiriiiieieeiesieeiesee et 8
10. How Induction Captures ‘NOthiNg EISEccvovieiececec e 9
11. EXErciSES FOr Chapter 3. ..ottt st 11
12 ANSWErSTO SElECIEA EXEITISES.....ccueiueiieiesie ettt 12
Appendix 1 — ApproaCcheS to PrOPEITIES........ocuiriiiereeieee e 13
1. T £ T ([oo | oSSR URSSRSR 13
2. (mTe07c @ g0 (= gl oo Lo RSP RRRN 13
3. S I 1o Y 13
4, PrOPEItY TREOIY ...ttt st e re et eesreenaeeneens 13
Appendix 2 — The Basic Schemes of INAUCTION...........ccocviieiiiie e 15
1 gL [N o1 o] o TP 15
2. Induction for the Natural NUMDES.........ccooiiiiiiiniee e e 15
3. INAUCLION FOr FOMMUIBS...... oo e 15
Appendix 3 — Examples of Mathematical Induction From Arithmetic...........ccceevvecviceceeciecee, 18
Appendix 3 — Examples of Mathematical Induction From Arithmetic...........ccooeverienenieinnenne 18
1. Basic Scheme for SINgle INAUCLION.........ccveiiieecice e 18
2. Basic Scheme for Double INAUCLION...........coiiiiiiee e e 18
3. DEFINITIONS ...ttt bbbttt et bbb e bt bt et e e et et e e e benreens 19
4, ParenthesiS CONVENTIONS..........oiieiieie ettt st sb e e sreenaeeneens 19
5. Examples of Single Induction from ArithMELIC.........cccveveece i 19
6. Examples of Double Induction from ArthmetiC...........coooeeiirenienie e 21
1S (001 I 1 o T 1 o T TS 23
N 0 0 GRS 23
1. Some Theorems about Strings (SHNG TNEONY) ...eveeveeeceereee e 23
2. Some Theorems about a Simple Formal Language, Proved by Induction..............cccceveee. 24
3. 1S (0707 I o 0T 1 oo TS 29
4, Double Induction (Weak FOMM)coiiiiiriiieieee et s 29

2 Hardegree, Metalogic

1. Introduction

In the previous two chapters, we discussed some of the basic ideas pertaining to formal languages.
In most cases, the formal specification of the syntax of the language involved a ‘nothing else’ clause. The
following is perhaps the smplest example.

‘P isan atomic formula;
if s isan atomic formula then s + ‘8’ isan atomic formula;
nothing else is an atomic formula.

In Chapter 1, we developed a careful logical analysis of the first two clauses above, but we did
not provide an analysis of the final clause. In the present chapter, we correct that situation.

2. Explicit Definitions
Before considering the general problem of ‘nothing else’, let us consider a much ssimpler example.

every upper case Roman letter is an atomic formula;
nothing else is an atomic formula.

Notice first that these two clauses can be rewritten as follows [where ‘s’ is understood to be a
universally quantified variable ranging over strings).

(i) if s isan upper case Roman letter, then s isan atomic formula;
(e) if s isnot an upper case Roman letter, then s isnot an atomic formula.

The two clauses may be called, respectively, the inclusion clause and the exclusion clause; between
them, they tell us what is included, and what is excluded, from the class of atomic formulas.

Notice next that the inclusion and exclusion clauses can be combined into a single biconditional, as
follows.

S isan atomic formula

if

and

only if

S isan upper case Roman letter.

Here, the ‘if’ half corresponds to the inclusion clause, and the ‘only if’ half corresponds to the exclusion
clause.

Finally, notice that, since there are exactly 26 upper case Roman letters, the notion of being such a
letter can be rewritten explicitly as follows.

astring s isan upper case Roman |etter
if and only if
s='A'yors ='B’,or...,ors ='Z

Note carefully here that the ellipsis (*...") is merely one of laziness (or conciseness). In particular, it can
be eliminated by explicitly writing in the 23 missing diguncts.

Mathematical Induction 3

3. Inductive Definitions
Now, let us reconsider our original definition.

(i1) ‘P isanatomicformulg
(i2) if s isanaomicformula thens + ‘# isan atomic formulg;
(e) nothing elseis an atomic formula.

Here, the first two clauses provide the inclusion information, and the third clause provides the exclusion
information. Can we combine these into a single biconditional definition, like we did in the previous
section? Well, sort of.

S isan atomic formula
if and only if
s=‘P,ors=‘Pf#,ors =‘Pst’, or ...

Here, the ellipsis cannot be explicitly rewritten; there simply is no officia formula that it is short for.
Insofar as the third line above is aformula at al, it is an infinitely-long formula merely suggested by the
above notation. Unfortunately, standard logic does not allow infinitely-long formulas. So, although the
above “definition” is suggestive of its content, it cannot actually convey that content.

That is where mathematical induction comes to the rescue.

4. An Aside on Terminology

Like many other words with technical meanings, the word ‘induction’” means many different things
in different fields (informal logic, psychology, physics, mathematics). For example, most informal logic
texts mention the distinction between deductive inference and inductive inference, and the corresponding
distinction between deduction and induction. However, in formal logic, and in particular in metalogic,
‘induction’ refers to * mathematical induction’, which is a specialized form of deductive reasoning.

There are two uses for mathematical induction — inductive definitions; and inductive proofs.
Basicaly, inductive proofs are used to prove assertions about sets characterized by inductive definitions.

5. Induction in Arithmetic

Mathematical induction is used extensively in the formal theory of arithmetic. In this connection,
recall that the natural numbers may be characterized by the Peano Axioms.

(p1) N[O]

(p2) " X{N[x] = N[s(x)]}

(P3) ~3x[s(x)=0]

(p4) " X" y(s(x)=sly) = x=y)

(PS) P[O] & " X(P[X] = P[s(x)]) .= " x(N[x] = P[x])

Now, suppose we make the following correspondence.

0 s ‘P
N[X] s A[s] [s isanaomic formulg]
s(X) s s+'# [the #-successor of s]

4 Hardegree, Metal.ogic

Then we can rewrite (pl)-(p5) as follows.

(a1) A['P]
(@2) " s{A[s]® A[s +'#]}
(@) ~$s['P =s +'#]
(ad) "si"sys;+H# =s, % ® s;=S5}
@) P['P] & "s{P[s]® P[s+#]} .® "s{A[s]® P[s]}

First, notice that (al) and (a2) are just the two inclusion clauses of our origina definition. Next,
notice that (a3) and (a4) are provable, insofar as formulas are a species of symbolic string. In that case,
(a3) and (a4) are ssimply redundant.

That leaves clause (a5). Asiit turns out, (a5) is a formal and precise rendering of the exclusion
clause.

nothing else is an atomic formula

Of coursg, if (ab) corresponds to the exclusion clause in the definition of atomic formula, then the Peano
postulate (P5) corresponds to asimilar exclusion clause, namely:

nothing else is a number

Exactly how (P5) captures ‘nothing else’ is discussed later in Section 10.

6. Inductive Proofs in Arithmetic

Proofs by induction are used to prove assertions about sets that are defined by induction. In
arithmetic, for example, proofs of most familiar arithmetic theorems (‘ x+y=y+x’, ‘x(y+z)=xy+xzZ', etc.) are
done by induction [see Appendix 3 of this chapter]. These theorems, of course, require that one has
defined addition, multiplication, etc., but these are also defined by induction (what else!).

The basis for proofs by induction is the exclusion clause of the inductive definition, the clause that
says that nothing else is a so-and-so. Once the exclusion clause is made precise, asit is done in the Peano
Axioms, we have the basis for proofs by induction. Consider the exclusion clause of arithmetic rewritten
somewhat informally.

(P5) suppose property [P holds of O;
suppose further that, if P holds of n, then it holds of n';
then [P holds of every number.
[Henceforth, we write ‘n” for the successor of n.] In order to make this rendition of (P5) precise, we
must write it as a single formula (a universal-conditional), we must make the quantifiers explicit, and we
must make precise what ‘property’ means and what ‘holds means. There are at least four formal
approaches to this [see Appendix 1 of this chapter.]

Irrespective of how we formally explicate it, the informal rendition (P5) provides the basic
intuition. In particular, given (P5), if we want to prove that every number has a given property P, itis
sufficient to prove two things;

(@D OhasP Base Case
2 for any n, if n has [P, then so does the successor of n Inductive Case

Mathematical Induction 5

As indicated, the proof divides into two cases — the base case (1), and the inductive case (2).

The inductive case is furthermore usually proven by universal-conditional derivation (UCD),
which yields two further lines. Specifically,

we assume:
nhasP Inductive Hypothesis
to show:
n has P Inductive Step

As indicated to the right, whereas the assumption is caled the inductive hypothesis the subsequent
subderivation is called the inductive step.

The following summarizes the inductive method as a natural deduction scheme.

(1) sHeW: " x{N[x] ® P[x]} 2,4, M1(p5)
BC: (2) | sHew: P[0]

3 |l
IC: (4) | sHew: " x{P[x] ® P[x]} UCD
IH: 5) || P[n] As
IS (6) || sHew: P[n"]

@ |l
7. Inductive Proofs in Meta-Logic

Mathematical induction works for any inductively defined set, not just the natura numbers.
Consider the earlier definition of atomic formula.

‘P isan atomic formulga;
if s isan atomic formula then s + ‘8’ isan atomic formula;
nothing else is an atomic formula.

Given the formal rendering of the exclusion (‘ nothing else’) clause,
P['P] & " s{P[s]® P[s+#]} .® "s{A[s]® P[s]}

in order to prove that every atomic formula has a given property [P, we proceed by induction. In
particular, in order to prove that every atomic formula has property P, it is sufficient to prove two things;

D ‘P hasP Base Case
2 forany s, if s hasP, then so doess +'#’ Inductive Case

As in arithmetic, the inductive case is usualy proven by universal-conditional derivation, which
yields two further lines. Specificaly,

we assume:
S has P Inductive Hypothesis
to show:
s+# hasP Inductive Step

6 Hardegree, Metalogic

The following summarizes the inductive method as a natural deduction scheme.

(1) sHow: " x{A[X] ® P[x]} 2,4, M1(a5)
BC: (2) | sHew: P['P]

3 ||
IC: (4 | sHow:" s{P[s]® P[s+#]} UcD
IH: 5) || P[s] As
IS (6) || sHewW: P[s+#]

@ |

Thisis the smplest example, and corresponds very closely to induction in arithmetic. Meta-logic
definitions, however, are generally much more complex. As a dightly more complex example, consider
the following definition.

every atomic formulaisaformulg;
if s isaformula, thensois'~'+s;
nothing elseisaformula

How do we formalize the ‘nothing else’ clause? Written informally, it goes as follows.
suppose every atomic formula has property P;
further supposethat, if s has property P, then so does‘ ~’+s;;
then every formula has property P.
On the other hand, the formal rendering goes as follows.
"xX{AX] ® P[X]} &
"XPx]® P['~"+x] .®
" x{F[x] ® P[x]}

Thisin turn yields the following natural deduction scheme.

(1) sHewW: " x{F[x] ® P[x]} 2,4, Ml
BC: (2) | sHew: " x{A[x] ® P[x]} *

3 |l
IC: (4) | sHewW: " x{P[x] ® P['~'+x]} UCD
IH: 5B) || P[s] As
IS: (6) || sHOW: P[' ~"+s]

@ [l

*Notice carefully that, insofar as the atomic formulas are defined inductively (e.g., as above), the base
case will aso be proved by math induction.

As adightly more complicated example, consider the following definition.

every atomic formulaisaformula;

if s isaformula, thensois‘~'+s;

if s;ands,areformulas, thensois‘(" +s:+ ‘& +s,+ ")
nothing elseisaformula

Mathematical Induction 7

In this case, the ‘nothing else’ clause can be informally rewritten as follows.

suppose every atomic formula has property P;

further supposethat, if s has property P, then so does* ~'+s;;

further supposethat, if s; and s, have property P, thensodoes‘(" +s;+ ‘&’ +s,+"');
then every formula has property P.

So if we want to prove that every formula has a given property [P, we proceed by induction. The base
case is the same as the previous example. On the other hand, the inductive case divides into two parts —
one for negation, one for conjunction. In effect we show that forming negations and forming conjunctions
“preserves’ the given property P.

Furthermore, if we add further molecular formation clauses (e.g., digunctions, conditionals), then
we must add corresponding clauses to the inductive case.
8. Expanded Induction in Arithmetic

In the current section, we show how the scheme for induction can be expanded dightly. What we
show is that the following two schemes are interchangeable in arithmetic.

(m PO&" X{P[X]® P[x]}.® " x{Nx® P[x]}
(e) P[0] & " X{Nx & P[x] .® P[x]} .® " x{Nx® P[x]}

We call (m) the minimal formulation of induction, and we call (e) the expanded formulation. Whereas
the minimal formulation is the exact forma rendering of the ‘nothing else’ clause in arithmetic, the
expanded formulation is a further theorem of arithmetic that follows fromthe minimal formulation together
with axioms (pl) and (p2).

First of al, for any given instance of P, it is a matter of predicate logic that (e) implies (m). The
following isaformal proof.

D P[0] & " X{Nx & P[x] .® P[x]} .® " x{Nx® P[x]} Pr
(2 SHOW: P[0] & " X{P[x] ® P[X]} .® " x{Nx® P[x]} CD
(©)) P[0] & " x{P[x] ® P[x]} As
(4 SHOW: " x{Nx ® P[x]} DD
5) " x{Nx & P[x] ® P[X]} 3b,QL
(D "x{Nx® P[x]} 1,3a,5,SL

The other direction is dightly more subtle. We show that, in Peano Arithmetic, if every instance of (m) is
true, then every instance of (e) istrue.

To do this, suppose every instance of (m) istrue. Consider an arbitrary property P. First, forma
new property P¢ defined as follows.

P¢a] =4 (N[a] & P[a])
Next, apply (m) to P¢
P¢0] & " x{P¢x] ® P¢x]} .® " x{Nx® P¢x]}

Next, expand P¢according to its definition.

Hardegree, Metal.ogic

(& (N[O & P[O])
&

(b) "®X{(N[X] & P[x]) ® (N[x] & P[XT)}
© " x{Nx® (Nx& P[x])}

Applying arithmetic equivalences [i.e., equivalences that follow from the Peano Axioms| to components

(8)-(c), we abtain the following arithmetically equivalent conditional.

(@) E[O]
(b) "®X{(N[X] & P[x]) ® P[xT}

© " XNx® P[]}
Thisis scheme (s).
The formal proof proceeds as follows.

Q) " P{P[0]& " X{P[x] ® P[XT} .® " x{Nx® P[x]}}

Pr

(2) sHew:" P{P[0] & " x{Nx & P[x] .® P[x]} .® " x{Nx® P[x]}} UCD

(3) P[0] & " X{NXx & Pgx] .® Pgx']} As
4 SHEW: " x{Nx® P[x]} UCD
5) Na As
(6) SHEW: Pq[a] 5,15,QL
(7) | (N[0] & P¢[0]) & .

" X{(N[x] & Po[x]) ® (N[X] & Px])} .®

" X{Nx® (N[X] & Po[x])} 1" 0O
(8) N[O] P1
9 Po[0] 3a
(20 SHOW: " X{(N[X] & P¢[X]) ® (N[x'] & PJx])} UCDh
(11 N[b] & Pq[b] As
(12) SHOW: N[b'] & P([b’] 13,14,SL
(13) N[b] 11a,P2
(14 Po[b'] 11,3b,QL
(15) " X{NXx® (N[X] & Po[x])} 8,9,10,SL

We have shown that the two formulations of induction — the minimal form, and the expanded form
— are both theorems of arithmetic. Accordingly, we can use either formulation of mathematical induction

when we do proofs by mathematical induction.

9. Expanded Induction in Meta-Logic

The reasoning employed in the previous section can be generalized and adapted to all inductive

definitions. For example, consider our simplest example.
(al) ‘P isanatomicformula;
(@2) if s isanatomic formula thensoiss+#';
(@3) nothing elseisan atomic formula

Whereas the exact formal rendering of (a3) is given asfollows,

Mathematical Induction 9

(M PI'P]&" X{P[x]® Px+#]} .® " x{AXx® P[x]}
we can prove the following, using (m) along with (al) and (a2) [exercise!].
(e) P['P] & " x{Ax & P[x] . ® P[x+#]} .® " x{AXx® P[x]}

Both are theorems about atomic formulas; either can be used to do a proof by induction.

10. How Induction Captures ‘Nothing Else’

In the present section, we examine how the principle of induction captures the notion of “nothing
else’. Let usconcentrate on arithmetic, the inductive axioms of which are given as follows.

(p1) Oisanumber.
(p2) if misanumber, thensoisnt.
(p5) nothing eseisanumber.

Notice first that
nothing else is a number
means that
if an object is not mentioned in (pl) and (p2), then it is not a number.
What are the objects mentioned in (pl) and (p2)? Well, they are
0,1, 2,3, etc.
whereit is understood that 1 is the successor of 0, and 2 is the successor of 1, etc.

So if an object is not one of these, then it is not a number. In other words, we have the following
guasi-formula.

"x{X0&X1&X2& ... :® ~N[x]}
Now, it seems plausible that the official (finite!) rendering of this quasi-formula goes as follows.
N "x{x0&"y(xy® xy).® ~N[x]}
Now, we can show this assuming the official Peano formulation of (p5).
(P5) P[O]& " X{P[x] ® P[x]} .® " x{N[x] ® P[x]}

where P is understood to be any property/formula. To show (n), we use universal derivation (UD), which
reduces the problem to showing the following.

(©) c0& "ycy® cty) .® ~N[c]

Next, we substitute ‘ct x’ for ‘P[x]" in (p5) [remember, P[x] can be any property/formula.], which yields
the following instance.

i) 0 & "x{ctx® ctx} .® "x{N[X]® ctx}

10 Hardegree, Metalogic

Notice that the respective antecedents of (c¢) and (i) are obviously equivalent. Notice also that the
respective consequents of (c) and (i) are logically equivaent (by Identity Logic). It follows that (c) and
(i) are logicaly equivalent. Accordingly, since (c) is equivalent to (i), which follows from (p5), (c)
follows from (p5). But (c) yields (n) by universal generalization. Thus, (p5) entails (n).

This demonstrates that the principle of induction implies the ‘nothing else’ clause. It does not
demonstrate the converse — that the ‘ nothing else’ clause implies the principle of induction. In order to see
this, we argue informally as follows.

Suppose our proposed formal rendering of the ‘nothing else’ clause.
N "x{x0& "y{xy® xty} .® " x{N[X]® yx}}

We wish to show the induction clause.
(P5) P[O]& " X{P[x]® P[x]}.® " x{N[X] ® P[x]}

where P is an arbitrary property. So suppose the antecedent, to show the consequent. In order to show
the conseguent, suppose ¢ is a number, to show that ¢ has property P. Or, equivaently, suppose that ¢
does not have property P —i.e., ~[P[c] —to show that ¢ is not a number.

Now our origina antecedent
P[0] & " X{P[x] ® P[x']}

implies the following infinite list of formulas.

P[O]
P[0"] P[1]

P[0"] P[2]
P[0"] P[3]
etc.

Using this infinite list dong with our assumption that ~P[c], we can apply Identity Logic to deduce the
following infinite list.

cto
cl1l
cl2
ct3
etc.

Since the objects mentioned (0, 1, 2, ...) are all the numbers, and c is not one of the objects mentioned, ¢
is not anumber.

Note carefully, that the previous argument is informal. There is no formal proof that corresponds
to it. The reason is that formal proofs are, by definition, finite sequences of formulas. By contrast, the
previous argument employs two different infinite lists.

Mathematical Induction

11

11.

1.

Exercises For Chapter 3
Consider formal language L, specified as follows [using quote/plus notation].

(V) Vocabulary: ‘N’, ‘p’, ‘#'.

(al) ‘p’ isanaomic formula

(@2) if s isanatomicformula, thensoiss+'#'.
(@3) nothing elseisan atomic formula

(f1) every atomic formulaisaformula

(f2) ifsisaformula thensois'N’+s.

(f3) nothing elseisaformula

1. Formalize the exclusion clauses above.
2. Prove that ‘N#p’ isnot aformulaof L.

3. Provethat every formulaof L isfinite. You will find the following lemmas useful.

L1 Every symbol isafinite string.
L2. For any stringss 1, S, if s and s, arefinite, then s 1+s; isfinite.

Consider formal language L, specified as follows [using minimal notation].

(v) Vocabulary: P, £.

(f1) Pisaformula

(f2) if s isaformula thensoiss#.
(f3) nothing elseisaformula

1 Formalize the exclusion clause above.

2. Provethat ‘#P isnot aformulaof L.

3. Provethat every formulaof L isfinite.

4, Prove the following, where the Greek |etters range over expressionsin L.
"ala#! P|

"a" b{a#=b#® a=b}
Consider formal language L, specified as follows [using quine/quote notation].

(v) Vocabulary: ‘P, ‘#,‘~", ‘&, ‘(,")

(al) ‘P isanatomic formula.

(a2) if s isanatomic formula, thensois, Ts#11.

(@3) nothing else is an atomic formula.

(f1) every atomic formulaisaformula

(f2) if s isaformula thensois, T~st1 7,

(f3) ifs;ands,areformulas, thensois ", (s:&s)t .
(f4) nothing elseisaformula

1. Formalize the exclusion clauses above.
2. Provethat ‘P2P’ is not aformulaof £

3. Prove that every formulaof L isfinite.
4.

Prove the following, where the Greek |etters range over expressionsin L.

" a[’ FNa'Il 1 ‘p’]
"ab{, T~alt =T ~p't ® a=h}
"abgd{, "(@a&b)'1=" (&d)'* ®.a=g& b=d}

12

Hardegree, Metal.ogic

12.

Answers to Selected Exercises

1
(a3)
(f3)

3.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

1
(f3)

exclusion clauses:
{P'p'] & " X{P[X]® P[x+#]}}®" x{ A[X]® P[x]}
{" x{A[X]® P[X]} & " {{P[X]® P['N'+x]}}® " x{ F[X]® P[x]}

Provethat every formulaof L isfinite.

SHOW: " x{F[x] ® fin[x]} MI(f3)
SHOW: " X{A[X] ® fin[x]} MI(a3)
SHOW: fin['p’] v+L01
SHEW: " x{fin[x] ® fin[x+#]} ucCD
fin[] As
SHOW: fin[s+ #'] 5,7,L02
| fin['#'] v+L01

SHOW: " x{fin[x] ® fin['N"+x]} UCD
fin[g] As
SHOW: fin['N’+g] 9,11,L02
| fin[*N’] v+L01

exclusion clause:
P[P] & " X{ P[X]® P[x#]} .® " x{A[X]® P[x]}

1. exclusion clauses:

@3) P[P &" X{PX®P[, x#]} .® " x{A[X]® P[x]}

(f3) "X{AX]®P[X]} & " X{P[X]® P[, ~x*]} & " X" Y{P[X] & P[y] . ®
P[, (x&y)* 1}

® " x{Fx]® P[x]}

Mathematical Induction 13

2. Appendix 1 - Approaches to Properties

Asmentioned in Section 1.6, the informal rendition of the exclusion clause requires explication. In
thisregard, there are four approaches, given as follows.

1. First-Order Logic

This approach takes properties to be formulas with one free variable, and takes holding as
satisfaction; ‘P holds of € means that e satisfies P, P being a formula with one free variable.
Thus, making the quantifiers explicit, we have the following rewrite of (P5).

(P5f) F[0] & " x(F[x] ® F[x']) .® " x(N[x] ® F[x])}

Here, ‘I’ is not an object variable but a metalinguistic variable; (P5f) is a schema, which is short
for infinitely many different formulas, one for each formula [F.

2. Higher-Order Logic

Takes properties to be one-place predicates, takes holding to be ordinary predication; the twist is
that there are predicate variables over which one can quantify. ‘P holds of € means the same as
‘Ple]’. Inthiscase, (P5) iswritten asfollows.

(PSh) " P{P[0] & " x(P[x] ® P[x]).® " x(N[x] ® P[x])}

3. Set Theory

Takes properties to be sets, and takes holding as containing as an element; ‘P holds of € means
that el P. Inthiscase, (P5) iswritten asfollows.

(P5s) " P{OI P&" x(XI P® xTP).® "x(xXI N® xI P}

Here, N isthe set of natural numbers.

4. Property Theory

Takes properties to be primitive elements in the domain, just like individuals, and introduces an
additional 2-place logical predicate ‘instantiates’, symbolized by ‘D'. Inthiscase, (P5) iswritten
asfollows.

(P5p) " P{ODP & " x(xDP ® x'DP).® " X(XDN ® xDP}

Here, N is the property of being a number. The set-theoretic and the property-theoretic
formulations of (p5) are isomorphic. The difference concerns the respective theories of ‘T * and
‘D. The most important difference between properties and sets is that sets satisfy the principle of
extensionality and properties do not. For example, the set of unicorns is the same as the set of
flying horses; however, the property of being a unicorn is different from the property of being a
flying horse.

14 Hardegree, Metalogic

Often, when alogician does a proof by induction, it is not always clear which approach to propertiesis
presupposed. However, it is usualy safe to assume that the set-theoretic rendition will capture what is

“really” going on.

Mathematical Induction

15

3.

1.

of natural deduction. Thiswill hopefully make the structure of inductive proofs more obvious.

Appendix 2 —-The Basic Schemes of Induction

Introduction

In the present appendix, we present the techniques of mathematical induction within the framework

Induction for the Natural Numbers

Minimal Form

SHOW: " X{Nx ® P[x]}
BC: | sHew: P[O]

IC: | sHew: " x(P[x] ® P[x])
IH: || P[n]
IS: | sHew: P[n"]

Expanded Form

SHOW: " X{Nx ® P[x]}
BC: | sHew: P[0]

IC: | sHew: " x(Nx & P[x] .® P[x7])
IH: || Nn& P[n]
| sHew: P[n]

Induction for Formulas

Consider formal language L specified as follows.

(V) Vocabulary: ‘N’, ‘p’, ‘#".
(al) ‘p’ isanaomic formula

(@2) if s isanatomicformula, thensoiss+'#'.

(@3) nothing elseisan atomic formula
(f1) every atomic formulaisaformula
(f2) ifsisaformula thensois'N’+s.
(f3) nothing elseisaformula

Ucb
As

ucbh
As

16

Hardegree, Metal.ogic

Atomic Formulas; Minimal Form

SHOW: " x{Ax® P[x]}
BC: | sHew: P['p’]

IC: | sHew: " x(P[x] ® P[x+#1])
IH: || P[s]
I1S: | SHoW: P[s+#']

Atomic Formulas; Expanded Form

SHOW: " x{Ax® P[x]}
BC: | sHew: P['p’]

IC: | sHEW: " x(Ax & P[x] .® P[x+#])
IH: || As& P[g]
IS | | SHew: P[s+#]

Formulas; Minimal Form

SHOW: " x{Fx ® P[x]}
BC: | sHew: " x{Ax® P[x]}
‘ ‘ see above

IC: | sHew: " x(P[x] ® P[‘N’+x])
IH: || P[s]
1S: | sHow: P[*N’+s]

MI(a3)

Ucb
As

MI(a3)

ucb
As

MI(f3)
MI(a3)

uCDh

As
2

Mathematical Induction

17

4.

Formulas; Expanded Form

BC:

IC:
IH:
IS

SHOW: " x{Fx ® P[x]} MI(f3)
| sHeW: " x{AXx® P[x]} MI(a3)

‘ ‘ see above

| sHeW: " x(Fx & P[x] .® P['N’+x]) uUCD

| | Fs& P[] As
| sHew: P[‘N’+s] ?

18

Hardegree, Metal.ogic

Appendix 3 — Examples of Mathematical Induction

From Arithmetic

1. Basic Scheme for Single Induction

Note: the following scheme presumes that the quantifiers range over numbers.

SHOW: " X[P[X] Ml
BC: | sHew: P[0] 7
IC: | sHew: " x(P[x] ® P[x]) UCD*
IH: || P[n] As
IS | | SHew: P[n'] ?
2. Basic Scheme for Double Induction

Note: the following scheme presumes that the quantifiers range over numbers.

SHOW: " X" YR[X,y]
BCO: | SHew: " yR[0y]
BC1: || sHew: R[0,0]

ICL: || sHew: " y(R[O,y] ® R[0y"])

IHL: ||| R[Om]

ISL: || | sHew: R[O,m]

1ICO: || sHew: " x(" YR[x,y] ® " yR[x"y])
IHO: ||| " yR[my]

1S0: | | | sHew: " yR[m'y]

BC2: | ||| sHew: R[m",0]

IC2: | ||| sHew: " y(R[m"y] ® R[m"y])
IH2: || ||| R[m"n]

* Theinductive caselineis optional.

Ml
Ml

UCD*
As

uCbh*
As
MlI

uCbh*
As

Mathematical Induction

19

3.

BC:

IC:
IH:
IS

Definitions

(Def +) m+0 = m
m+n" = (m+n)*

(Def X) mx0 = 0

mxn" = m+(mxn)
Parenthesis Conventions
(axb)+c iswritten ab+c
ax(b+c) iswritten a(b+c)

atb” is a plus the successor of b
(a+b)” is the successor of atb

Examples of Single Induction from Arithmetic

The Associative Law for Addition

(1) sHOW: " X" y" Z[(x+y)+Z = x+(y+2)]

2 SHOW: " Z[(atb)+z = at(b+2)]
(3) SHOW: (a+b)+0 = a+(b+0)

4 (atb)+O0=atb

(5) b+0=b

(6) at(b+0) = atb

(7) (a+b)+0 = a+(b+0)

*) SHOW: " X[(atb)+x = a+(b+x) ® (a+b)+x" = at+(b+x")]
(8) (a+b)+m = a+(b+m)

(9) SHOW: (at+h)+m’ = a+(b+m’)
(10) (a+rb)+m" = [(at+b)+m]*
(11) = [a+(b+m)]”

(12) b+m* = (o+m)*

(13) ar(b+m’) = a+(b+m)*

(14) = [a+(b+m)]*

(15) (atb)+m’ = a+(b+m")

ubD2
Ml
DD
Def +
Def +
5IL
46,IL
UCD*
As
DD
Def +
IH
Def +
12,IL
Def +
11,14,IL

20

Hardegree, Metal.ogic

BC:

IC:
IH:
IS

BC:

IC:
IH:
IS

The Distributive Law

(1)
(2)
(3
(4)
(5)
(6)
(7)
(8)
(9)
(*)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

SHOW: " X" y" Z[Xx(y+2) = xy+xZ]
SHOW: " z[a(b+z) = ab+az]
SHoW: a(b+0) = ab+al
b+0=b
a(b+0) = ab
a=0
ab+a0 =ab+0

=ab
a(b+0) = ab+a0
SHOW: " x[a(b+x) = ab+ax ® a(b+x’) =ab+ ax”
a(b+m) = ab+am
SHOW: a(b+m") = ab+am’

b+m* = (b+m)*

a(b+m’) = ab+m)”
= at+(a(b+m))
= at+(ab+am)

am’ = atam

ab+am” = ab+(aram)
= (ab+a)+am
= (atab)+am
= a+(ab+am)

a(b+m’) = ab+am’

The Associative Law for Multiplication

(1)
(2)
(3
(4)
(5)
(6)
*)
(7)
(8)
(9)
(10)
(11)
(12)

SHOW: " X" y" Z|x(y2) = (xy)Z]
SHOW: " Z[a(bz) = (ab)Zz]
SHow: a(b0) = (ab)0

ab0) =a0
=0
(@)0 =0
SHeW: " x{a(bx)=(ab)x ® a(bx")=(ab)x"}

a(bm) = (ab)m
SHOW: a(bm") = (ab)m’
a(bm) = ab+bm)
= ab + a(bm)
= ab + (ab)m
(ab)n = ab + (ab)m

uD
Ml
DD
Def +
4,1L
Def x
6,IL
Def +
5,8,IL
UCD*
As
DD
Def +
12,IL
Def x
IH,IL
Def x
16,IL
Ass(+)
Com(+),IL
Ass(+)
15,20,1L

ubD2
Ml
ILD
def x
def x
def x
UCD*
As
ILD
def x
dist
IH (7)
def x

Mathematical Induction

21

6. Examples of Double Induction from Arithmetic
1. The Commutative Law for Addition
(1) SHOW: " X" y(xty =y+X)
BCO: (2 SHOW: " y(O+y = y+0)
BCL (3) | SHEeW: 0+0 = 0+0
IC1: (%) SHOW: " y(O+y=y+0® O+y'=y"+0
IH1: (4) O+m=m+0
IS1: (5) SHOW: O+m" = m'+0
(6) o+m’" = (0+m)”
7) 0+m = m+0
(8 m+0=m
9) o+m ' =m"
(10) m+0=m"
(11) 0+m" = nri'+0
ICO: (%) | SHOW: " X[" y(m+y =y+m) ® " y(m'+y = y+m)]
IHO: (12) || " y(my =y+m)
1S0: (13) SHOW: " y(m'+y = y+m)
BC2: (14) SHOW: m™+0 = 0+m’
(15) m+0=m"
(16) 0+m’" = (0+m)”
(17) O+m=m+0
(18) m+0 =m Def +
(19) O+m=m 17,18,IL
(20) o+m ' =m"
(21) m'+0=0+m"
IC2: (%) SHOW: " x{m'+x =n+m’ ® m'+x" =x+m’}
IH2: (22) m'+n=n+m’
1S2: (23) SHOW: m™+n" = n"+m’
(24) m+n" = (m+n)*
(25) = (n+m’)*
(26) = (ntm) ™
(27) n+m- =(n"+m)"
(28) = (m+n)"
(29) = (m+n)™*
(30) = (nkm) ™
(31) m+n = n+m’

Ml

Ml

IL
ucCb
As

DD
Def +
IH1
Def +
6,7,8, IL
Def +
9,10,IL
UCD
As

Ml

DD
Def +
Def +
IHO, IL

16,19,IL
15,20,IL
ucCb
As

DD

Def +
24,1H2
Def +
Def +
IHO (12)
Def +
IHO
26,30,IL

22

Hardegree, Metal.ogic

BCO
BC1
IH1
1S1

IHO
1O
BC2
IH2
1S2

The Commutative Law for Multiplication

(1)
(2)
(3
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

SHOW: ™ X" y[xy = yX]

SHow: " y[Oy = yO]

SHOW: 00 =00

Om=m0

SHOW: Om" =m0

om" = 0+0m
=0+m0
=0+0
=0

mo0=0

| " y[my =ym]

SHewW: * y[m'y = ym’]

SHOW: m'0 = Om"

mn=nm’ As

SHOW: m'n" =n'm’

mn =m +mn
=m +nm’
=m’ + (n+nm)
= (n+nm) + m’
= [(n+nm)+m]*

nm =n +nm
=n"+mn’
=n"+ (m+ mn)
= (m+mn) +n’
= [(m+mn)+n]*
= [(mrtnm)+n]”
= [n+(m+nm)]”*
= [(nm+m)]*
= [(nknm)+m]

Ml
Ml

IL
As
DD (IL)
def x
IH (4)
def x
def +
def x
As
Ml
2,0L

DD (IL)
def x
IH(14)
def x
com[+]
def +
def x
IH(11)
def x
com[+]
def +
IH(11)
ass[+]
com[+]

ass[+]

Mathematical Induction

23

5.

T1.

Strong Induction

(1) SHeW:"y"' x{x<y® P[x]} ® " xP[X] CD
2 "y x{x<y® P[x]} As
(©)) SHEW: " xP[X] MI(w)
(4) SHow: P[O] DD
(5) ~$X[x<0] Lemma
(6) " x{x<0® P[0]} 2,QL
(7) P[0] 5,6,QL
(8) sHOW: " X{ P[x] ® P[x']} UCD
9 P[m] As
(10) SHeW: P[] 211,0QL
(11) SHOW: " x{x<m' ® P[x]} MI(w)
(12) SHeW: O<mi* ® P[0] 4,SL
(13) SHOW: " x{{x<m' ® P[X]} ® {x'<m'® P[x']}}
(14) n<m' ® P[n] As
(15) SHOW: n'<sm’ ® P[n'] CD
(16) n'<m’ As
(17) SHOW: P[n']

(18) |nf<mUn"=m 16,Lemma
Appendix

Some Theorems about Strings (String Theory)

S1

BELLRLABRG

S10
S11

(1)
(2)
(3)
(4)
(5)
(6)
(7)

El[s;+s7] « . finite[sq] & finitels]
finites] « E!last(s)]
atomic_string[1°(s)]
atomic_string[last(s)]

atomic_string[s] ® 1°%(s) =s
atomic_string[s] ® last(s) =s
El[si+s,] ® 1%(si1+s,) = 15(s))
El[s;+s) ® last(s;+s,) = last(sy)
S1H(S2tS3) = (S1+S2)+S3
SitS,=S,ts; ® s:=5,
S1tS,=51tS3 ® S,=S3
S1tS3=S,ts3 ® s:=5,

ucbh

(An example of a proof in String Theory based on S1-S12.)

SHOW: finite[s 1] & finitels,] .® finitegls;+ s,
finite[s4] & finite[s,]
SHOW: finite[s 1+ S
SHOW: E![last(s 1+ S))]
E![Sl+SZ-I
|ﬂ(51+52):|a$(52)
E![last(s 2)]

CD
As
4,52
6,7,IL
2,30
4,58
2b,S2

24

Hardegree, Metal.ogic

T2. (Another example)
(1) sHow: " x{aomic_string[x] ® finite[x]} UCD
2 atomic_string[s] As
(©)) SHEW: finite g 4,52
(4 SHOW: E![last(s)] 5, def(E!)
(5) SHOW: $x[x = last(s)] 6,QL
(6) | last(s) =s 2,56
2. Some Theorems about a Simple Formal Language, Proved by Induction

In the present section, we look at a few examples of inductive proofs in meta-logic. We employ
the following definition of language £, to which subsequent uses of ‘atomic formula and ‘formula’ refer.
In symbolizing, we set ‘A[a]’ =4 ‘a isan atomic formula’, and we set ‘Fla]’ =4 ‘a isaformula’.

The Language L,

(al)
(a3)
(a3)

(f1)
(f2)
(f3)

T3.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

T4.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

‘P’ isan atomic formula;
if s isan atomic formula, then soiss+'#’
nothing else is an atomic formula.

every atomic formulaisaformulg;
if s isaformula, thensois‘N’'+s;
nothing elseisaformula

SHEW: " x{ A[X] ® finite]x]} MI(a3)
SHOW: finite]'p’] 3, T2

| atomic_string(‘p’) DI*
SHOW: " x{finiteg[x] ® finite[x+ #']} UCbh
finite[s] As
SHOW: finite[s+'#'] 58T1
atomic_string[‘#'] DI
finite]*#] 7,12

BC

IC
IH
IS

**DI’ = “direct ingpection” which works only on directly quoted material. A single-quote-
expression names the object (betokened) within the quotes, so presumably we can assess
some truths by direct inspection of the literal material. For example, ‘cat’ beginswith ‘c’,

and ‘cat’ * ‘dog’.

SHEW: " x{F[x] ® finite[x]} MI(f3)
SHEW: " x{ A[x] ® finite]x]} T3
SHEW: " x{finite]x] ® finite['N’+x]} UCD

finite[s] As
SHOW: finite[' N’ +9] 4,7,T1
atomic_string[*N’] DI
finite['N’] 6,T2

BC
IC
IH
IS

Mathematical Induction

25

T5.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

T6.

(1)
(2)
(3)
(4)
(5)
(6)

T7.

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

SHOW: ~A['#p’]
SHEW: " x{ A[X]® x* ‘&p’}
SHOW: ‘p’ 1 ‘#p’
SHOW: " x{x* ‘#p’ ® x+'#’ 1 ‘#p'}
St ‘g#p’
SHOW: s+'#’ 1 “#p’
last(st+'#") = last(‘#')
last(‘#’) ="#
last(*#p’) = “p’
Kﬁl 1 Kpl

SHEW: " x{A[x] ® . 1*(x) =‘p'}
SHeW: 1%(‘p) ="'p’
SHOW: " x{1°(x) =‘'p ® 1M(x+'#)='p}
1%(9) ='p
SHOW: 1%(s+'#') ='p’
| 1%(s+#) = 1%(9)

SHEW: " x{F[x] ® . 1%(x) =‘p’ or 1*(x) =‘N'}

SHOW: " x{A[X] ® . I*(x) ='p’ or 1%(x)="N’}

SHOW: " x{1%(x) =‘p’ or I(x) ='N’ ®
x+#)="p or 1%(x+#)="N}

() =‘p U 19 ="N
s+ #) = 1°%(s)
SHOW: 1%(s+'#') ='p’ or 1%(s+#') =*N’
cl: 1%(9) =‘p’
19(sH8) = p
1% (s+#) ="p or 1%(s+'#') =N’
c2: 1%(s) =N’
(st i) =N
1% (s+#) ="p or 1%(s+'#') =*N’

2L
MI(a3)
DI
UCD
As
7-10,1L

DI
DI
DI

MI(a3)
DI
uCD
As
4,6,1L
7

MI(f3)
T6+QL

UucbD
As

S7
4,SC
As
57,IL
8,SL
As
5,10,IL
11,SL

BC
IC
IH
IS

BC
IC
IH
IS

BC

IC
IH

The previous theorems are proven by minimal induction. In the next example, we see that minimal
induction is not always enough. Here, we try to prove that the string ‘N#p’ is not a formula of £, using
minima induction.

26 Hardegree, Metalogic

(1) sHeW: ~F['N#p’] 2,IL

(2 SHOW: " x{F[X]® x* ‘N#p’} MI(f3)

3 SHOW: " x{ A[X]® xt ‘N#p'} MI(a3) BC,
(4 SHOW: ‘p’t *N#p’ DI BC,
(5) SHOW: " x{x! ‘N#p’ ® x+'#'1‘N#p'} UcCh 1C,

(6) st ‘N#p’ As IH,
(7 SHOW: s+ #1 " N#p’ 7-9,IL IS,

(8) last(s+'#') =‘#’ L2c

9 last(‘N#p') = “p’ DI

(20 ‘wlip DI

(11) SHOW: " x{x*‘N#p’ ® ‘N'+x 1 ‘N#p'} ucCh IC,

(12) st'N#p’ As IH;
(13) SHOW: ‘N’+st ‘N#p’ ?77? 1S,

At this point we are stymied — one cannot prove the inductive case [line 11], because it is not true! A
simple counter-example goes as follows.

Lets="#p’;
thens! ‘N#p’;
but ‘N’ +s="N#p’.

Accordingly we turn to the expanded sheme of induction, which is dways an option. Then, the
inductive case goes as follows. (The shaded material iswhat is different in the inductive case.)

T8.
(1) sHeW: ~F['N#p'] 2,1L
(2) sHewW: " x{F[X]® x* ‘N#p’} MI(f1-f3)
(3) SHOW: " x{A[X]® X! ‘N#p'} MI(a3) BC,
(4 SHOW: ‘p’t ‘N#p’ DI BC,
(5) SHOW: " x{x!‘N#p ® x+#'1‘Ngp'} UCD IC,
(6) st N#p’ As IH,
(7 SHOW: s+ #'1 ' N#p’ 7-9,IL IS,
(8) last(s+ #') = last(‘#') =&’ S6/DI
(9) last(*N#p') = p’ DI
(10) w1 DI
(11) | SHOW: " x{F[x] & x*‘N#p’ .® ‘N’'+x ! ‘N#p’} UCD 1C,
(12) F[s] & st‘N#p’ As IH,
(13) SHOW: ‘N'+s? ‘N#p’ ID 1S,
(14) ‘N’ +s=*N#p’ As
(15) SHEW: X 20,22,23,SL
(16) ‘Nip' =‘N’ + ‘#ip’ DI
(17) ‘N’ +s=‘N" +‘tp’ 14,16,IL
(18) s='#p’ 17,511
(19) F['#p’'] 12,18,IL
(20) P(4p) =p U 25(#p)='N 19,T7
(21) 1 4p) ="¢ DI
(22) Wl DI
(23) “w1N DI

The following is another example that uses expanded induction.

Mathematical Induction

27

T9.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

SHEW: " x{F['N’'+x] ® F[x]}
SHEW: " x{ ~F[x] ® ~F['N’+x]}
~F[g]
SHOW: ~F['N’+g]
SHEW: " x{F[x] ® x**N’+s}
SHOW: " x{ A[X] ® xt‘N’+s}
Aldl
SHOW: a® ‘N’+s
1St(a) = ;p,
(N’ +s) = 1°(*N")
1St(:N|) — ‘Na
oL
SHOW: " X{F[x] & x*‘N'+s.® ‘N’'+xt‘N’+s}
F[b] & bt ‘N’'+s
SHOW: ‘N’+b ‘N'+s
‘N'+b="N"+s
SHOW: X

b=s

F[s]

2,QL
UucCbD

As

5IL
MI(f1-3)
UcCbD

As
9-12,IL
7,16

S7

DI

DI

UcCbD

As

ID

As

3,18
15,511
13a,17,IL

BC

IC
IH
IS

28

Hardegree, Metal.ogic

T10.

T11.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

SHEW: " x{A[x] ® fin[x]}
SHEW: fin['P’]
| len(P)=1

fin[g]
SHOW: fin[s+ #']
let: n=len(s)

len('#)=1
len(s+'#’) = n+l

SHOW: " x{fin[x] ® fin[x+#']}

len(st'#) =len(s) + len(‘#’)

M1 (atomic formulas)
3, def ‘fin’
string theory

Ucb
As

6, def ‘fin’
5,def fin, $O
string theory
string theory

8,9,IL

SHOW: " x{F[x] & 1%(x)=‘N'" ® $y{F[y] & x =‘N'+y}}

F[s] & 1%(9) =N’
SHOW: $y{F[y] & s=‘N'+y}
$x[s="N'"+x]
s=‘N+b
F['N’+b]
Flb]

As
5,7,QL
2b,ET
4,$0
25,L
6,ET

BC
IC

IH
IS

uCDh

Mathematical Induction 29

3. Strong Induction
SHOW: " x{Nx ® P[x]} M
BC: | sHew: P[0] Y
N
[
IC: | SHOW: " x{" y(y<x® P[y]) ® P[x]} UCD
IH: "yly<m® P[y]) As

[

IS || sHew: P[m] 7
|
[

Note: Officialy, strong induction does not have a base case, since the base case follows from the
inductive case. It is included here “for good measure’; this is because in many actua applications of
strong induction, one ends up explicitly proving the base case.

4. Double Induction (Weak Form)

Note: the following scheme presumes that the quantifiers range over numbers.

SHEW: " X" yR[x,y] Ml
BCO: | sHow: " yR[Oy] MI
BCL: || sHow: R[0,0] 7

n

n
IC1: || sHew: " y(R[0O,y] ® R[0,y]) UCD *
IHL: ||| R[Om] As
ISL: || | sHew: R[O,m] 7

]

||
1ICO: | | sHow: " x(" yR[xy] ® " yR[x"y]) UCD *
IHO: ||| " yR[my] As
1S0: | | | sHew: " yR[m"y] Ml
BC2: | ||| sHew: R[m',0] ??

[T

[T
1IC2: | ||| sHew: " y(R[m"y] ® R[m"y") UCD *
IH2: || ||| R[m"n] As
1s2 ||]

|

|11

