Formal
Languages — 2

wh e

o N

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24,

Lo o [0 1o o ISP 3
THE MEA-LANGUAOEcveeeeeie sttt sttt sttt b et sb et e s st e s b e e bees e e saeebesseeebe e beentesreensenneans 3
Prefix, INFiX, @A POSIFIXoiie ettt 3
1 = T o 1 0 RS 3
2. POSITIX FOIMMEL ...ttt bbbttt nbe e b 4
3. LG o117 SR 4
Prefix (Polish) FOrMEatted ZOLS........ccciiieieeieeeesieese e st e e ae e sse e e e sseeaessaesreeneenensseenes 4
1 GENEral VOCADUIAIY.......coeieiieiestee ettt sttt st et sae e re e 4
2. General RUIES Of FOMMELION.coveieriiriisie ettt st nesae b e s 4
Abstract Example of a Polish FOrmatted ZOLccooieiieiiiieseeeeee et 4
1. VOCADUIANY (IEXICON) ...ecuieceieeeee ettt esreeteeneesre e s e eneenneenes 5
2. (01 L= o) B o0 7= 1 o o R RR 5
Concrete Example of aPolish FOrmatted ZOLcoveiveeiieeceese e 5
1 (V0o o 11 =T TSP 5
2. FULES OF TOMMELION: ...ttt bbbt e 5
POSITIX FOMEITEA ZOL Seiiiiiiciee ettt st b et e bt e e s beete e e nbeeneas 6
INfiX (AlgebraiC) FOrMatted ZOLS........cccueieeieceese st ae e aeeaesreenneeneens 6
1 VOCBIOUIANY ...ttt sttt st e be et e sae e beeneeas 6
2. RUIES OF TOMMIBLION.....cueiiieecie e bbbt e e 6
Abstract Example of an Algebraically Formatted ZOL............ocoveeiiiienieeie e 7
1. VOCEDUIANY (IEXICON) .. .eeeeeiecieete ettt ettt e esse et e sneesreenseeneenneenes 7
2. FUIES OF FOMMIBLION ...ttt sttt b et ae e b e e s e s e e beeneesne e 7
Concrete Example of an Algebraically Formatted ZOL.........ccoooveeeiieie e 7
1 (V002! o 11 =T USSP 7
2. FULES OF TOMMIBLTION ...ttt bbbt bbb 7
LT [H o1 o] o ISP PURRN 8
FirsSt-Order LAnQUBOES.ceieeeeeteerieeiesseesteetesseesteesesseesseessesseesseessessesssessssssssssenssessesssenssesssssenses 8
The Rules of Formation for First-Order LanNQUAGES.........cccovererrieneenieseeee e s 9
FIrSt-Order TREOTTEScueeeeeeeee ettt b e bbbt e e bt e e b e nns 10
Example 1: Pean0 ANTNMELICcc.oi ettt e 11
Example 2: PUre FIrSt-Order LOGICcoueiuereereeiesiesieeeeseesteseesseesseeeesseessessesssesssessesssesssssenses 11
Example 3: Elementary Group TREOY........c.cieeiiiiiieesieee ettt st 12
Example 4: Elementary BOOI€aN AlQEDIaL........ccveieiieieceseese sttt 13
Example5: ClassiCal SEt TREOIY.......coei i 13
Example 6: Modern SEt THEOMYooieiieeceece ettt 14
LT [H o1 o o ISR 14
The Syntax of Simple Second-Order LangUBGES..........ccuevvereriieeeesieeieseesieeeeseesie s seessessessseenes 15
1 LOGICAl VOCBDUIAIYooueeieeiiie ettt sttt sre et 15
2. N\ olg B oo Tor= IV Ao o= o U] =TSRSS 16
3. RUIES Of FOIMELTON......coiiiiieeieee e sttt eesreenae e e 16
Example 1: Second-Order ArthMELICccuvveeice e 17
Example 2: Second-Order SEt TNEOIYooiiiieiee et 18

1. (O =SS s IS I 7= Y/ 18

Hardegree, Metal.ogic

25.
26.
27.
28.
29.
30.
31

32.
33.

35.
36.
37.

2. MOGEIN SEL TREOY ...eee ettt ettt este e eesreesseeaesneesaeensesneensennnens 18
LT [H o1 o o ISR 18
The Fundamental Categorial RUIE.............coeeii e 19
S a1 = oL F= Y FoTe = o o o PR 20
Quantified SENLENtial LOGICccveieieereerieeieseeseeeeseeseesaeseesteesesseessesssesseesseesesseesseesesseessennees 20
AN ADSIACE EXAMPIE. ... ittt bt nenne e 21
Generalized First-Order LanQUAOES..........coveuereereeieseeseeseeseesteesesseesseessessessseesssssesssesssessesssessses 21
The Syntax of Generalized First-Order LangUAJES.........covereriereerierieeseesiesee e sie e sseeseeseesseseas 23
1. LOGICAl VOCADUIBIY:eceeeieeieeee ettt st e st aesne e seeneeeneesaeennesneenseeneens 23
2. NON-LOGICA VOCADUIANY:c..eieeeiiee ettt s 23
3. RUIES OF FOIMELION ...ttt 23
An Example of A Generalized First-Order Theory.........cccoiiiienenieseeee e 24
WA (0Tl @ (0 = g U= o (ST 25
Converting between Prefix Notation and INfix NOtationcceeivreenenieneeneeesee e 25
FirSt-Order LAnNQUBOES.ccveeveereeieeieseesieeaesseesteeseesseessesseesseessessesssessseasesssesssessesssesssessesssenssessennes 25
CaegOrial LANQUAGES........coiteeeeiieeieeie sttt sttt sttt e steesbe e e sseenbesaeesseesseentesaeenbesneesaeensesneens 26

ANSWEIS 10 SElECLEU EXBICISES. ..ot e e e ettt enneeeaeeens 26

Formal Languages — 2 3

Part 1 - Zero-Order Languages

1. Introduction

In the current part we develop a general account of a very simple class of formal languages —
namely, zero-order languages. For these purposes, a zero-order language (ZOL) is a formal language in
which every grammatical expression is either a sentence (category S) or a sentential connective (category
Sk=S). See Appendix A3 for agenera description of categorial grammar.

2. The Meta-Language

In the current part, the meta-language (English+) is specified informally as follows.

(1)

(2)

(3)

(4)

Metalinguistic variables: lower case Greek letters (with or without subscripts) are
constants and variables that range over strings of symbols.

Quote-Notation: the official name of a string of symbols of the object language is
obtained by enclosing that string in single quotes.

String concatenation: this operation is explicitly indicated — by the plussign ‘+'.
Algebraically speaking, the plus operation is associative, so parentheses are dropped [e.g.,
‘atb+d].

Metaphysics: Asit turns out, our notation cannot distinguish between the letter ‘a’ and the
word ‘a. Furthermore, our metaphysics supports this “confusion” — we treat strings
mereologically; in particular, we regard every symbol as a string — an atomic string.
Slogan: every “letter” isalso a“word”. Note: thisistechnicaly at odds with the usual
set-theoretic approach to strings, according to which a string of symbolsis afunction from
the natural numbers into the set of symbols, and so asymbol s istechnically distinct from
its unit string & i

3. Prefix, Infix, and Postfix

In natura languages, and in mathematics, grammatical functors are implemented in a variety of
ways. Among these, we can identify three simple formatting techniques.

1. Prefix Format

The functor goesin front of its argument(s).

Examples.

the mother of a

the square root of a
thesumof a (and) b
itisnot truethat a

4 Hardegree, Metal.ogic

2. Postfix Format
The functor goes in back of its argument(s).

Examples:

a istall

a’s mother
a’ssquare [a?

a ... not! [colloquial]

3. Infix Format
The functor goes between its arguments.
Examples:
a istalerthan b
a respectsb
a+b
aandb

4. Prefix (Polish) Formatted ZOL'’s

In the prefix (Polish) implementation of zero-order languages: all connectives are placed in prefix
notation. The following isthe general account.

1. General Vocabulary

a atomic formulas; a countable set;

b. connectives, every oneis n-place for some n or other.
2. General Rules Of Formation

a every atomic formulaisaformulg;

b. if cisan n-place connective, andf 4,...,f , are formulas,

then c+f 1+...+f isaformula;
C. nothing elseisaformula

5. Abstract Example of a Polish Formatted ZOL

The example presented here is abstract, in the sense that the actual symbols are not displayed, but
only mentioned. The exact orthographic nature of the symbolsisleft completely unspecified.

Formal Languages — 2 5

1. Vocabulary (lexicon)
a denumerable sequence &a1,a.,,...fiof atomic formulas
b. one 1-place connective, m
C. one 2-place connective, k

2. Rules of Formation

a every atomic formulaisaformula;
b. if f isaformula, then m+f isaformula;

c if f{ and f , areformulas, then k+f 1+f , isaformula;
d nothing elseisaformula

6. Concrete Example of a Polish Formatted ZOL

Here, the example is concrete; the orthographic symbols are specified exactly [notice al the single
guotes).

1. vocabulary
‘p’,‘ﬁ’,‘K’,‘N,
2. rules of formation:
a atomic formulas
1 ‘P’ isan atomic formula;
2. if f isanatomic formula, then soisf +#’;
3. nothing else is an atomic formula.
b. connectives
1 ‘N’ is a 1-place connective;
2. ‘K’ isa2-place connective.
C. formulas
1. every atomic formulaisaformula;
2. if f isaformula, thensois N+ ;
3. if f,andf,areformulas, thensois‘'K’ +f;+f;
4, nothing elseisaformula

6 Hardegree, Metalogic

7. Postfix Formatted ZOL's

Prefix notation has a natural twin — postfix notation, also called ‘Reverse Polish Notation’; the
latter is in fact a registered trademark of Hewlett-Packard, who use this formatting scheme in their
calculators.

Perhaps the best-known example of a postfix language is Postscript, which is a programming
language employed by every printer that supports Postscript, which includes every “serious’ laser printer,
aswell as every Macintosh compatible laser printer.

Theoretically speaking there is no significant difference between prefix and postfix languages.
Accordingly, we will not be particularly concerned with postfix formatted languages.

8. Infix (Algebraic) Formatted ZOL's

Finally we consider infix notation, also caled algebraic notation. [For example, the term
‘Algebraic Logic’ isused to refer to the formatting scheme used in calculators built by Texas Instruments.]

Now, prefix formatted languages have two advantages over infix formatted languages. (1) Prefix
format works no matter what degree a connective is; infix format works only for 2-place connectives. (2)
Prefix format does not require any punctuation [there are no parenthesis keys on an HP calculator!]; infix
format requires parentheses for parsing. On the other hand, infix notation has a magor advantage in
readability.

The following is the general account of algebraically formatted zero-order languages.

1. Vocabulary

a atomic formulas; a countable set;
b. connectives, each one has degree less than or equal to 2;
C. punctuation marks: ‘(’, ‘)’

2. Rules of formation

a every atomic formulaisaformula;

b. if ¢ isaconnective of degree 1, and f isaformula, then soisc+f

c if ¢ isaconnective of degree 2, andf ,, f , areformulas, thensois‘(" +f,+c +f,+")";
d nothing elseisaformula

Formal Languages — 2

9.

Abstract Example of an Algebraically Formatted ZOL

Once again, our first example is abstract, in the sense that no actual symbol is orthographically

characterized, except for the parentheses; the symbols are mentioned, but not displayed.

10.

vocabulary (lexicon)

a denumerable sequence &a1,a.,,...fiof atomic formulas
b. one 1-place connective, m
C. one 2-place connective, k

rules of formation

every atomic formulaisaformulg;

if f isaformula, then m+f isaformula;
iffandf,areformulas, then‘(+f,+k +f,+ ‘) isaformulg;
nothing elseisaformula.

Q0T

Concrete Example of an Algebraically Formatted ZOL

The following is a concrete example of a ZOL ; the symbols are orthographically specified.

vocabulary

PR~ LY

rules of formation

a atomic formulas:
1. ‘P’ isan atomic formula;
2. if f isanatomic formula, thensoisf +'#';
3. nothing else is an atomic formula.
b. connectives:
1. ‘~’ isa l1-place connective;
2. ‘=’ isa2-place connective.
C. formulas:

every atomic formulaisaformulg;

if f isaformula, thensois‘~"+f ;

if f,andf,areformulas, thensois‘(+f+'=" +f,+");
nothing elseisaformula

hpOODNPRE

8 Hardegree, Metalogic

Part 2 - First-Order Languages
and First-Order Theories

11. Introduction

In the present chapter, we examine a class of formal languages that has been studied in great detall
over the last century — first-order languages.

Perhaps, we should call these formal languages standard first-order languages, since we adopt a
considerably wider definition of first-order languages elsewhere in this book.

Even with this clarification, there is still room for disagreement; some logicians regard definite
descriptions as officially part of first-order logic and languages, others do not. We do.

12. First-Order Languages

In Part 1 of this chapter, we use quote-plus notation. In this part, we instead employ neither quotes
nor plus. In particular, we use the logical symbols ambiguously (in effect as names of themselves), and
we use the implicit juxtaposition operator. [The reader isinvited to transate our description into quote-
plus notation.]

a logical vocabulary (the same for every FOL)

variables

constants (also called parameters; these are optional)
quantifiers:" , $

connectives: ~, =, « , &, U

description operator: 1

identity sign: =

parentheses: (,), [,]

b. non-logical vocabulary (different for different FOL's)

proper nouns
function signs; O-place, 1-place, 2-place, etc.
predicates; 0-place, 1-place, 2-place, etc.

First-order languages form a kind, if you will. To specify a particular first-order language, one
must specify its non-logical vocabulary — what are its proper nouns, what are its one-place function
signs, etc. In this regard, notice that each (admissible) grammatical category can have any number of
representatives (including zero!). See the many examples later in this part.

Formal Languages — 2

13. The Rules of Formation for First-Order Languages

These rules are schematic; to obtain the rules of formation for a specific first-order language, one

needs to specify its non-logical vocabulary.

The rules are presented in terms of two primitive grammatical categories — singular terms and
formulas, which are defined inductively as follows. Note once again that we use quote-less-plus-less

notation.

a.

Note al the punctuation marks (parentheses and square brackets) are officialy part of first-order
Note, however, that most logicians characterize first-order languages
without the square brackets for predicate application, and the round parentheses for function sign

languages as specified here.

application.

sngular terms

every variable isasingular term,

every constant (parameter) isasingular term;

every proper nounisasngular term;

if f isan n-place functionsign, andty,...,t, are singular terms,
thenf (ty,....t,) isasingular term;

if F isaformula, and n isavariable, theninlF isasingular term;
nothing elseisa singular term.

atomic formulas

if Pisann-place predicateandt,,...,t, are singular terms,
then P[t4,...,t,)] isan atomic formulg;

if t;and t, aresingular terms,

then [t,=t,] isan atomic formula;

nothing else is an atomic formula.

formulas

every atomic formulaisaformulg;
if Fisaformulathensois; ~F

if F and G are formulas, then so are (F—>G), (FUG), (F&G), (F« G);
if Fisaformula, and nisavariable, then " nlF and $nlF are formulas;

nothing elseisaformula

10 Hardegree, Metalogic

14. First-Order Theories

In order to discuss examples of first-order languages, it is agood ideato consider them in context.
Specifically, first-order languages are constructed to formalize first-order theories, which are constructed
to formalize “naturally occurring” theories. For this reason, we discuss several examples of first-order
theories, which involves discussing the underlying first-order languages.

Briefly, aformal theory 7T is specified in three stages.

1. One formally specifies the formal language £ onwhich 7 is based.
2. One specifiesthelogical system S that governs 7 .
3. One formally specifies which formulas of £ are theorems/theses of 7.

These are inter-related. The language £ must be a species of the kind of language that S governs. The
underlying principle of all formal theoriesis then:

Thethesesof 7 form asubset of formulas of £ that islogically closed with
respect to S.

What ‘logically closed’ means here is summarized as follows.

if fy, ..., f hareal thesesof T,
and a follows fromf 4, ..., f ,, according to logical system S
thena isalso athesisof 7.

Of particular interest in the current sub-chapter, of course, are first-order theories, which are
formulated in first-order languages, and logically governed by first-order logic.

Here, another point of contention arises: what do we mean by ‘first-order logic’. In this
connection there are two plausible candidates — Classical First-Order Logic and Free First-Order Logic.
The difference concerns how they handle referentialy improper singular terms. In the case of Classical
FOL, every singular term refers, even referentially improper singular terms. To quarantine these goof
balls, we choose (more or less arbitrarily) an individua in the domain to which all referentially improper
terms refer. In the case of Free FOL, referentially improper singular terms refer to nothing whatsoever.
The advantage is referentia clarity. The disadvantage is that extra axioms are often required to guarantee
existence.

A first-order theory consists of a first-order language together with a specification of which
formulas are theses (theorems). Ordinarily, the theorems of a formal theory are generated axiomatically.
Specificaly, first, a set of primitive theorems [called axioms| are presented; then, from these primitive
theorems, all theorems are deduced using the deductive techniques of first-order logic. In order to
illustrate these ideas, we consider a number of well-known examples.

Formal Languages — 2 11

15. Example 1: Peano Arithmetic

Arithmetic (i.e., the theory of natural numbers) was given its classical formulation by Peano (and
Dedekind). Peano Arithmetic can be formulated in afirst-order language with just three (primitive) non-
logical symbols, which are the following.

Non-Logical Vocabulary

Symboal: Category: Reading:
0 proper noun zero
N one-place predicate N[a] : a isanumber
S one-place function sign s(a) : the (immediate) successor of a
Axioms
Pl N[O]
P2. " X(N[X] = N[s(x)]
P3. ~$x[s(x)=0]

PA. " X" y(s(X)=sly) > x=Y)
P5. [F[0/n] & " X(N[X] —. F[x/n] = F[s(X)/n]) .= " X(N[X] — [F[x/n])

Note: P5 is not an axiom, but rather an axiom schema; it is short for infinitely many axioms, one for each
formula F and variable n; F[t/n] isthe formulathat results when variable n isreplaced by term t in all its
free occurrences in [[all remaining free variables are understood as universally quantified]. ‘F’ isnot
part of the language of Peano Arithmetic — the object language; rather, it is a metalinguistic expression
which stands for any formula of the (object) language of Peano Arithmetic. [[Axiom P5, which is the
Principle of Mathematical Induction, is exceedingly important, and will be discussed in detail in Chapter

3]

The theorems (theses) of Peano Arithmetic are then al the logical consequences of the Peano
Axioms. The usual laws of arithmetic are obtained by logic from the axioms, together with various
definitions. These include definitions of the various numbers (1,2, etc.), the arithmetic functions (addition,
multiplication, etc.), as well as the arithmetic predicates (even, odd, less than, greater than, etc.). [[The
logical reduction of a theory consists of two components;, on the one hand, one reduces the various
concepts of the theory to a subset of concepts — the primitive concepts; on the other hand, one reduces the
theses to a subset of theses — the axioms]]

16. Example 2: Pure First-Order Logic

Before continuing with examples of specialized first-order languages, it is useful to note that the
language used in elementary logic is also a first-order language, which might be called the generic first-
order language. The associated “theory” is sometimes referred to as Pure First-Order Logic.

There are two prominent differences between Pure First-Order Logic, which is a generic first-
order theory, and any specific theory, such as Arithmetic.

12 Hardegree, Metalogic

At the syntactic level, whereas Arithmetic only has three (primitive) non-logical symbols, the
generic first-order language has infinitely many symbols of every grammatical category — there are
infinitely many proper nouns, infinitely many one-place predicates, etc.

Although Arithmetic is syntactically poor, it is semantically rich, compared to pure first-order
logic. On the one hand, pure first-order logic has no non-logica theses, but only logical theses (not
surprisingly!). On the other hand, Arithmetic has non-logical theses, in addition to logical theses. For
example, ‘1+2=1+2" is a logica thesis of Arithmetic, whereas ‘1+2=2+1" is a non-logica thess of
Arithmetic.

17. Example 3: Elementary Group Theory

There are many theories in mathematics, some more abstract than others. One of the abstract
theoriesis Group Theory, the elementary component of which is afirst-order theory.

Aside: Mathematicians sometimes refer to the first-order fragment of a theory as the elementary theory.
The morpheme ‘element’ is suggestive of the intent; in the elementary theory, one “talks’ exclusively
about elements, rather than sets of elements. Formally speaking, this amounts to quantifying exclusively
over eements. The more general theory quantifies over sets of elements, sets of sets of elements, and so
forth.

The “additive formulation” of Elementary Group Theory may be formally specified as follows.

Non-L ogical Vocabulary

Symboal: Category: Reading:

0 proper noun zero

- one-place function sign —a : thenegativeof a

+ two-place function sign a+b : aplusb
Axioms

Gl " X" y$Z[z=x+y]

G2. " x$yly=-]

G3. "X[x+0=X]

G4, "X[0+x=X]

G5 "X[x+—x=0]

G6. " x[x+x=0]

G7. "Xy zZx+(y+z)=(x+y)+7]

Note: gl and g2 are required if the logical system is Free First-Order Logic; if the logical system is
Classical First-Order Logic, then they are logical theses.

Formal Languages — 2

13

18. Example 4: Elementary Boolean Algebra

Another example of a first-order theory is Elementary Boolean Algebra, which may be formally

specified as follows.

Non-Logical Vocabulary

Symboal: Category: Reading:
0 proper noun zero
1 proper noun one
- one-place function sign —a : thecomplement of a
U two-place function sign aUb : ameethb
U two-place function sign alb : ajoinb
Axioms

Bl $yly=-X

B2. $7z=xUYy]

B3. $7z=xUYy]

B4. XxUx=x_

BS> xUy=yUx

B6. xU(yUz=(xUy)Uz

B7. xUx=x_

B8 xUy=yUx

B9. xU(Uz=(xUy)Uz

B10. xU(XxUy)=x

Bll. xUxUy)=x

B12. xU(yU2z=(xUy)U(xUz2z)

B13. xU(yUz=xUy)U(xU2z

B14. ——x)=x

B15. xU-x=0

B16. xU—x=1

B17. xUy)=—xU-y

B18. —(xUy)=—xU-y

Note: b1-b3 are required if the logical system is Free First-Order Logic; if the logical system is Classical
First-Order Logic, then they are logical theses. Also, b4-b18 are understood to be universally quantified

over their free variables. Compare this with our presentation of Group Theory in the previous section.

19. Example 5: Classical Set Theory

Classical Set Theory, which is originally due to Cantor and Frege, may be very smply formalized
as afirst-order theory asfollows.

Non-Logical Vocabulary

14 Hardegree, Metalogic

Symboal: Category: Reading:

i 2-place predicate al b : aisandementof b

Axioms

AL "X Y[" 2(d x« 2 y) > x=Y]
A2. BX'ylyl x « [F]
(An axiom schema; [F isany formulain whichy isnot free)

Classical Set Theory is very powerful. Unfortunately, as first shown by Russell, it is inconsistent! For
this reason, Modern Set Theory was formulated.

20. Example 6: Modern Set Theory

Modern Set Theory can also be formulated as a first-order language. The following are the
principal axioms of what is usualy called ZF Set Theory (after Zermelo and Fraenkel). Note that thisis
pure set theory, so the universe of discourse (domain) consists exclusively of sets, and so the quantifiers
range over sets.

Non-Logical Vocabulary

I 2-place predicate al b : aisahdementof b

Axioms

Al "X'y["z@d x« 2 y)® x=zy]

A2, $x-$y[yl X] X

*A3. "xPy' ZHZdy « (2d x& F)}

A4 " xysZ wiwl z« . w=x Uw=y)

A5. " x$y' Z[d y« Sw(wl x & 2 w)]

AB. " x$y" Z[d y« " w(wi z® wi X)]

*A7. "n$UF® " x$y" z{d y« $w(wl x& F[w/n,z/u])}

* An axiom schemg; [F isany formulain whichy isnot free.

[Note: ‘$!'u’ means ‘thereis aunique u such that']

Part 3 — Second-Order Languages

21. Introduction

Although this book is principally interested in first-order logic, it is useful to see examples of
languages that are not first-order. For this reason, in the current part, we examine smple second-order

Formal Languages — 2

15

languages. These languages are “simple’ in comparison to general second-order languages. In particular,
these languages involve the following simplifications.

22.

(@) they do not countenance lambda-abstraction;
2 they do not countenance higher-order predicates.

The Syntax of Simple Second-Order Languages

First, the official syntax.

Logical Vocabulary

Name I nstances Category
individual variables X, Y, Z, €tc. Vo [=N(V)]
individual constants a, b, c, etc. N
predicate variables X°, Y° Z° etc. (A>S)(v) [° S(V)]
X! Y 74 etc. (N S)(v)
X2, Y?, Z? etc. [(NS)2 & S|(v)
X3, Y3 28 etc. [(NS)3 =& S|(v)
etc.
predicate constants (optional) A° B° B? etc. APS[° S
A', BY, BY, etc. NS
A? B? B? ec. (N9S)2 S
A3 B B? etc. (N+S)3+ S
eftc.
SL connectives ~ =« &, U Sk+S
first-order quantifiers "% V4SS
second-order quantifiers "% V4S9 S
description operator 1 VotS=< N
identity sign = N2 S
parentheses () none

Note that the quantifiers are categorially ambiguous, as indicated in the category column. Note
also the presence of subcategories V (individual variables) and V* ; (predicate variables).

16 Hardegree, Metalogic

2. Non-Logical Vocabulary
proper nouns N
first-order function signs (for each k=0): Nk = N
first-order predicates (for each k=>0): Nk S

Note: the non-logical vocabulary of a simple second-order language is restricted to first-order
notions. There are no second-order function signs or predicates.

As with all formal languages, the norntlogical vocabulary will the theory-specific. For example,
the non-logical vocabulary of second-order arithmetic differs from the non-logical vocabulary of second-
order set theory. Second-order languages form a kind. To specify a particular second-order language,
one must specify its non-logical vocabulary — what specifically are the proper nouns, function signs, and
predicates. In this regard, each (admissible) grammatical category can have any number of
representatives (including zero).

3. Rules of Formation

The formation rules are shematic; to obtain the rules of formation for a specific second-order
language, one must specify its non-logical vocabulary.

There are several categories of well-formed expressions, which are defined inductively as
follows.

a. Singular Terms.

every individual variable/constant isasingular term;

every proper nounisasngular term;

if f isan n-placefunction sign, andty,...,t, aresingular terms, then f (t,...,t) isasingular term;
if F isaformula, and n isanindividua variable, theninlF isasingular term;

nothing elseisasingular term.

b. Firs-Order Predicates:

‘=" isafirst-order predicate of degree 2 [written in infix notation];
for each n=0:
every predicate variable/constant of degree nisafirst-order predicate of degreen;
every norntlogical first-order predicate of degree nisafirst-order predicate of degree n;
nothing elseisafirst-order predicate of degree n.

C. Atomic Formulas:

if Pisafirst-order n-place predicate and ty,...,t,, are singular terms,
then P[t4,...,t)] isan atomic formula;

if t, and t, are singular terms,
then [t,=t,] isan atomic formulg;

nothing else is an atomic formula.

Formal Languages — 2 17

d. Formulas

every atomic formulaisaformula;

if F isaformula, then sois: ~[F;

if F and G are formulas, then so are: (F—G), (FUG), (F&G), (F« G);

if Fisaformula, and nisanindividua variable, then " nlF and $n[F are formulas,
if Fisaformula, and Visapredicate variable, then " VI and $VF are formulas;
nothing elseisaformula

23. Example 1: Second-Order Arithmetic

Having examined the class of ssimple second-order languages, we consider two examples of
theories that can be profitably formulated in such languages.

Probably the most famous second-order theory is Second-Order Peano Arithmetic. We have
already seen the first-order formulation of Peano Arithmetic. The second-order formulation is quite
similar.

First, the underlying language is based on precisaly the same three primitive non-logical symbols.

Non-Logical Vocabulary

Symboal: Category: Reading:

0 proper noun zero

N one-place predicate N[a] : a isanumber

S one-place function sign s(a) : the (immediate) successor of a

On the other hand, the axioms of Second-Order Peano Arithmetic are given as follows.

P1. N[O]
P2. " X(N[X] = N[s(x)]
P3. ~$x[s(x)=0]

P4. " X" y(S(x)=sy) = x=Y)
PS. " X{X[0] & " y(N[y] ® . X[y] ® X[s(y)]) .= " y(N[y] = X[y])}

There is in fact not a great deal of difference between first-order and second-order arithmetic. The
difference pertains exclusively to the Axiom of Induction (P5). In first-order arithmetic, P5 must be
formulated as an axiom schema. This is not necessary in second-order arithmetic, because it can utilize
second-order quantification. Notice that the quantifier ‘" X’ quantifies into predicate position, something
that is grammatically forbidden in afirst-order theory.

18 Hardegree, Metalogic

24. Example 2: Second-Order Set Theory

Set theory can be formulated in a simple second-order language. First, the non-logical vocabulary
isquite simple.

Symboal: Category: Reading:

i 2-place predicate al b: aisandementof b

We consider two versions of set theory. Note that we are discussing pure set theory, so the universe of
discourse (domain) consists exclusively of sets, and so the quantifiers range exclusively over sets.

1. Classical Set Theory

Classical Set Theory, which isoriginally due to Cantor and Frege, may be very smply formalized
as a second-order theory based on the following two axioms.

AL XYM 2(d x« 2 y) > x7Y]
A2, "XS$y' Ay « X7

As mentioned in the section on first-order set theory, dassical set theory is inconsistent, which is why
modern set theory was formulated.

2. Modern Set Theory

Modern Set Theory is usualy formulated as a first-order theory, but it can be more succinctly
formulated as a second-order theory. The following are the principal axioms of ZF Set Theory.

Al "X y[" zd x« 2 y) > x=7y]

A2, Sx-$ylyl x|)

A3, "X"xPy' AAdy « (d x& X2)}

Ad. " X" y$zZ' wwl z« . w=x Uw=y)

A5. " x$y' Z[Zd y« Sw(wl x & 2 w)]

AB. " x$y' Z[d y« " w(wi z® wi X)]

A7. " X{"y$IzXyz® " x$y" {2 y« $w(wl x & Xwz)}}
[Note: ‘$!Z' means ‘there is a unique z such that']

Part 4 — Categorial Languages

25. Introduction

So far we have described each formal language in alargely ad hoc manner. An aternative to this
procedure is to employ general categorial grammar. In the previous sections, we have mentioned the
various grammatical categories, but we have not really put them to use.

Formal Languages — 2 19

In the current part, we briefly describe the categorial approach to formal languages. Not only does
this approach afford more generality, it enables us to describe formal languages for which no ad hoc
procedure will work.

A genera and detailed account of categoria grammar may be found in Appendix 3.

26. The Fundamental Categorial Rule

We have already seen examples of grammatical categories, in reference to the various functors.
For example, aone-place predicate is afunctor of category

NS

which means that it takes a single noun phrase (N) as input, and yields a sentence (S) as output. Similarly,
atwo-place function sign isafunctor of category

N+N->N or: N2->N
which means that it takes two noun phrases as input, and yields a noun phrase as output.

The two previous examples are first-order functors. There are higher-order functors also. For
example, a predicate adverb is afunctor of category

(NS> (N->9)
which means it takes a predicate as input, and generates a predicate as output.

The examples so far are specific examples. The genera case is given by the following general
rule of formation for languages that are categorially specified.

Generic Formation Rulefor Categorial Languages

if F isan expression of category (Ki+...+K) Ko,

and ey, ..., e, are expressions of category Ky, ..., Ky, respectively,
then F (e, ..., &y) isan expression of category K.

Here, F (e, ..., €y isthe result of “applying” functor F to expressionsey, ..., €.

The above rule of formation is generic (general) in two senses.

D It doesn’t specify which categories are in fact instantiated.
2 It does not specify the orthographic details of functor application.

By ‘orthographic details we mean, for example, whether the functor is written in prefix, postfix, infix, or
some other notation. etc.). Both of these will depend upon the specific language in question.

20 Hardegree, Metalogic

Given the generd rule of formation, in order to specify a forma language under this rubric, we
need merely specify the atomic symbols together with their categories. If we need orthographic specifics,
then the details of functor application are also required.

In the next few sections, we examine how various (kinds of) languages can be specified
categorially. We concentrate on languages not covered previoudy. [Exercise: Go back and rewrite the
descriptions of the previous languages in pure categorial form.]

27. Sentential Modal Logic

Sentential Modal Logic provides an example of a zero-order language not already discussed. Itis
obtained from ordinary SL by adding modal operators— 1 (necessarily) and <> (possibly).

Logical Vocabulary:

~, 0,0 S9S
®,« ,&,U 29S

Infinite list of the following:
Sentential congtants: P, Q, R, €tc. S

Examples of Formulas:

The actua formulas will depend upon functor implementation; if we pursue the usual
implementation — infix (algebraic) format — we have the following sorts of formulas.

D(P® Q® (LP® LIQ)
OP® (CQ® O(P&Q))
oOPe OOP

On the other hand, if we pursue a pure prefix implementation (“Polish notation”), then we
have the following sorts of formulas.

® 0O® PQ® OPQ
® OP® GQO&PQ
® COPOOP

28. Quantified Sentential Logic

Quantified Sentential Logic is an odd little logic that has quantification, but no predication! One
might call it second-order sentential logic, or one might call it absolutely minimal second-order logic. On
the other hand, in an important sense it is not second-order (see Appendix 3 for definition of order).

Logical Vocabulary:

~ S-S
®,« ,&,U S+S9S
"% S(v)+S=+S

Formal Languages — 2 21

Infinite list of each of the following:
Sentential variables: X, Y, Z, etc. S(v)
Sententia congtants: P, Q, R, €tc. S

Examples of Formulas:

If we pursue the usua syntactic implementation of functor application, we have the
following sorts of formulas.

" X(X® X)
"X(X®" Y (Y® X))
$X" Y(X®Y)

29. An Abstract Example

This example is abstract in the sense that English readings are not provided for any of the various
grammatical expressions.

t proper noun : N;

f() : aone-place function sign : N-»N;
p[] atwo-place predicate : N2 S,
cah atwo-place connective : S29 S,
{} aone-place subnective : SN;

It is furthermore understand that every instance of functor application employs prefix format in addition the
indicated category markers (and commas as necessary). The following are examples of well-formed
eXpressions.

t
f(t)

pt, t]

plt, f(V)]

calt, t], p[t, t]i
s{plt, 1}

Z0nununz=z

30. Generalized First-Order Languages

Ordinary First-Order Logic is severely limited grammatically; in particular, the only non-logical
symbols it alows are proper nouns (N), function signs (Nk=*N), and predicates (Nk=*S). A more genera
logic can be obtained by enlarging the class of admissible categoriesto include every first-order category.

The general concept of order is presented in Appendix 3. For our current purposes, we ssimply
offer the following special case — the definition of zero-order, and first-order.

22 Hardegree, Metalogic

N is zero-order;
Siszero-order;
nothing else is zero-order;

if Ky, ..., Ky are zero-order, and K is zero-order or first-order, then
(Ki+...+K)P K isfirst-order;
nothing elseisfirst-order.

A corresponding rough-and-ready account of first-order functor is given as follows.

A first-order functor isafunctor that takes no functor as input, and whose output is
either afirst-order functor or a primitive category (N or S).

For example, afunctor of either of the following categories

(N+S)+S
(N+S)»N

is not first-order because in each case the input is a one-place predicate, which is a species of functor.

Examples of first-order functors are plentiful. For example, the simple functors are first-order
functors.

Sk=S k-place sentential operators (connectives)
Nk=S k-place predicates

Nk=>N k-place function signs

Sk-*N k-place subnectives

So are the following inhomogeneous (mixed input) functors

N+S+S (example, a believesthat S)
N+SN (examples?)

Furthermore, since these are al first-order, any functor that takes combinations of N and S as
input, and generates one of these as output is aso afirst-order functor, including the following.

N-(N-S)
N-(S»S)
N-(S*N)

Indeed, given the inductive nature of the definition of first-order, the process of constructing first-order
categoriesis never-ending. For example, the following isan infinite list of categories.

NS

N-(N-S)
N-(N-(N+9))

N= (N= (N (N-9)))
etc,

Formal Languages — 2 23

What this entails is that we cannot give explicit rules of formation for a generic generalized first-
order language, because there are too many categories to consider. Instead, we have to rely on the
categorial method to present the rules of formation.

31. The Syntax of Generalized First-Order Languages

1. Logical Vocabulary:
individual variables: x, y, z, etc. N(Vv)
individual constants:. a, b, c, etc. N
sentential variables: X, Y, Z, etc. S(v)
sentential congtants: P, Q, R, €tc. N
individua quantifiers. " , $ N(V)+S*S [or: N(v) (S 9)]
sentential quantifiers: " , $ S(vV)+SS [or: S(V)(S*9)]
connectives:
~ S*S
®,« ,&,U S+S+S

general description operator: 1
for each category K, such that order(K) = 0: K(v)+S#K [or: K(v)=(S*N)]

general identity operator: =
for each category K, such that order(K) = 0: KAKS

Optiond Logical Items

general lambda-abstraction operator | :
for each sequence Ky, ..., Ky, of categories, such that order(K;) = O:

1 (predicate): [Ki(V)+... K (V)+S] P [K+...+K P G
2 (function sign): [Ki(V)+... 4K (V)+N] P [K+...+K P N]
2. Non-Logical Vocabulary:

for each category K, such that order(K) < 1:

zero or more non-logical expressions

of category K. K
3. Rules of Formation

Primitive Expressions:

Every expression of category N isasingular term;
Every expression of category Sisaformula;

Derivative Expressions:

24 Hardegree, Metalogic

if F isan expression of category (Ky, ..., Kn?Ko),

and hy, ..., hy, are expressions of category Ky, ..., K, respectively,

then F (hy, ..., hy) isan expression of category Ko.

[As usual, the various functors are implemented in a language-specific manner].

32. An Example of A Generalized First-Order Theory
As before, atheory specifies three things (the first one often being presupposed).
D the underlying logico-linguistic system (first-order logic, second-order logic, etc.)
(2 the non-logical vocabulary (concepts)
(©)) the non-logical axioms (principles)
The following isafairly ssimple example of atheory underwritten by generalized first-order logic.

Non-Logical Vocabulary

Symboal: Category: Reading:

1 one-place connective IS : necessarily, S
& one-place connective &S : possibly, S
Axioms:

(m1) " X{OX® X}

(M2) " X{X® OX}

(m3) " X(~OX« <&~X}
(md) " X{~OX « O~X}
(m5) " X{" nOX « O" nX}
(M) " X{InOX « OBnX}

Notice in the axioms the presence of sentential quantifiers, which are not countenanced in ordinary first-
order logic. These are logical symbols, and must accordingly be provided with corresponding rules of
inference. The symbols [J and <, by contrast, are not part of the logic properly so called. According to
this presentation, they are non-logical. So, instead of calling the resulting deductive system amodal logic,
we would refer to it as a moda theory. Similarly, according to this rendition of modality, the infinite
variety of modal systems — S5, 4, B, T, etc. — are thought of as competing theories of modality, rather
than as competing logics.

Formal Languages — 2 25

33. Exercises for Chapter 2

1. Zero-Order Languages
Consider the ZOL described in Section 6 of Part 1.
1. For each of the strings displayed below, say whether it is well-formed (grammatical).
p#, N#p; Kp##p#; NKpt#p; KKp#pp#; NKpNp#p; pKp#; KpKpp; KKK pppp
2. For each of the grammatical stringsin Part 1, prove that it is grammatical.
The following is an example of such a proof, using quoteless notation.

By clause al, p is an atomic formula, so by clause a2, p## is an atomic formula, so by clause c1,
p## isaformula, so by clause c2, Np## isaformula, so by clause c3, KpNp## isaformula

2. Converting between Prefix Notation and Infix Notation
1 Using the following correspondence,

N &> ~

K & &

D s U

C & ®

B = «

p.gr < P,Q,R

convert each of the following prefix formatted formulas into the corresponding infix-formatted formulas;
include all parentheses.

KpKar ; KKpar ; CpCap ; CCNgNpCpq ; CCpCarCCpgCpr ; BKpDgrDKpgK pr

2. Using the above correspondence, convert each of the following infix-formatted formulas into
Polish notation.

(PUQ&R); ~(P® Q) ; (P® ((Q® P)® R)) ; (P« Q« R)« (P« (Q« RY)))

3. First-Order Languages

Consider afirst-order language L whose non-logical vocabulary is the following:

0 : aproper noun;
S : atwo-place function sign;
R : atwo-place predicate;

1 Specify the rules of formation for L. For these purposes, suppose that £ does not employ category
markers for function signs and predicates; in particular, the only parentheses that officially appear
are in connection with two-place connectives

26 Hardegree, Metalogic

2. For each of the following strings, say whether it is grammatical in £, and if it is grammatical,
specify its grammatical category.

S0 ; s00; s000; ss000; sss0000; s0s0s0; s0s0s00

ROO; RO0O; RRO00; Rs00; Rs000; sRO00; Rss00s000; sSROORO0

" XR00; $xRX0; $x" yRx0; xx$xR00; R" xRx; (ROO — Rs00s00); " xsR00

1XSXX; 1XRX0; SiXRxX; RixRxxx; RixRxxax" yRxy; 1x1yRXxy;
3. For each of the stringsin Part 2, rewrite it using bracket/parenthesis'comma notation.
4, For each of the stringsin Part 2, rewrite it using infix notation.
5. For each of the grammatical stringsin Part 2, prove that it is grammatical.

The following is an example of such a proof (in quotel ess notation).

O isaproper noun, so by clause a3, 0 isasingular term, so by clause a4, SO0 isasingular term, so by
clause a3, 000 isasingular term, so by clause c1, R0s00 isaformula. The clause numbers refer to the
rules of formation for aFOL.

4. Categorial Languages
Consider aformal language L categorially specified as follows, where it is understand that every

instance of functor application employs prefix format in addition the indicated category markers (and
commas as hecessary).

t proper noun : N;

f() : aone-place function sign : N-»N;
p[] atwo-place predicate : N2 S;
cah atwo-place connective : S29 S,
s{} aone-place subnective : SN;

Write down the rules of formation for £ in explicit form.

Give examples of formulas that involve al five symbols (with their punctuation markers).
Give examples of singular terms that involve all five symbols.

Give examples of ill-formed expressions that involve all five symbols.

pODNPE

34. Answers to Selected Exercises

1.1.
p# ; grammatical
N#p : ungrammetical
K p#gp# : grammatical
NKp#p : grammatical
KK p#pp# : grammatical
NKpNp#p : ungrammatical
pK p# : ungrammetical
KpKpp : grammatical

KKKpppp : grammatical

Formal Languages — 2

27

2.1.

2.2.

3.1

3.2.

(P& (Q&R))
(P& Q) &R)
(P® (Q® P))
(~Q® ~P)® (P® Q)

(P® Q® R)® (P® Q) ® (P® R))
(P& (QUR)) « ((P& QU (P& R))

KDpgr
NCpqg

CpCCqpr
BBBpqgrBpBagr

singular terms

every variable isasingular term,;

every constant (parameter) isasingular term,

Oisasngular term;

if t; and t, are singular terms, then st1t, isasingular term;

if F isaformula, and n isavariable, theninlF isasingular term;
nothing elseisasingular term.

atomic formulas

if t, and t, are singular terms, then Rt st is an atomic formula;
if t; and t, are singular terms, then [t,=t,] isan atomic formula;
nothing else is an atomic formula.

formulas

every atomic formulaisaformulg;

if Fisaformulathensois: ~[F

if F and G are formulas, then so are (F—>G), (FUG), (F&G), (F« G);
if Fisaformula, and nisavariable, then " nlF and $n[F are formulas;
nothing elseisaformula

ill-formed
s00 N
s000 ill-formed
ss000 N
sss0000 N
s0s0s0 ill-formed
s0s0s00 N
R0OO S
R0O00 ill-formed
RR000 ill-formed
Rs00 ill-formed
Rs000 S
sR000 ill-formed

28

Hardegree, Metal.ogic

4.1

Rss00s000
SROORO0

" XxR00
$xRx0

$x" yRx0
xx$xR0O0

S
ill-formed

S
S
S
S

R" xRx :
(ROO — Rs00s00) : S
" xsR00 :

1XSXX
1XRX0
SIXRXX

RiXRxxx : S
RixRxoax" yRxy : S
1X1YRXy :

a.

ill-formed
ill-formed

ill-formed
N
ill-formed

ill-formed

singular terms

every variable isasingular term,

every constant (parameter) isasingular term;
tisasingular term;

if t isasingular term, then f(t) isasingular term;
if Fisaformula, then {[F} isasingular term;
nothing elseisasingular term.

atomic formulas

if t; and t, are singular terms, then p[t4,t,] isan atomic formula;
nothing elseis an atomic formula.

formulas

every atomic formulaisaformulg;
if F and G are formulas, then caF,Gfiisaformula;
nothing elseisaformula

