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Part 1 - Zero-Order Languages 

1. Introduction 

 In the current part we develop a general account of a very simple class of formal languages – 
namely, zero-order languages.  For these purposes, a zero-order language (ZOL) is a formal language in 
which every grammatical expression is either a sentence (category S) or a sentential connective (category 
Sk¢S).  See Appendix A3 for a general description of categorial grammar. 

2. The Meta-Language 

 In the current part, the meta-language (English+) is specified informally as follows. 

(1) Metalinguistic variables:  lower case Greek letters (with or without subscripts) are 
constants and variables that range over strings of symbols. 

(2) Quote-Notation:  the official name of a string of symbols of the object language is 
obtained by enclosing that string in single quotes.   

(3) String concatenation:  this operation is explicitly indicated – by the plus sign ‘+’.  
Algebraically speaking, the plus operation is associative, so parentheses are dropped [e.g., 
‘α+β+γ’]. 

(4) Metaphysics:  As it turns out, our notation cannot distinguish between the letter ‘a’ and the 
word ‘a’.  Furthermore, our metaphysics supports this “confusion” — we treat strings 
mereologically; in particular, we regard every symbol as a string – an atomic string.  
Slogan:  every “letter” is also a “word”.  Note: this is technically at odds with the usual 
set-theoretic approach to strings, according to which a string of symbols is a function from 
the natural numbers into the set of symbols, and so a symbol σ is technically distinct from 
its unit string 〈σ〉. 

3. Prefix, Infix, and Postfix 

 In natural languages, and in mathematics, grammatical functors are implemented in a variety of 
ways.  Among these, we can identify three simple formatting techniques. 

1. Prefix Format 

The functor goes in front of its argument(s). 
 
Examples:   
the mother of α 
the square root of α 
the sum of α (and) β 
it is not true that α 
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2. Postfix Format 

The functor goes in back of its argument(s). 
 
Examples: 
α is tall 
α’s mother 
α’s square [α2] 
α … not! [colloquial] 

3. Infix Format 

The functor goes between its arguments. 
 
Examples: 
α is taller than β 
α respects β 
α + β 
α and β 

4. Prefix (Polish) Formatted ZOL’s 

 In the prefix (Polish) implementation of zero-order languages: all connectives are placed in prefix 
notation.  The following is the general account. 

1. General Vocabulary 

a. atomic formulas; a countable set; 
b. connectives; every one is n-place for some n or other.  

2. General Rules Of Formation 

a. every atomic formula is a formula; 
b. if c is an n-place connective, and φ1,...,φn are formulas,  
 then c+φ1+...+φn is a formula; 
c. nothing else is a formula. 

5. Abstract Example of a Polish Formatted ZOL 

 The example presented here is abstract, in the sense that the actual symbols are not displayed, but 
only mentioned.  The exact orthographic nature of the symbols is left completely unspecified. 
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1. Vocabulary (lexicon) 

a. denumerable sequence 〈α1,α2,...〉 of atomic formulas 
b. one 1-place connective, µ 
c. one 2-place connective, κ 

2. Rules of Formation 

a. every atomic formula is a formula; 
b. if φ is a formula, then µ+φ is a formula; 
c. if φ1 and φ2 are formulas, then κ+φ1+φ2 is a formula; 
d. nothing else is a formula. 

6. Concrete Example of a Polish Formatted ZOL 

 Here, the example is concrete; the orthographic symbols are specified exactly [notice all the single 
quotes]. 

1. vocabulary 

‘p’, ‘Ø’, ‘K’, ‘N’ 

2. rules of formation: 

a. atomic formulas 
 
1. ‘p’ is an atomic formula; 
2. if φ is an atomic formula, then so is φ+‘Ø’; 
3. nothing else is an atomic formula. 

 
b. connectives 

 
1. ‘N’ is a 1-place connective; 
2. ‘K’ is a 2-place connective. 

 
c. formulas 

 
1. every atomic formula is a formula; 
2. if φ is a formula, then so is ‘N’+φ; 
3. if φ1 and φ2 are formulas, then so is ‘K’ + φ1 + φ2; 
4. nothing else is a formula. 
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7. Postfix Formatted ZOL’s 

 Prefix notation has a natural twin – postfix notation, also called ‘Reverse Polish Notation’; the 
latter is in fact a registered trademark of Hewlett-Packard, who use this formatting scheme in their 
calculators. 

 Perhaps the best-known example of a postfix language is Postscript, which is a programming 
language employed by every printer that supports Postscript, which includes every “serious” laser printer, 
as well as every Macintosh compatible laser printer.   

 Theoretically speaking there is no significant difference between prefix and postfix languages. 
Accordingly, we will not be particularly concerned with postfix formatted languages. 

8. Infix (Algebraic) Formatted ZOL’s 

 Finally we consider infix notation, also called algebraic notation. [For example, the term 
‘Algebraic Logic’ is used to refer to the formatting scheme used in calculators built by Texas Instruments.]   

 Now, prefix formatted languages have two advantages over infix formatted languages.  (1)  Prefix 
format works no matter what degree a connective is; infix format works only for 2-place connectives.  (2)  
Prefix format does not require any punctuation [there are no parenthesis keys on an HP calculator!]; infix 
format requires parentheses for parsing.  On the other hand, infix notation has a major advantage in 
readability. 

 The following is the general account of algebraically formatted zero-order languages. 

1. Vocabulary 

a. atomic formulas; a countable set; 
b. connectives; each one has degree less than or equal to 2; 
c. punctuation marks: ‘(’, ‘)’ 

 

2. Rules of formation 

a. every atomic formula is a formula; 
b. if χ is a connective of degree 1, and φ is a formula, then so is χ+φ 
c. if χ is a connective of degree 2, and φ1, φ2 are formulas, then so is ‘(’ + φ1 + χ + φ2 + ‘)’; 
d. nothing else is a formula. 
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9. Abstract Example of an Algebraically Formatted ZOL 

 Once again, our first example is abstract, in the sense that no actual symbol is orthographically 
characterized, except for the parentheses; the symbols are mentioned, but not displayed. 

1. vocabulary (lexicon) 

 a. denumerable sequence 〈α1,α2,...〉 of atomic formulas 
 b. one 1-place connective, µ 
 c. one 2-place connective, κ 

 

2. rules of formation 

a. every atomic formula is a formula; 
b. if φ is a formula, then µ+φ is a formula; 
c. if φ1 and φ2 are formulas, then ‘(’ + φ1 + κ + φ2 + ‘)’ is a formula; 
d. nothing else is a formula. 

 

10. Concrete Example of an Algebraically Formatted ZOL 

 The following is a concrete example of a ZOL; the symbols are orthographically specified. 

1. vocabulary 

‘P’, ‘Ø’, ‘→’, ‘∼’, ‘(’ , ‘)’ 

2. rules of formation 

a. atomic formulas: 
 

1. ‘P’ is an atomic formula; 
2. if φ is an atomic formula, then so is φ+‘Ø’; 
3. nothing else is an atomic formula. 

 
b. connectives: 

 
1. ‘∼’ is a 1-place connective; 
2. ‘→’ is a 2-place connective. 

 
c. formulas: 

 
1. every atomic formula is a formula; 
2. if φ is a formula, then so is ‘∼’+φ; 
3. if φ1 and φ2 are formulas, then so is ‘(’ + φ1 + ‘→’ + φ2 + ‘)’; 
4. nothing else is a formula. 
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 Part 2 - First-Order Languages 
and First-Order Theories 

11. Introduction 

 In the present chapter, we examine a class of formal languages that has been studied in great detail 
over the last century – first-order languages.   

 Perhaps, we should call these formal languages standard first-order languages, since we adopt a 
considerably wider definition of first-order languages elsewhere in this book.   

 Even with this clarification, there is still room for disagreement; some logicians regard definite 
descriptions as officially part of first-order logic and languages; others do not.  We do. 

12. First-Order Languages 

 In Part 1 of this chapter, we use quote-plus notation.  In this part, we instead employ neither quotes 
nor plus.  In particular, we use the logical symbols ambiguously (in effect as names of themselves), and 
we use the implicit juxtaposition operator.  [The reader is invited to translate our description into quote-
plus notation.] 

a. logical vocabulary (the same for every FOL) 

variables 
constants (also called parameters; these are optional) 
quantifiers: ∀, ∃ 
connectives: ∼, →, ↔, &, ∨ 
description operator: ψ 
identity sign: = 
parentheses: (, ), [, ] 

b. non-logical vocabulary (different for different FOL’s) 

proper nouns 
function signs; 0-place, 1-place, 2-place, etc. 
predicates; 0-place, 1-place, 2-place, etc. 

 First-order languages form a kind, if you will.  To specify a particular first-order language, one 
must specify its non-logical vocabulary — what are its proper nouns, what are its one-place function 
signs, etc.  In this regard, notice that each (admissible) grammatical category can have any number of 
representatives (including zero!).  See the many examples later in this part. 
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13. The Rules of Formation for First-Order Languages 

 These rules are schematic; to obtain the rules of formation for a specific first-order language, one 
needs to specify its non-logical vocabulary. 

 The rules are presented in terms of two primitive grammatical categories – singular terms and 
formulas, which are defined inductively as follows.  Note once again that we use quote-less-plus-less 
notation.  

 a. singular terms 

every variable is a singular term; 
every constant (parameter) is a singular term; 
every proper noun is a singular term; 
if φ is an n-place function sign, and τ1,...,τn are singular terms,  
then φ(τ1,...,τn) is a singular term; 
if ¹ is a formula, and ν is a variable, then ψν¹ is a singular term; 
nothing else is a singular term. 

 b. atomic formulas 

if Ã is an n-place predicate and τ1,...,τn are singular terms,  
then Ã[τ1,...,τn] is an atomic formula; 
if τ1 and τ2 are singular terms,  
then [τ1=τ2] is an atomic formula; 
nothing else is an atomic formula. 

 c. formulas 

every atomic formula is a formula; 
if ¹ is a formula then so is: ∼¹ 
if ¹ and º are formulas, then so are (¹→º), (¹∨º), (¹&º), (¹↔º); 
if ¹ is a formula, and ν is a variable, then ∀ν¹ and ∃ν¹ are formulas; 
nothing else is a formula. 

Note all the punctuation marks (parentheses and square brackets) are officially part of first-order 
languages as specified here .  Note, however, that most logicians characterize first-order languages 
without the square brackets for predicate application, and the round parentheses for function sign 
application.   
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14. First-Order Theories 

 In order to discuss examples of first-order languages, it is a good idea to consider them in context.  
Specifically, first-order languages are constructed to formalize first-order theories, which are constructed 
to formalize “naturally occurring” theories.  For this reason, we discuss several examples of first-order 
theories, which involves discussing the underlying first-order languages. 

 Briefly, a formal theory T is specified in three stages.   

1. One formally specifies the formal language L on which T is based. 
2. One specifies the logical system S that governs T. 
3. One formally specifies which formulas of L are theorems/theses of T. 

These are inter-related.  The language L must be a species of the kind of language that S governs.  The 
underlying principle of all formal theories is then: 

 The theses of T form a subset of formulas of L that is logically closed with 
respect to S.   

What ‘logically closed’ means here is summarized as follows. 

 if φ1, ..., φm are all theses of T,  
and α follows from φ1, ..., φm, according to logical system S 
then α is also a thesis of T. 

 Of particular interest in the current sub-chapter, of course, are first-order theories, which are 
formulated in first-order languages, and logically governed by first-order logic. 

 Here, another point of contention arises: what do we mean by ‘first-order logic’.  In this 
connection there are two plausible candidates – Classical First-Order Logic and Free First-Order Logic.  
The difference concerns how they handle referentially improper singular terms.  In the case of Classical 
FOL, every singular term refers, even referentially improper singular terms.  To quarantine these goof 
balls, we choose (more or less arbitrarily) an individual in the domain to which all referentially improper 
terms refer.  In the case of Free FOL, referentially improper singular terms refer to nothing whatsoever.  
The advantage is referential clarity.  The disadvantage is that extra axioms are often required to guarantee 
existence.  

 A first-order theory consists of a first-order language together with a specification of which 
formulas are theses (theorems).  Ordinarily, the theorems of a formal theory are generated axiomatically.  
Specifically, first, a set of primitive theorems [called axioms] are presented; then, from these primitive 
theorems, all theorems are deduced using the deductive techniques of first-order logic.  In order to 
illustrate these ideas, we consider a number of well-known examples. 
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15. Example 1:  Peano Arithmetic 

 Arithmetic (i.e., the theory of natural numbers) was given its classical formulation by Peano (and 
Dedekind).  Peano Arithmetic can be formulated in a first-order language with just three (primitive) non-
logical symbols, which are the following. 

 Non-Logical Vocabulary 

Symbol: Category: Reading: 

0 proper noun  zero 

N one-place predicate  N[α]  :  α is a number 

s one-place function sign  s(α)  :  the (immediate) successor of α 
 

 Axioms 

P1. N[0] 
P2. ∀x(N[x] → N[s(x)] 
P3. ~∃x[s(x)=0] 
P4. ∀x∀y(s(x)=s(y) → x=y) 
P5. ¹[0/ν] & ∀x(N[x] →. ¹[x/ν] → ¹[s(x)/ν]) .→ ∀x(N[x] → ¹[x/ν]) 

Note: P5 is not an axiom, but rather an axiom schema; it is short for infinitely many axioms, one for each 
formula ¹ and variable ν; ¹[τ/ν] is the formula that results when variable ν is replaced by term τ in all its 
free occurrences in ¹ [all remaining free variables are understood as universally quantified].  ‘¹’ is not 
part of the language of Peano Arithmetic — the object language; rather, it is a metalinguistic expression 
which stands for any formula of the (object) language of Peano Arithmetic.  [[Axiom P5, which is the 
Principle of Mathematical Induction, is exceedingly important, and will be discussed in detail in Chapter 
3.]] 

 The theorems (theses) of Peano Arithmetic are then all the logical consequences of the Peano 
Axioms.  The usual laws of arithmetic are obtained by logic from the axioms, together with various 
definitions.  These include definitions of the various numbers (1,2, etc.), the arithmetic functions (addition, 
multiplication, etc.), as well as the arithmetic predicates (even, odd, less than, greater than, etc.).  [[The 
logical reduction of a theory consists of two components; on the one hand, one reduces the various 
concepts of the theory to a subset of concepts — the primitive concepts; on the other hand, one reduces the 
theses to a subset of theses — the axioms.]] 

16. Example 2:  Pure First-Order Logic 

 Before continuing with examples of specialized first-order languages, it is useful to note that the 
language used in elementary logic is also a first-order language, which might be called the generic first-
order language.  The associated “theory” is sometimes referred to as Pure First-Order Logic.   

 There are two prominent differences between Pure First-Order Logic, which is a generic first-
order theory, and any specific theory, such as Arithmetic. 
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 At the syntactic level, whereas Arithmetic only has three (primitive) non-logical symbols, the 
generic first-order language has infinitely many symbols of every grammatical category – there are 
infinitely many proper nouns, infinitely many one-place predicates, etc. 

 Although Arithmetic is syntactically poor, it is semantically rich, compared to pure first-order 
logic.  On the one hand, pure first-order logic has no non-logical theses, but only logical theses (not 
surprisingly!).  On the other hand, Arithmetic has non-logical theses, in addition to logical theses.  For 
example, ‘1+2=1+2’ is a logical thesis of Arithmetic, whereas  ‘1+2=2+1’ is a non-logical thesis of 
Arithmetic. 

17. Example 3:  Elementary Group Theory 

 There are many theories in mathematics, some more abstract than others.  One of the abstract 
theories is Group Theory, the elementary component of which is a first-order theory. 

Aside: Mathematicians sometimes refer to the first-order fragment of a theory as the elementary theory.  
The morpheme ‘element’ is suggestive of the intent; in the elementary theory, one “talks” exclusively 
about elements, rather than sets of elements.  Formally speaking, this amounts to quantifying exclusively 
over elements.  The more general theory quantifies over sets of elements, sets of sets of elements, and so 
forth. 

 The “additive formulation” of Elementary Group Theory may be formally specified as follows. 

 Non-Logical Vocabulary 

Symbol: Category: Reading: 

0 proper noun  zero 

– one-place function sign  –α  :  the negative of α 

+ two-place function sign  α+β  :  α plus β 
 

 Axioms 

G1. ∀x∀y∃z[z = x+y] 
G2. ∀x∃y[y = –x] 
G3. ∀x[x + 0 = x] 
G4. ∀x[0 + x = x] 
G5. ∀x[x + –x = 0] 
G6. ∀x[–x + x = 0] 
G7. ∀x∀y∀z[x + (y + z) = (x + y) + z] 

 
Note: g1 and g2 are required if the logical system is Free First-Order Logic; if the logical system is 
Classical First-Order Logic, then they are logical theses. 
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18. Example 4:  Elementary Boolean Algebra 

 Another example of a first-order theory is Elementary Boolean Algebra, which may be formally 
specified as follows. 

 Non-Logical Vocabulary 

Symbol: Category: Reading: 

0 proper noun  zero 

1 proper noun  one 

– one-place function sign  –α  :  the complement of α 

∧ two-place function sign  α∧β  :  α meet β 

∨ two-place function sign  α∨β  :  α join β 
 

 Axioms 

B1. ∃y[y = –x] 
B2. ∃z[z = x ∧ y] 
B3. ∃z[z = x ∨ y] 
B4. x ∧ x = x 
B5. x ∧ y = y ∧ x 
B6. x ∧ (y ∧ z) = (x ∧ y) ∧ z 
B7. x ∨ x = x 
B8. x ∨ y = y ∨ x 
B9. x ∨ (y ∨ z) = (x ∨ y) ∨ z 
B10. x ∧ (x ∨ y) = x 
B11. x ∨ (x ∧ y) = x 
B12. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 
B13. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) 
B14. –(–x) = x 
B15. x ∧ –x = 0 
B16. x ∨ –x = 1 
B17. –(x ∧ y) = –x ∨ –y 
B18. –(x ∨ y) = –x ∧ –y 

 
Note: b1-b3 are required if the logical system is Free First-Order Logic; if the logical system is Classical 
First-Order Logic, then they are logical theses.  Also, b4-b18 are understood to be universally quantified 
over their free variables.  Compare this with our presentation of Group Theory in the previous section. 

19. Example 5:  Classical Set Theory 

 Classical Set Theory, which is originally due to Cantor and Frege, may be very simply formalized 
as a first-order theory as follows. 

 Non-Logical Vocabulary 
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Symbol: Category: Reading: 

∈ 2-place predicate  α ∈ β  :  α is an element of β 
 

 Axioms 

 A1. ∀x∀y[∀z(z∈x ↔ z∈y) → x=y] 
 A2. ∃x∀y[y∈x  ↔  ¹] 
  (An axiom schema; ¹ is any formula in which y is not free) 
 
Classical Set Theory is very powerful.  Unfortunately, as first shown by Russell, it is inconsistent!  For 
this reason, Modern Set Theory was formulated. 

20. Example 6:  Modern Set Theory 

 Modern Set Theory can also be formulated as a first-order language.  The following are the 
principal axioms of what is usually called ZF Set Theory (after Zermelo and Fraenkel).  Note that this is 
pure set theory, so the universe of discourse (domain) consists exclusively of sets, and so the quantifiers 
range over sets. 

 Non-Logical Vocabulary 

∈ 2-place predicate  α ∈ β  :  α is an element of β 
 

 Axioms 

A1. ∀x∀y[∀z(z∈x ↔ z∈y) → x=y] 
A2. ∃x∼∃y[y∈x] 
*A3. ∀x∃y∀z{z∈y  ↔  (z∈x & ¹)} 

 A4. ∀x∀y∃z∀w(w∈z ↔. w=x ∨ w=y) 
A5. ∀x∃y∀z[z∈y ↔ ∃w(w∈x & z∈w)] 
A6. ∀x∃y∀z[z∈y ↔ ∀w(w∈z → w∈x)] 
*A7. ∀ν∃!υ¹ → ∀x∃y∀z{z∈y ↔ ∃w(w∈x & ¹[w/ν,z/υ])} 

  
 * An axiom schema; ¹ is any formula in which y is not free. 
 
 [Note: ‘∃!υ’ means ‘there is a unique υ such that’] 

 

Part 3 – Second-Order Languages 

21. Introduction  

 Although this book is principally interested in first-order logic, it is useful to see examples of 
languages that are not first-order.  For this reason, in the current part, we examine simple second-order 
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languages.  These languages are “simple” in comparison to general second-order languages.  In particular, 
these languages involve the following simplifications. 

(1) they do not countenance lambda-abstraction;  
(2) they do not countenance higher-order predicates. 

22. The Syntax of Simple Second-Order Languages 

 First, the official syntax. 

1. Logical Vocabulary 

 

Name Instances Category 

individual variables x, y, z, etc. V0 [= N(v)] 

individual constants a, b, c, etc. N 

predicate variables X0, Y0, Z0, etc. (∅¢S)(v) [≡ S(v)] 

 X1, Y1, Z1, etc. (N¢S)(v) 

 X2, Y2, Z2, etc. [(N¢S)2 ¢ S](v) 

 X3, Y3, Z3, etc. [(N¢S)3 ¢ S](v) 

 etc.  

predicate constants (optional) A0, B0, B0, etc. ∅¢S [≡ S] 

 A1, B1, B1, etc. N ¢ S 

 A2, B2, B2, etc. (N¢S)2 ¢ S 

 A3, B3, B3, etc. (N¢S)3 ¢ S 

 etc.  

 

SL connectives ∼, →, ↔, &, ∨ Sk ¢ S 

first-order quantifiers ∀, ∃ V0+S ¢ S 

second-order quantifiers ∀, ∃ V1+S ¢ S 

description operator  ψ V0+S ¢ N 

identity sign = N2 ¢ S 

parentheses (, ) none 

 
Note that the quantifiers are categorially ambiguous, as indicated in the category column.  Note 
also the presence of subcategories V0 (individual variables) and V*1 (predicate variables).  
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2. Non-Logical Vocabulary  

proper nouns N 

first-order function signs (for each kÕ0):  Nk ¢ N 

first-order predicates (for each kÕ0): Nk ¢ S 

 
 Note: the non-logical vocabulary of a simple second-order language is restricted to first-order 
notions.  There are no second-order function signs or predicates. 

 As with all formal languages, the non-logical vocabulary will the theory-specific.  For example, 
the non-logical vocabulary of second-order arithmetic differs from the non-logical vocabulary of second-
order set theory.  Second-order languages form a kind.  To specify a particular second-order language, 
one must specify its non-logical vocabulary — what specifically are the proper nouns, function signs, and 
predicates.  In this regard, each (admissible) grammatical category can have any number of 
representatives (including zero).   

3. Rules of Formation 

 The formation rules are schematic; to obtain the rules of formation for a specific second-order 
language, one must specify its non-logical vocabulary. 

 There are several categories of well-formed expressions, which are defined inductively as 
follows. 

a. Singular Terms: 

every individual variable/constant is a singular term; 
every proper noun is a singular term; 
if φ is an n-place function sign, and τ1,...,τn are singular terms, then φ(τ1,...,τn) is a singular term; 
if ¹ is a formula, and ν is an individual variable, then ψν¹ is a singular term; 
nothing else is a singular term. 

b. First-Order Predicates: 

‘=’ is a first-order predicate of degree 2 [written in infix notation]; 
for each nÕ0: 
 every predicate variable/constant of degree n is a first-order predicate of degree n; 
 every non-logical first-order predicate of degree n is a first-order predicate of degree n; 
nothing else is a first-order predicate of degree n. 

c. Atomic Formulas: 

if Ã is a first-order n-place predicate and τ1,...,τn are singular terms,  
 then Ã[τ1,...,τn] is an atomic formula; 
if τ1 and τ2 are singular terms,  
 then [τ1=τ2] is an atomic formula; 
nothing else is an atomic formula. 
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d. Formulas: 

every atomic formula is a formula; 
if ¹ is a formula, then so is: ∼¹; 
if ¹ and º are formulas, then so are: (¹→º), (¹∨º), (¹&º), (¹↔º); 
if ¹ is a formula, and ν is an individual variable, then ∀ν¹ and ∃ν¹ are formulas; 
if ¹ is a formula, and V is a predicate variable, then ∀V¹ and ∃V¹ are formulas; 
nothing else is a formula. 

23. Example 1: Second-Order Arithmetic 

 Having examined the class of simple second-order languages, we consider two examples of 
theories that can be profitably formulated in such languages.  

 Probably the most famous second-order theory is Second-Order Peano Arithmetic.  We have 
already seen the first-order formulation of Peano Arithmetic.  The second-order formulation is quite 
similar. 

 First, the underlying language is based on precisely the same three primitive non-logical symbols. 

 Non-Logical Vocabulary 

Symbol: Category: Reading: 

0 proper noun  zero 

N one-place predicate  N[α]  :  α is a number 

s one-place function sign  s(α)  :  the (immediate) successor of α 
 

 On the other hand, the axioms of Second-Order Peano Arithmetic are given as follows. 

P1. N[0] 
P2. ∀x(N[x] → N[s(x)] 
P3. ∼∃x[s(x)=0] 
P4. ∀x∀y(s(x)=s(y) → x=y) 
P5. ∀X{X[0] & ∀y(N[y] →. X[y] → X[s(y)])  .→ ∀y(N[y] → X[y])} 

There is in fact not a great deal of difference between first-order and second-order arithmetic.  The 
difference pertains exclusively to the Axiom of Induction (P5).  In first-order arithmetic, P5 must be 
formulated as an axiom schema.  This is not necessary in second-order arithmetic, because it can utilize 
second-order quantification.  Notice that the quantifier ‘∀X’ quantifies into predicate position, something 
that is grammatically forbidden in a first-order theory. 
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24. Example 2: Second-Order Set Theory 

 Set theory can be formulated in a simple second-order language.  First, the non-logical vocabulary 
is quite simple. 

Symbol: Category: Reading: 

∈ 2-place predicate  α ∈ β  :  α is an element of β 
 

We consider two versions of set theory.  Note that we are discussing pure set theory, so the universe of 
discourse (domain) consists exclusively of sets, and so the quantifiers range exclusively over sets. 

1. Classical Set Theory 

 Classical Set Theory, which is originally due to Cantor and Frege, may be very simply formalized 
as a second-order theory based on the following two axioms. 

A1. ∀x∀y[∀z(z∈x ↔ z∈y) → x=y] 
A2. ∀X∃y∀z[z∈y  ↔  Xz] 

As mentioned in the section on first-order set theory, classical set theory is inconsistent, which is why 
modern set theory was formulated. 

2. Modern Set Theory 

 Modern Set Theory is usually formulated as a first-order theory, but it can be more succinctly 
formulated as a second-order theory.  The following are the principal axioms of ZF Set Theory.  

A1. ∀x∀y[∀z(z∈x ↔ z∈y) → x=y] 
A2. ∃x∼∃y[y∈x] 
A3. ∀X∀x∃y∀z{z∈y  ↔  (z∈x & Xz)} 
A4. ∀x∀y∃z∀w(w∈z ↔. w=x ∨ w=y) 
A5. ∀x∃y∀z[z∈y ↔ ∃w(w∈x & z∈w)] 
A6. ∀x∃y∀z[z∈y ↔ ∀w(w∈z → w∈x)] 
A7. ∀X{∀y∃!zXyz → ∀x∃y∀z{z∈y ↔ ∃w(w∈x & Xwz)}} 
 [Note: ‘∃!z’ means ‘there is a unique z such that’] 

Part 4 – Categorial Languages 

25. Introduction 

 So far we have described each formal language in a largely ad hoc manner.  An alternative to this 
procedure is to employ general categorial grammar.  In the previous sections, we have mentioned the 
various grammatical categories, but we have not really put them to use.   
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 In the current part, we briefly describe the categorial approach to formal languages.  Not only does 
this approach afford more generality, it enables us to describe formal languages for which no ad hoc 
procedure will work. 

 A general and detailed account of categorial grammar may be found in Appendix 3.   

26. The Fundamental Categorial Rule 

 We have already seen examples of grammatical categories, in reference to the various functors.  
For example, a one-place predicate is a functor of category 

N¢S 

which means that it takes a single noun phrase (N) as input, and yields a sentence (S) as output.  Similarly, 
a two-place function sign is a functor of category 

N+N¢N or: N2¢N 

which means that it takes two noun phrases as input, and yields a noun phrase as output. 

 The two previous examples are first-order functors.  There are higher-order functors also.  For 
example, a predicate adverb is a functor of category 

(N¢S)¢(N¢S) 

which means it takes a predicate as input, and generates a predicate as output. 

 The examples so far are specific examples.  The general case is given by the following general 
rule of formation for languages that are categorially specified. 

 Generic Formation Rule for Categorial Languages 
 
if Φ is an expression of category (K1+…+Km)¢K0, 
and ε1, ..., εm are expressions of category K1, ..., Km, respectively, 
then Φ(ε1, ..., εm) is an expression of category K0. 
 
Here, Φ(ε1, ..., εm) is the result of “applying” functor Φ to expressions ε1, ..., εm. 
 

The above rule of formation is generic (general) in two senses. 

(1) It doesn’t specify which categories are in fact instantiated. 
(2) It does not specify the orthographic details of functor application. 

By ‘orthographic details’ we mean, for example, whether the functor is written in prefix, postfix, infix, or 
some other notation.  etc.).  Both of these will depend upon the specific language in question. 
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 Given the general rule of formation, in order to specify a formal language under this rubric, we 
need merely specify the atomic symbols together with their categories.  If we need orthographic specifics, 
then the details of functor application are also required. 

 In the next few sections, we examine how various (kinds of) languages can be specified 
categorially.  We concentrate on languages not covered previously.  [Exercise:  Go back and rewrite the 
descriptions of the previous languages in pure categorial form.] 

27. Sentential Modal Logic 

 Sentential Modal Logic provides an example of a zero-order language not already discussed.  It is 
obtained from ordinary SL by adding modal operators – £ (necessarily) and ¯ (possibly). 

 Logical Vocabulary: 

∼, £, ¯ S¢S 
→, ↔, &, ∨ S2¢S 

Infinite list of the following: 
Sentential constants: P, Q, R, etc. S 
 

 Examples of Formulas: 

The actual formulas will depend upon functor implementation; if we pursue the usual 
implementation – infix (algebraic) format – we have the following sorts of formulas. 

£(P→Q)→(£P→£Q) 
£P → (¯Q → ¯(P&Q)) 
¯£P → £¯P 

On the other hand, if we pursue a pure prefix implementation (“Polish notation”), then we 
have the following sorts of formulas. 

→£→PQ→£P£Q 
→£P→¯Q¯&PQ 
→¯£P£¯P 

28. Quantified Sentential Logic 

 Quantified Sentential Logic is an odd little logic that has quantification, but no predication!  One 
might call it second-order sentential logic, or one might call it absolutely minimal second-order logic.  On 
the other hand, in an important sense it is not second-order (see Appendix 3 for definition of order). 

 Logical Vocabulary: 

∼ S¢S 
→, ↔, &, ∨ S+S¢S 
∀, ∃ S(v)+S¢S 
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Infinite list of each of the following: 
Sentential variables: X, Y, Z, etc. S(v) 
Sentential constants: P, Q, R, etc. S 

 Examples of Formulas: 

If we pursue the usual syntactic implementation of functor application, we have the 
following sorts of formulas. 
 
∀X(X→X) 
∀X(X→∀Y(Y→X)) 
∃X∀Y(X→Y) 

29. An Abstract Example 

 This example is abstract in the sense that English readings are not provided for any of the various 
grammatical expressions.   

t : proper noun : N; 
f( ) : a one-place function sign : N¢N; 
p[ ] : a two-place predicate : N2¢S; 
c〈 〉 : a two-place connective : S2¢S; 
s{ } : a one-place subnective : S¢N; 

It is furthermore understand that every instance of functor application employs prefix format in addition the 
indicated category markers (and commas as necessary).  The following are examples of well-formed 
expressions. 

t   N 
f(t)   N 
p[t, t]   S 
p[t, f(t)]  S 
c〈p[t, t], p[t, t]〉 S 
s{p[t, t]}  N 

30. Generalized First-Order Languages 

 Ordinary First-Order Logic is severely limited grammatically; in particular, the only non-logical 
symbols it allows are proper nouns (N), function signs (Nk¢N), and predicates (Nk¢S).  A more general 
logic can be obtained by enlarging the class of admissible categories to include every first-order category.   

 The general concept of order is presented in Appendix 3.  For our current purposes, we simply 
offer the following special case – the definition of  zero-order, and first-order.  
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 N is zero-order;  
S is zero-order; 
nothing else is zero-order; 
 
if K1, …, Km are zero-order, and K0 is zero-order or first-order, then 
(K1+…+Km)¢K0 is first-order; 
nothing else is first-order. 

A corresponding rough-and-ready account of first-order functor is given as follows. 

 A first-order functor is a functor that takes no functor as input, and whose output is 
either a first-order functor or a primitive category (N or S). 

For example, a functor of either of the following categories 

(N¢S)¢S 
(N¢S)¢N 

is not first-order because in each case the input is a one-place predicate, which is a species of functor. 

 Examples of first-order functors are plentiful.  For example, the simple functors are first-order 
functors. 

Sk¢S   k-place sentential operators (connectives) 
Nk¢S   k-place predicates 
Nk¢N   k-place function signs 
Sk¢N   k-place subnectives 

So are the following inhomogeneous (mixed input) functors 

N+S¢S  (example, α believes that Æ) 
N+S¢N  (examples?) 

 Furthermore, since these are all first-order, any functor that takes combinations of N and S as 
input, and generates one of these as output is also a first-order functor, including the following. 

N¢(N¢S) 
N¢(S¢S) 
N¢(S¢N) 

Indeed, given the inductive nature of the definition of first-order, the process of constructing first-order 
categories is never-ending.  For example, the following is an infinite list of categories. 

N¢S 
N¢(N¢S) 
N¢(N¢(N¢S)) 
N¢(N¢(N¢(N¢S))) 
etc. 
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 What this entails is that we cannot give explicit rules of formation for a generic generalized first-
order language, because there are too many categories to consider.  Instead, we have to rely on the 
categorial method to present the rules of formation. 

31. The Syntax of Generalized First-Order Languages 

1. Logical Vocabulary: 

 individual variables: x, y, z, etc. N(v) 
 individual constants: a, b, c, etc. N 
 sentential variables: X, Y, Z, etc. S(v) 
 sentential constants: P, Q, R, etc. N 
 individual quantifiers: ∀, ∃ N(v)+S¢S  [or: N(v)¢(S¢S)] 
 sentential quantifiers: ∀, ∃ S(v)+S¢S  [or: S(v)¢(S¢S)] 
 
connectives: 
 ∼ S¢S 
 →, ↔, &, ∨ S+S¢S 
 
general description operator:  ψ 
for each category K, such that order(K) = 0: K(v)+S¢K  [or: K(v)¢(S¢N)] 
 
general identity operator:  = 
for each category K, such that order(K) = 0: K+K¢S 

Optional Logical Items 
 
general lambda-abstraction operator λ: 
for each sequence K1, ..., Km of categories, such that order(Ki) = 0: 
 
 1 (predicate): [K1(v)+...+Km(v)+S]¢[K1+...+Km¢S] 
 2 (function sign): [K1(v)+...+Km(v)+N]¢[K1+...+Km¢N] 

2. Non-Logical Vocabulary: 

for each category K, such that order(K) Ô 1: 
zero or more non-logical expressions  
of category K. K 

3. Rules of Formation 

Primitive Expressions: 

Every expression of category N is a singular term; 
Every expression of category S is a formula; 

Derivative Expressions: 
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if Φ is an expression of category (K1, ..., Km¢K0), 
and η1, ..., ηm are expressions of category K1, ..., Km, respectively, 
then Φ(η1, ..., ηm) is an expression of category K0. 
[As usual, the various functors are implemented in a language-specific manner]. 

32. An Example of A Generalized First-Order Theory 

 As before, a theory specifies three things (the first one often being presupposed). 

(1) the underlying logico-linguistic system (first-order logic, second-order logic, etc.) 
(2) the non-logical vocabulary (concepts) 
(3) the non-logical axioms (principles) 

The following is a fairly simple example of a theory underwritten by generalized first-order logic. 

Non-Logical Vocabulary 

Symbol: Category: Reading: 

£ one-place connective  £Æ  :  necessarily, Æ 

¯ one-place connective ¯Æ  :  possibly, Æ 
 

 Axioms: 

(m1) ∀X{£X→X} 
(m2) ∀X{X→¯X} 
(m3) ∀X(∼£X ↔ ¯∼X} 
(m4) ∀X{∼¯X ↔ £∼X} 
(m5) ∀X{∀ν£X ↔ £∀νX} 
(m6) ∀X{∃ν¯X ↔ ¯∃νX} 

Notice in the axioms the presence of sentential quantifiers, which are not countenanced in ordinary first-
order logic.  These are logical symbols, and must accordingly be provided with corresponding rules of 
inference.  The symbols £ and ¯, by contrast, are not part of the logic properly so called.  According to 
this presentation, they are non-logical.  So, instead of calling the resulting deductive system a modal logic, 
we would refer to it as a modal theory.  Similarly, according to this rendition of modality, the infinite 
variety of modal systems – S5, S4, B, T, etc. – are thought of as competing theories of modality, rather 
than as competing logics. 
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33. Exercises for Chapter 2 

1. Zero-Order Languages 

 Consider the ZOL described in Section 6 of Part 1. 

1. For each of the strings displayed below, say whether it is well-formed (grammatical). 

pØ; NØp; KpØØpØ; NKpØp; KKpØppØ; NKpNpØp; pKpØ; KpKpp; KKKpppp 

2. For each of the grammatical strings in Part 1, prove that it is grammatical.   

The following is an example of such a proof, using quoteless notation. 

By clause a1, p is an atomic formula, so by clause a2, pØØ is an atomic formula, so by clause c1, 
pØØ is a formula, so by clause c2, NpØØ is a formula, so by clause c3, KpNpØØ is a formula. 

 

2. Converting between Prefix Notation and Infix Notation 

1. Using the following correspondence, 

N   ⇔ ∼ 
K   ⇔ & 
D   ⇔ ∨ 
C   ⇔ → 
B   ⇔ ↔ 
p,q,r ⇔ P,Q,R 

convert each of the following prefix formatted formulas into the corresponding infix-formatted formulas; 
include all parentheses. 

KpKqr ; KKpqr ; CpCqp ; CCNqNpCpq ; CCpCqrCCpqCpr ; BKpDqrDKpqKpr 

2. Using the above correspondence, convert each of the following infix-formatted formulas into 
Polish notation. 

((P∨Q)&R) ; ∼(P→Q) ; (P→((Q→P)→R)) ; (((P↔Q)↔R)↔(P↔(Q↔R))) 

3. First-Order Languages 

 Consider a first-order language L whose non-logical vocabulary is the following: 

0 : a proper noun; 
s : a two-place function sign; 
R : a two-place predicate; 

1. Specify the rules of formation for L.  For these purposes, suppose that L does not employ category 
markers for function signs and predicates; in particular, the only parentheses that officially appear 
are in connection with two-place connectives 
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2. For each of the following strings, say whether it is grammatical in L, and if it is grammatical, 
specify its grammatical category. 

 s0 ; s00; s000; ss000; sss0000; s0s0s0; s0s0s00 
 R00; R000; RR000; Rs00; Rs000; sR000; Rss00s000; sR00R00 
 ∀xR00; ∃xRx0; ∃x∀yRx0; ∃x∃x∃xR00; R∀xRx; (R00 → Rs00s00); ∀xsR00 
 ψxsxx; ψxRx0; sψxRxx; RψxRxxx; RψxRxxψx∀yRxy; ψxψyRxy;  
 
3. For each of the strings in Part 2, rewrite it using bracket/parenthesis/comma notation. 

4. For each of the strings in Part 2, rewrite it using infix notation. 

5. For each of the grammatical strings in Part 2, prove that it is grammatical.   

The following is an example of such a proof (in quoteless notation). 

0 is a proper noun, so by clause a3, 0 is a singular term, so by clause a4, s00 is a singular term, so by 
clause a3, s0s00 is a singular term, so by clause c1, Rs0s00 is a formula.  The clause numbers refer to the 
rules of formation for a FOL. 

4. Categorial Languages 

 Consider a formal language L categorially specified as follows, where it is understand that every 
instance of functor application employs prefix format in addition the indicated category markers (and 
commas as necessary). 

t : proper noun : N; 
f( ) : a one-place function sign : N¢N; 
p[ ] : a two-place predicate : N2¢S; 
c〈 〉 : a two-place connective : S2¢S; 
s{ } : a one-place subnective : S¢N; 

1. Write down the rules of formation for L in explicit form. 
2. Give examples of formulas that involve all five symbols (with their punctuation markers). 
3. Give examples of singular terms that involve all five symbols. 
4. Give examples of ill-formed expressions that involve all five symbols. 

34. Answers to Selected Exercises 

1.1. 
pØ : grammatical  
NØp : ungrammatical 
KpØØpØ : grammatical 
NKpØp : grammatical 
KKpØppØ : grammatical 
NKpNpØp : ungrammatical 
pKpØ : ungrammatical 
KpKpp : grammatical 
KKKpppp : grammatical 
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2.1. 
(P & (Q & R)) 
((P & Q) & R) 
(P → (Q → P)) 
((∼Q → ∼P) → (P → Q)) 
((P → (Q → R)) → ((P → Q) → (P → R)) 
((P & (Q ∨ R)) ↔ ((P & Q) ∨ (P & R))) 

 
2.2. 

KDpqr 
NCpq 
CpCCqpr 
BBBpqrBpBqr 

 
3.1. 
 a. singular terms 

every variable is a singular term; 
every constant (parameter) is a singular term; 
0 is a singular term; 
if τ1 and τ2 are singular terms, then sτ1τ2 is a singular term; 
if ¹ is a formula, and ν is a variable, then ψν¹ is a singular term; 
nothing else is a singular term. 

 b. atomic formulas 
if τ1 and τ2 are singular terms, then Rτ1τ2 is an atomic formula; 
if τ1 and τ2 are singular terms, then [τ1=τ2] is an atomic formula; 
nothing else is an atomic formula. 

 c. formulas 
every atomic formula is a formula; 
if ¹ is a formula then so is: ∼¹ 
if ¹ and º are formulas, then so are (¹→º), (¹∨º), (¹&º), (¹↔º); 
if ¹ is a formula, and ν is a variable, then ∀ν¹ and ∃ν¹ are formulas; 
nothing else is a formula. 

3.2. 
s0 : ill-formed 
s00 : N 
s000 : ill-formed 
ss000 : N 
sss0000 : N 
s0s0s0 : ill-formed 
s0s0s00 : N 
 
R00 : S 
R000 : ill-formed 
RR000 : ill-formed 
Rs00 : ill-formed 
Rs000 : S 
sR000 : ill-formed 
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Rss00s000 : S 
sR00R00 : ill-formed 
 
∀xR00 : S 
∃xRx0 : S 
∃x∀yRx0 : S 
∃x∃x∃xR00 : S 
R∀xRx : ill-formed 
(R00 → Rs00s00) : S 
∀xsR00 : ill-formed 
 
ψxsxx : ill-formed 
ψxRx0 : N 
sψxRxx : ill-formed 
RψxRxxx : S 
RψxRxxψx∀yRxy : S 
ψxψyRxy : ill-formed 

4.1 
 a. singular terms 

every variable is a singular term; 
every constant (parameter) is a singular term; 
t is a singular term; 
if τ is a singular term, then f(τ) is a singular term; 
 if ¹ is a formula, then s{¹} is a singular term; 
nothing else is a singular term. 

 b. atomic formulas 
if τ1 and τ2 are singular terms, then p[τ1,τ2] is an atomic formula; 
 nothing else is an atomic formula. 

 c. formulas 
every atomic formula is a formula; 
if ¹ and º are formulas, then c〈¹,º〉 is a formula;  
nothing else is a formula. 


