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1. Introduction 

 Logic provides tools for systematically appraising reasoning.  Central among these tools are 
formal languages.   

 The word ‘formal’ has a number of uses, at least two of which figure in logic.  One use pertains to 
the word ‘form’, as used in contrast to ‘content’ or ‘matter’.  This is related to the crucial idea, which 
traces to Aristotle, that whether an argument is valid is a function of its form.  The other use of the word 
‘formal’ is in contrast to ‘informal’.  A related notion is the notion of rigor – formal languages are 
rigorous in the sense that they are stiff (think of the term ‘rigor mortis’) .  Related to the formal/informal 
distinction is the distinction between natural language and artificial language; formal languages are a 
species of artificial language. 

 Leaving lexicography aside for the moment, 20th Century logic offers a concept of formal that is 
somewhat more specific.  According to this concept, a formal language is a language that is 
computationally recognizable (“computable” for short).  In other words, for a language to be formal in 
this sense, it must be possible in principle to program a computer so that it can distinguish between items 
in that language and items not in that language.  It seems fairly clear that, if a language is formal in this 
sense, it is also formal in the more conventional sense. 

2. The Basic Ingredients of a Formal Language 

 In order to specify a formal language L, one does two things, at a minimum. 

(1) one specifies the underlying set of symbols on which L is built; 
(2) one specifies which strings of symbols count as well-formed in L. 

This is often described by saying that, in specifying a formal language L, one specifies 

(1) the vocabulary of L 
(2) the rules of formation of L 

Note:  the term ‘symbol’ may be replaced by the term ‘character’, as used in many computer languages, 
such as Basic, Pascal, and C++.  Notice in this connection that the term ‘string’ is also used in many 
computer languages, usually to mean string of characters.   

 Let us not worry too much about exactly what a symbol (character) is; for example, how exactly 
can we tell when we have a symbol rather than a natural number, a triangle, or a potato?  Intuitively, 
symbols are the fundamental units of writing – the sorts of things one can write down on paper, key into a 
computer, inscribe in stone, spray-paint on a building, etc.   

 You are looking at lots of examples of symbols as you read this.  You are also looking at lots of 
examples of strings of symbols.  A string of symbols is just a (finite) bunch of symbols strung together in a 
row [notice that line breaks are ignored].  Most natural languages are formulated in this purely linear 
fashion.  On the other hand, mathematics provides many examples of formulas that are not linear, but two-
dimensional.  Generally, however, there are systematic ways to “flatten” these two-dimensional formulas.  
In any case, we will concentrate on linear (flat) languages. 

 Some strings of symbols are grammatically significant (well-formed), and some are not.  The text 
you are reading is full of examples of both.  Pick two locations in this text; the literal material lying 
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between these two points is a string of symbols, but it need not (in isolation) be a grammatically 
significant unit; it need not be well-formed. 

 In summary (where L is a formal language): 

 The vocabulary of L is the set of symbols employed by L. 

 

 The rules of formation of L specify which strings of symbols count as well-
formed. 

3. A Simple Example: The Language of Sentential Logic 

 The student of elementary logic is already familiar with a number of formal languages, including 
the language of sentential logic (SL).  The formal presentation of the syntax of this language, LS, may be 
given as follows.   

The language of SL – LLS: 

Vocabulary: 

(1) upper case Roman letters:   
 A  B  C …… 
(2) special symbols: 
 ∼ & ∨ → ↔ ( ) 
(3) nothing else. 

Rules of Formation: 

(1) every upper case Roman letter is a formula; 
(2) if Æ is a formula, then so is:  
  ∼Æ 
(3) if Æ1 and Æ2 are formulas, then so are:  
  (Æ1 & Æ2) 
  (Æ1 ∨ Æ2) 
  (Æ1 → Æ2) 
  (Æ1 ↔ Æ2) 
(4) nothing else is a formula. 

Here, the block letter ‘Æ’ is used in order to suggest ‘string’.  The role of funny-looking letters will be 
explained shortly. 

4. Another Simple Example of a Formal Language 

 In order to emphasize that the term ‘language’ in ‘formal language’ should not be taken too 
literally, we consider another example of a formal language, which we call L2. 

Vocabulary: 
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(1) upper case Roman letters:   
 A  B  C …… 
(2) nothing else is a symbol of L2. 

Rules of Formation: 

(1) if a string Æ begins with ‘P’, then it is a formula.   
(2) nothing else is a formula of L2. 

Admittedly, L2 is a silly formal language, with no obvious use in logic. Nevertheless, it is a formal 
language by our official criteria.   

5. Back to SL 

 Recall that, as it is officially presented in Section 4, there are exactly 26 simple (atomic) formulas 
in the language of SL.  Although this particular formal language is entirely adequate for all sensible 
exercises in elementary logic, it is not entirely adequate for all theoretical uses of sentential logic.  The 
problem is that there are not enough atomic formulas.   

 The usual informal way to rectify this problem is to add numerical subscripts to the letters, so as 
to yield infinitely many atomic formulas.  So in addition to ‘P’, ‘Q’, etc., we have ‘P1’, ‘Q2’, etc.  This 
produces a new theoretical problem, however – how to formalize our rules of formation so that we can 
program our hypothetical computer to recognize formulas in the expanded language. 

 An alternative technique of generating infinitely many atomic formulas proceeds as follows. 

Vocabulary: 

(1) upper case Roman letters:   
 A  B  C …… 
(2) special symbols: 
 Ø ∼ & ∨ → ↔ ( ) 
(3) nothing else. 

Rules of Formation: 

(1) every upper case Roman letter is an atomic formula; 
(2) if Æ is an atomic formula, then so is ÆØ; 
(3) nothing else is an atomic formula. 

(1) every atomic formula is a formula 
(2) if Æ is a formula, then so is:  
  ∼Æ 
(3) if Æ1 and Æ2 are formulas, then so are:  
  (Æ1 & Æ2) 
  (Æ1 ∨ Æ2) 
  (Æ1 → Æ2) 
  (Æ1 ↔ Æ2) 
(4) nothing else is a formula. 
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Notice that this formulation of the language of SL provides a precise way of rendering the numerical 
subscripts, suggested by the following examples. 

P1 : PØ 
Q2 : QØØ 
R3 : RØØØ 

6. Object Language versus MetaLanguage 

 Before continuing, it is a good idea to discuss in some detail two very important related 
distinctions.  First, there is the distinction between the object language and the metalanguage.  Second, 
there is the affiliated distinction between use and mention. 

 First, the distinction between object language and metalanguage arises as soon as language is used 
to describe language.  Consider French; there are two types of French grammar books — those written in 
French, and those written in a “foreign” language (say, English).  In both cases, French is the subject of 
discussion (or object of discussion).  However, whereas the former book is also written in French, the 
latter book is written in English.  In both cases, French is the language under discussion – the object 
language.  What about the language of use – the metalanguage?  Well, in the former case, French is also 
the language of use (the metalanguage); in the latter case, English is the language of use. 

 This is summarized in the following table. 

 French Grammar Book 
Written in French 

French Grammar Book 
Written in English 

Object Language French French 

Meta Language French English 

 

 In the above example, the object language is a natural language.  The object languages pertinent to 
logic are artificial (formal) languages.  The metalanguage is (for us at least) a special dialect of English, 
which we will call English+ (English-Plus), which is ordinary English augmented with formal-syntactic 
machinery suitable for doing metalogic.   

 Even the presentation of elementary logic makes extensive use of the metalanguage English+.  For 
example, the sentence  

if Æ is a formula of SL, then so is ∼Æ 

is not itself a formula/sentence of SL.  Rather, it is a formula/sentence of English+, which is the 
metalanguage used to describe SL.   

 Similarly, the rules of derivation are stated in the metalanguage.  The gaudy letters (‘A’, ‘B’, 
‘´’, ‘µ’, etc.) are not symbols of the object languages, but are rather part of the metalanguage.  They are 
called metalinguistic variables.  They perform logically just like the variables (‘x’, ‘y’, ‘z’) of 
elementary logic, except that they range over linguistic expressions in the object language.   
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7. Use versus Mention 

 In order to use a language (e.g., English) to discuss (mention) any domain of objects, the language 
of use should include names of those objects. This is based on the following principle. 

In order to mention an object, one uses a noun phrase that refers to that object;   
For example, one uses the name of that object. 

For example, in order to mention former president Bush, one can use his name (although this is not the 
only way).  Similarly, in order to mention our planet, we can use its name – ‘The Earth’. 

 Observe that, if we follow the above prescribed use-mention custom, then the colloquial 
expression 

I thought I heard my name mentioned 

is technically incorrect, most of the time at least.  The logically proper reply might be 

actually, you heard your name used! 

Of course, it might very well be the case that you did hear your name mentioned; for example, the persons 
involved were discussing how to spell your name. 

8. Numerals versus Numbers 

 Arithmetic presents an excellent example of the distinction between use and mention.  Arithmetic 
is a mathematical theory of (about) the natural numbers (counting numbers).  [[See Chapter 2 for a 
formal/rigorous presentation of this theory.]].  In particular, arithmetic uses names of the various numbers 
to mention them.  Now, the name of a number is usually called a numeral; if we want to mention a 
number, we use a numeral, or some other numerical expression, that refers to that number.  This is 
summarized in the following principle. 

Numerals are names of numbers; 
we use numerals to mention numbers. 

 Now, there is exactly one system of natural numbers (supposing mathematical realism).  On the 
other hand,  there are many quite distinct numeral systems, including Egyptian, Hebrew, Greek, Roman, 
Arabic, etc.  Furthermore, within the Arabic numeral system, currently adopted by most of the world, there 
are many numeral subsystems. – decimal, binary, etc. 

 Once we are clear about numbers versus numerals, we can immediately see that the following 
colloquial expressions are fallacious; in particular, they commit the error of use-mention confusion. 

10 is a round number 
100 is a round number 
etc. 
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10 is a double-digit number (so 10% inflation is double-digit inflation) 
100,000 is a six-figure number (so an income of $100,000 is a six-figure income) 

What makes a number round?  That it ends with a zero?  But the number 10 doesn’t end with a zero; its 
name does.  We might as well say that the number 10 is mono-syllabic.  Similarly with ‘double-digit’ and 
‘six-figure’.  If we use the base-2 numeral system, then we almost always have “double-digit inflation”, 
and most of us have at least “six-figure incomes”.   

 In short, the above sentences are guilty of “linguistic voodoo” – ascribing a trait to an object based 
entirely on a feature of its name.  The following are similar examples. 

Otto is a round person; 
Ohio is a round state; 
New York, New Jersey, and New Mexico are all new states. 

9. The Single-Quote Convention 

 Numerals name numbers; we use numerals to mention numbers.  So how we mention numerals?  
For example, suppose I want to mention the (Arabic) numeral that denotes the number one.  Notice that I 
cannot use the numeral itself; a numeral does not name itself; it names a number.   

 A standard (if not universal) custom is to take the numeral in question and enclose it within a pair 
of single quotes, and use the resulting expression to mention that numeral.  This is an instance of a general 
principle. 

 If one has a linguistic expression ε, then if one encloses ε in single quotes, then the 
resulting expression is a name of ε. 

 Let us consider a further simple example.  If we want to mention former president Bush, we use his 
name, but if we want to mention his name, we use its name, which is obtained by taking his name and 
enclosing it in single quotes.   

 To see how this works, let us consider the following sentences. 

(1) Bush is a Republican  (true) 
(2) Bush is a 4-letter word  (false) 
(3) ‘Bush’ is a Republican  (false) 
(4) ‘Bush’ is a 4-letter word  (true) 

In (1) and (2), I am using Bush’s name to mention him; I am talking about the former president.  On the 
other hand, in (3) and (4), I am not talking about the former president; I am talking about his (last) name.   

 We can also apply this technique to arithmetic and meta-arithmetic, as seen in the following 
examples. 

(1) 42 is a number (true) 
(2) 42 is a 2-letter word (false) 
(3) ‘42’ is a number (false) 
(4) ‘42’ is a 2-letter word (true) 
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Notice that the terms ‘letter’ and ‘word’ are expanded in English+ to encompass arithmetic expressions.  
This is sometimes clarified by introducing the term ‘alpha-numeric character’.  Literally speaking, this is 
still not quite general enough, however, since we want ‘letter’ to encompass alpha characters, numeric 
characters, and punctuation marks.   

The following are further examples to consider; each one is stated in question form [exercise]. 

(5) is 7 a base-two number? is ‘7’ a base-two number? 
(6) is 7 a base-two numeral? is ‘7’ a base-two numeral? 
(6) is VII a number? is ‘VII’ a number? 
(6) is 7 a Roman numeral? is ‘7’ a Roman numeral? 
(8) is VII a Roman numeral? is ‘VII’ a Roman numeral? 

10. Off-Set Notation 

 Oftentimes – for example, in many of the numbered sentences above – we are not using a sentence 
but only mentioning it.  This illustrates another very important linguistic convention. 

 A linguistic expression can be mentioned by setting it off typographically.   
One off-set method is to set it on its own line(s). 
Another off-set method is to ornament it somehow – e.g., italics.  
In either case, the expression in question is not used but merely displayed. 

Of course, context is exceedingly important!  For example, the boxed expression directly above is not an 
instance of this technique.  Sometimes a sentence is set off typographically, because it says something 
important or interesting.  Also, the italic-method is not used in this way in the above boxed expression.  
The words in question are italicized, not for display, but for emphasis. 

11. Elaborating on the Basic Single-Quote Scheme 

 Things get trickier.  How do we mention the name of a name?  One way, of course, is to set it off in 
display form.  For example, whereas the following are examples of ordinary names, 

Bush 
10 
100 

the following are examples of names of names. 

‘Bush’ 
‘10’ 
‘100’ 

What are the names of these expressions?  Applying the single-quote naming scheme, we take the 
expressions in question, and surround them with single quotes, thus producing the following.   
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‘‘Bush’’ 
‘‘10’’ 
‘‘100’’ 

 Indeed, if we take our single-quote naming scheme to its logical conclusion, we can produce an 
infinite list of names, as follows. 

Bush 
‘Bush’ 
‘‘Bush’’ 
‘‘‘Bush’’’ 
etc. 

12. Single-Quotes versus Double-Quotes 

 Unfortunately, as it turns out, the twice-quoted expression 

‘‘Bush’’ 

looks a lot like the double-quoted expression 

“Bush” 

so we have to be very careful reading such expressions.  [Of course, the computer binary/hex 
representation of the above strings is not ambiguous.] 

 Double-quotation is yet another quotation technique.  For example, many programming languages 
(e.g., Basic, Pascal, C++) use double-quotation as the method for referring to strings.  Unfortunately, in 
English as variously practiced around the globe, single quotation and double quotation are each used in a 
variety of ways that are not entirely consistent. 

 Alas, there simply is no single universal consistent quotation convention in English.  So, in order 
to make our own work consistent, precise, and rigorous, we must declare our own convention.  This is 
described as follows. 

(1) We use single quotes for naming linguistic expressions. 
(2) We never use double quotation for this. 
(3) We use double-quotes primarily for “raised-eyebrow” quotation. 

Indeed, sentence (3) is both a statement about, and an illustration of, how we use double-quotation. 

13. A Big Difference Between Single-Quotes and Double-Quotes 

 Having declared what quotation convention we are using, we next observe that there is a critical 
distinction between single quotes and double quotes, summarized as follows. 

 Single quotes are an integral part of the words they surround. 
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 Double quotes are not an integral part of the words they surround; 
rather, they are merely punctuation. 

 Let us elaborate on this.  First, by punctuation, we mean those orthographic features of a sentence 
that are meant to organize and present it, including the usual punctuation symbols, plus capitalizing, 
boldfacing, italic, etc. 

 Internet Email gives us an example of punctuation not discussed by traditional grammar books – 
enclosing a word between asterisks – as in the following. 

*word* 

We can treat our use of double-quotation the same way.  The critical fact is that asterisk-symbols – or 
double-quotes – flanking a word are not an integral part of the word, but part of the surrounding 
punctuation.   

 The following syntactic principle clarifies the notion of integral part. 

 When one flanks a word with single-quotes, the resulting expression is a new, 
longer, word.  More generally, when one flanks a string of symbols/characters with 
single-quotes, the result is a proper noun (of English+). 

For example, the following is an infinite list of distinct words in (expanded) English. 

Bush 
‘Bush’ 
‘‘Bush’’ 
‘‘‘Bush’’’ 
‘‘‘‘Bush’’’’ 
etc. 

Notice that each such word names the word above it (except for the first, which names the former U.S. 
president).  Notice also that each word is two symbols longer than the previous word, so that the 
following are true sentences. 

‘Bush’ is a 4-letter word; 
‘‘Bush’’ is a 6-letter word; 
‘‘‘Bush’’’ is an 8-letter word; 
etc. 

Here, we understand that sophisticated spelling in the expanded language English+ must include reference 
to single-quotes. 

 Single-quotation produces a new word everytime it is applied.  What about double-quotation?  
The corresponding principle is the following. 
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 Flanking a word with double-quotes does not produce a new word, but is rather a 
special manner of presenting/displaying/using that word (not different in nature 
from bold-facing, italicizing, asterisk-flanking, etc.) 

14. Another Example of Use-Mention 

 Generally, we do not get into trouble when we confuse use and mention.  Consider the following 
perfectly acceptable bit of English. 

the president’s name is Bill Clinton 

This seems perfectly understandable.  However, suppose we combine this with the following identity 
statement. 

Bill Clinton is the president. 

Then we can use Identity Logic to obtain the following logical consequence. 

the president’s name is the president. 

A valid argument has led to a false conclusion, so one of the premises must be false.  The culprit is the 
first one.  We understand it in a way that makes it true, but technically speaking it is false.  The correct 
formulation of this statement is 

the president’s name is ‘Bill Clinton’. 

 Interestingly enough, identity logic also provides the following conclusion. 

Bill Clinton’s name is ‘Bill Clinton’ 

Indeed, we have here an instance of a “mostly valid” form.  The following are other instances. 

George Bush’s name is ‘George Bush’; 
Al Gore’s name is ‘Al Gore’; 
Ross Perot’s name is ‘Ross Perot’. 

As it turns out, the general form of these sentences is difficult to write down.  We will discuss problems 
like this in more detail later.   
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15. Symbolizing Meta-Linguistic Statements – 1 

 In elementary logic one learns to translate sentences from natural languages (e.g., English) into  
formal languages (e.g., Sentential Logic, Predicate Logic, etc.)  The point of such translations is to reveal 
the logical forms of these sentences. 

 Now, one presumes that most of the sentences actually used in elementary logic books ought to 
submit to logical analysis.  These include the syntactic rules of SL.   

 What happens when we apply elementary logic translation procedures to the syntactic rules of a 
formal language.  Consider, for example, the formal language, originally described in Section 5.  First its 
vocabulary is given as follows..   

Vocabulary: 

(1) upper case Roman letters:   
 A  B  C …… 
(2) special symbols: 
 Ø ∼ & ∨ → ↔ ( ) 
(3) nothing else. 

Notice that these rules are lazily written, and should be rewritten as complete sentences [exercise].  The 
following are two those rewritten sentences 

‘P’ is a symbol 

‘∼’ is a (special) symbol 

These are fairly easy to translate, as follows.  [See Section 26 on elementary logic translation schemes.] 

Formula:     Translation Scheme: 
 
S[p]      p : ‘P’ 
      S[α] : α is a symbol 

S[t]      t : ‘∼’    
      S[α] : α is a symbol 

 Clause (3) is an “extremal clause”.  It says that if a character is not mentioned in the list above it, 
then that character is not a symbol of the formal language in question.  This is fairly difficult to symbolize, 
so we postpone it for  the moment. 

 Next, let us consider the rules of formation. 

Rules of Formation: 

(a1) every upper case Roman letter is an atomic formula; 
(a2) if Æ is an atomic formula, then so is ÆØ; 
(a3) nothing else is an atomic formula. 
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(f1) every atomic formula is a formula 
(f2) if Æ is a formula, then so is:  
  ∼Æ 
(f3) if Æ1 and Æ2 are formulas, then so are:  
  (Æ1 & Æ2) 
  (Æ1 ∨ Æ2) 
  (Æ1 → Æ2) 
  (Æ1 ↔ Æ2) 
(f4) nothing else is a formula. 

First, clause (a1) can be understood as short for 26 different clauses. 

(1a) ‘A’ is an atomic formula 
(1b) ‘B’ is an atomic formula 
 etc. 

These are easy to symbolize. 

Formula:     Translation Scheme: 
 
A[a]      a : ‘A’ 
A[b]      b : ‘B’ 
etc.      etc. 
      A[α] : α is an atomic formula 

Clause (f1) 

 every atomic formula is a formula 

is also an easy one 

∀x(A[x] → F[x])    A[α] : α is an atomic formula 
      F[α] : α is a formula 

 The extremal clauses 

(a3) nothing else is an atomic formula 
(f4) nothing else is a formula 

are extremely difficult to symbolize.  Indeed, we will spend an entire chapter (Chapter 3: Mathematical 
Induction) analyzing these kinds of sentences. 

 Between the really easy translations and the really hard translations are all the rest!  Let us 
examine one of these. 

 if Æ is a formula, then so is ∼Æ. 

How do we symbolize this?  First of all, it is implicitly universally quantified (a common technique in 
mathematics and logic).  Here the variable of quantification is the funny-looking letter ‘Æ’, which is a 
metalinguistic variable ranging over strings of symbols.  Making the quantifier and domain explicit, we 
rewrite it as follows. 

for any string Æ, if Æ is a formula, then so is ∼Æ. 
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Concerning the term ‘string’ we have a choice: we can make strings of symbols the domain of 
quantification, or not.  Let us do the former; accordingly, we do not have to symbolize ‘…is a string’.  
Putting what we have so far to work, we have the following hybrid formula, where we use (one of) the 
official variables of elementary logic.   

∀x {if x is a formula, then so is ∼x} 

To say that this is a hybrid formula is to say that it is only partially symbolized; there are components that 
must still be symbolized. 

 Next, the part inside the curly brackets is clearly equivalent to: 

if x is a formula, then ∼x is a formula 

Using the following translation scheme, 

F[α] : α is a formula 

yields the following. 

(?) ∀x{F[x] → F[∼x]} 

Important point: this is still a hybrid formula; it is not fully symbolized; it would not receive full credit on 
an elementary logic exam.  Yes, it looks superficially like a true formula of elementary logic  — but it 
isn’t!  The problem concerns ‘∼’.  This is a symbol of elementary logic, which formalizes the concept of 
negation, the official translation being ‘it is not true that…’.  Grammatically, negation is a one-place 
connective, which means that it takes a formula as input and generates a formula as output.  In the above 
string of symbols ‘∼’ prefixes ‘x’, which is a variable, which is a noun phrase, not a formula.   

 Accordingly, from the viewpoint of elementary logic, the above string is not well-formed; it is 
gibberish. 

16. The Role of the Tilde Symbol in English+ 

 The problem at the end of the previous section prompts us to question exactly what is happening in 
our original sentence.   

(t) if Æ is a formula, then so is ∼Æ. 

In particular, what is the role of the tilde symbol in sentence (t)?  More generally, what is the role of the 
tilde symbol in the meta-language English+? 

 As we already know, (t) is not itself a formula of the object language LS; rather it is a sentence in 
the meta-language, English+, about the object language, LS.  So, as a first approximation at least, whereas 
the object language LS uses the tilde symbol (in particular, as a one-place connective), the metalanguage 
mentions it.  So in particular, sentence (t) mentions the tilde symbol. 

 But wait!  Recall our two fundamental principles. 

 Use-Mention Principle:  In order to mention something, one uses its name. 
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 Single-Quote Principle:  The name of a linguistic expression is obtained by 
enclosing that expression in single quotes. 

Now the sentence (t) above presumably mentions the tilde symbol, so it should use the name of the tilde 
symbol.  So why isn’t the tilde symbol in quotes?  Well, for one thing, that produces the following very 
odd expression. 

(t′) if Æ is a formula, then so is ‘∼’Æ. 

 Obviously, the mere oddness of (t′) cannot by itself legitimize dropping the quotes.  Also, if we 
drop the quotes here, shouldn’t we also drop the quotes everywhere, in which case we have the following 
sorts of sentences. 

∼ is a symbol 
P is an atomic formula 

Of course, we did drop the quotes in the original formulation of the vocabulary of LS, but that formulation 
utilized off-set notation (recall Section 10).  If we use in-line notation, we are supposed to use quotes. 

17. A Conservative Formulation of English+ 

 At this point, we should make a little more precise the grammatical rules of our metalanguage 
English+.  As already mentioned, English+ is ordinary English augmented with various formal devices 
enabling it to serve as the metalanguage for formal languages such as LS.  What are these formal devices?   

 First of all, English+ includes among its symbols metalinguistic variables, 

A, B, C, Ã, Ä, Å, etc. (with and without numerical subscripts) 

which are variables that range over various expressions in LS. 

 Second, English+ includes among its symbols all the symbols of the object language, 

P, Q, R, ∼, &, etc. 

 Third, English+ has the following grammatical rule. 

If σ is a literal string of symbols of the object language, then the result of enclosing σ in 
single quotes is a proper noun.   

[[Note that we have ascended to the meta-meta-language, English++, where the Greek letter ‘σ’ is one of 
its variables.]]  So, for example, the following strings are all proper nouns of English+. 

‘∼’ 
‘P∼’ 
‘&∼P’ 

 At this point, if we provide no further rules for noun phrase generation, then we have a 
conservative formulation of English+.  It is conservative in that the following strings are not proper nouns 
of English+. 
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∼ 
P∼ 
&∼P 

And indeed neither are the following. 

∼Æ 
(Æ1 & Æ2) 

This means that the following are ill-formed. 

∼ is a symbol 
if Æ is a formula, then so is ∼Æ 
if S1 and S2 are formulas, then so is (Æ1 & Æ2) 

18. A More Liberal Formulation of the Grammar of English+ 

 According to the conservative formulation of English+, the symbol ‘∼’ appears in both the object 
language – LS – and the metalanguage – English+.  On the other hand, whereas it appears as an 
autonomous grammatical entity in LS, it appears merely as a symbol in English+.  In English+, a tilde by 
itself simply is not grammatical; in order to make a genuine grammatical entity, we employ the single-
quote technique, which produces a proper noun of English+. 

 There is an alternative, more liberal, formulation of the grammar of English+. according to which 
the tilde symbol is not just a symbol of English+, it is a genuine proper noun of English+.  The following is 
the proposed additional rule that yields this result. 

If σ is a symbol of the object language L, then (no matter how σ is used in L) the symbol σ 
itself is a proper noun in the meta-language English+.  Furthermore, as used in English+, σ 
denotes itself. 

According to this construal of English+, the tilde symbol in English+ is used to mention the tilde symbol in 
the object language.  One symbol appears grammatically in both languages, LS and English+, although it 
is used differently in the two languages.  In particular, whereas tilde is a one-place connective in LS, it is 
a proper noun in English+.   

 In other words, according to this analysis, the tilde symbol is ambiguous between the two 
languages.  This sort of ambiguity is not uncommon; the same string of characters can appear in different 
languages, and be used quite differently.  For example, English and German both use the words ‘boot’ and 
‘also’, but in quite different ways.  Similarly, tilde can occur as a statement connective in SL and as a 
proper noun, naming that connective, in English+. 

 Given the more liberal construal of proper nouns in English+, we now see that the following is (or 
at least could be) perfectly grammatical. 

∼ is a symbol 

 Generally, a name does not resemble its bearer; e.g., ‘Bush’ does not resemble Bush, even 
remotely, although ‘‘Bush’’ resembles ‘Bush’.  In the metalanguage of logic, however, it is sometimes 
convenient to use names that look just like their bearers; hence the use of symbols ambiguous between the 
object language and the metalanguage. 
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19. Other Approaches to Symbolic Use versus Mention 

 We have now considered two methods of mentioning object language symbols – the single-quote 
method, and double-use method.  A method, intermediate between these two, the ornamental method, is to 
use different fonts; for example, one can make the object language symbol lighter in weight than its 
metalanguage name.  Technically, we have two different symbols, so we don’t have an explicit ambiguity, 
but we do have that the name of a symbol strongly resembles the symbol. 

 The most radical, but simplest, approach to naming symbols is simply never to display the object 
language in the first place!  In this case, every logical symbol (tilde, ampersand, etc.) is not the actual 
logical symbol, but only its name.  The actual negation sign, for example, is never displayed; its actual 
orthographic nature is left completely unspecified.   

 When you think about it, most disciplines are like this.  For example, arithmetic never actually 
displays the numbers, but only their names (the numerals).  Similarly, geography never displays the con-
tinents, oceans, etc., but only symbols of them (including maps).  For obvious reasons, geography is not a 
show-and-tell discipline.   

 If we use the same approach to metalogic, we talk about the object language symbols, but we 
never actually show them.  In this case, the tilde symbol is not ambiguous; it is used exactly one way – as a 
proper noun to denote the negation sign of the object language, whatever that sign actually is.  The actual 
negation sign – in other words, the actual glyph – may or may not look anything like its name.  But then, 
why should it? 

 The following table summarizes the four approaches. 

 
Approach Symbol  Category of Symbol in 

Object Language  
Category of Symbol in 
Meta-Language  

Symbol’s name 

single-quote  ∼ one-place connective none ‘∼’ 
double-use ∼ one-place connective proper noun ∼ 
ornamental ∼ one-place connective none *∼* 
no display ??? one-place connective ??? ∼  

Here, the asterisks mean that the symbol is ornamented in some manner, for example, by boldfacing; 
furthermore, it is understood that in this particular case the ornamentation produces a new symbol rather 
than a different presentation of the same symbol. 



Formal Languages – 1 18 

20. Symbolizing Meta-Linguistic Statements – 2 

 Let us now return to the task of symbolizing the statements used to describe the syntax of SL.  
Originally we stumbled on the following sentence. 

(t) if Æ is a formula, then so is ∼Æ 

which we had partially symbolized as follows. 

(?) ∀x{F[x] → F[∼x]} 

According to our current analysis, the tilde symbol as used in the metalanguage English+ may be 
understood as a proper noun.  In elementary logic, we use lower case Roman letters to symbolize proper 
nouns.  The following is a plausible symbolization. 

t : ∼ 

Accordingly, we obtain the following expression. 

∀x{F[x] → F[tx]} 

This is only slightly better.  Although it is not complete gibberish, it is still not well-formed according to 
the syntactic canons of elementary logic.  The difficulty is the expression ‘tx’.   

 What is the grammatical status of ‘tx’?  Well, we know that ‘t’ is a proper noun, and ‘x’ is a 
variable, so they are both noun phrases.  So the expression ‘tx’ consists of two noun phrases slammed 
together, treated as a compound noun phrase, which is then inserted as a grammatical unit into a one-place 
predicate. 

 There is a familiar natural language counterpart of this process.  Often, in elementary algebra, we 
take two nouns – e.g.,  

2 
and 

x 

and concatenate them to produce the compound noun phrase  

2x 

then go on to form sentences such as  

y=2x 

It is understood, of course, that  

2x 

is short for  

2 times x 
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 So when we translate the formula ‘y=2x’ into symbolic logic, we must include a symbolization of 
‘times’.  This requires the logic of function signs (Function Logic).  The translation is then given as 
follows. 

E[y, t(2,x)]  

Here, the supporting lexicon is: 

E[α,β] : α equals β 
t(α,β) : α times β 
2 : two 

Notice that we adopt a useful and natural simplification that treats the (Arabic decimal) numerals as an 
acceptable part of the symbolization.  Notice also that we have only translated the sentence into Function 
Logic.  We can take the translation one step further, by using Identity Logic.  In that case, ‘equals’ gets a 
special logical symbol ‘=’, written in its natural position.  This yields the following formula. 

y = t(2,x) 

 Noun juxtaposition can lead to problems.  Although it is proper and natural to read ‘2x’ as short 
for ‘2 times x’, it would be improper to read ‘22’ as ‘2 times 2’.  Unfortunately, arithmetic employs two 
different juxtaposition schemes – algebraic and decimal – but they are in serious conflict with each other!   

 Now, back to our original sentence. 

if Æ is a formula, then so is ∼Æ 

It is apparent that noun-juxtaposition is also at work here.  We have a complex noun phrase ‘∼Æ’, which 
is obtained by concatenating two simple nouns ‘∼’ and ‘Æ’.  If we are careful reading this sentence “out 
loud”,  we see what is happening more clearly. 

if Æ is a formula, then the result of concatenating ‘∼’ with Æ (in that order) is also a 
formula. 

The symbolization of this is  

∀x{F[x] → F[c(t,x)]} 

where the supporting lexicon is: 

F[α] : α is a formula 
c(α,β) : the result of concatenating α and β (in that order) 
t : ‘∼’ 

21. String Addition 

 Bare (implicit) juxtaposition is not the only way of formulating juxtaposition in English+.  Another, 
more grammatically revealing, technique introduces an explicit symbol for juxtaposition.  For example, 
one can introduce a 2-place string-addition operator, ‘+’, written in infix notation, so that the expression  

 s+t 
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refers to the result of appending string t to string s.  For example, 

‘y’ + ‘ear’  =  ‘year’ 
‘ear’ + ‘ly’  =  ‘early’ 

 The plus-sign is not a completely capricious choice.  First, the original Basic programming 
language uses ‘+’ in this manner (although the more contemporary Visual Basic uses ampersand instead).  
Second, the resulting algebra of strings (appropriately defined) is a semi-group with identity (a 
“monoid”).  In particular, the string-addition operation is associative, but not commutative.  So the order 
of addition matters, but not the grouping, so parentheses can be dropped. 

 Using the string addition operation, we can rewrite (t) schematically as follows. 

(t+) if Æ is a formula of SL, then so is τ+Æ 

This is schematic; the Greek letter ‘τ’ stands temporarily in place of the name of the tilde symbol, 
whatever that happens to be – tilde, quoted tilde, bolded tilde, or something else entirely.  The string 
addition notation works with any of the tilde-naming methods. 

 String addition, so defined, is a two-place operation, but since it is associative [i.e., a+(b+c) = 
(a+b)+c], one can drop parentheses, thus producing the following sorts of equations. 

‘c’ + ‘a’ + ‘t’ =    
‘c’ + ‘at’ = 
‘ca’ + ‘t’ = ‘cat’ 

 Also, since the plus-sign is associative, we can naturally define associated 3-place, 4-place 
operations, etc., as well. 

(a2) Σ(a,b) =df a+b 
(a3) Σ(a,b,c) =df Σ(a,b) + c 
(a4) Σ(a,b,c,d) =df Σ(a,b,c) + d 
 etc. 

 If we insist on a standard first-order formalization of the metalanguage, then ‘Σ’ is ambiguously 
used as a 2-place function sign, a 3-place function sign, etc.  If we loosen our formal standards, we can 
regard ‘Σ’ as a single anadic function sign.  An anadic function sign is one that takes an arbitrary finite 
number of singular terms to produce a singular term.  [[Anadic logic is expressively richer but deductively 
poorer; there’s a trade off]]. 

22. Quine Quotes 

 Anadic string addition is intimately related to a well-known, and often used, metalogical method of 
quotation, due originally to Quine.  According to this method, which uses a special category of quotes, 
called Quine quotes or corner quotes, (t) is rewritten as follows. 

(tq) if Æ is a formula of SL, then so is {∼Æ} 

This is the standard Quinean way to rewrite (t), irrespective of which tilde-naming convention we adopt.  
Both of the following supposedly make sense. 

if Æ is a formula of SL, then one can prefix Æ with ‘∼’, and the result is {∼Æ} 
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if Æ is a formula of SL, then one can prefix Æ with ∼, and the result is {∼Æ} 

Notice, in particular that, if quotes are used to make tilde’s name, they are dropped when inside Quine 
quotes. 

 Apart from the dropping of “extra” quotes, and the absence of commas, Quine-quotation is 
formally identical to anadic string addition.  The following are three metalinguistic sentences about 
double-negation; one uses anadic string addition; the second one uses Quine quotes; the last one uses 
binary string addition (without parentheses). 

(a) if Æ is a formula, then so is Σ(‘∼’, ‘∼’, Æ); 

(q) if Æ is a formula, then so is {∼∼Æ};  

(b) if Æ is a formula, then so ‘∼’ + ‘∼’ + Æ. 

Here, we use the single-quote method for naming the tilde symbol. 

23. A Formal Account of Quine-Quotation 

 How exactly do Quine-quotes work?  For example, which of the following expressions are well-
formed expressions of the meta-language.  

{A}   
{∼A}  
{∼} 
{‘∼’} 
{P} 
{‘P’} 
‘{P}’ 
{{P}} 
{{A}} 
{‘A’} 
{∼A∼} 

In order to answer this question definitively, we must at least partially formalize the meta-language.  
Toward that end, we offer the following rules of formation. 

1. Every symbol of the object language L is also a symbol of the meta-language ML; this set is 
called Sym(L). 

2. Left-single-quote and right-single quote are symbols of ML, but not L. 

3. Quine-quotes are symbols of ML, but not L. 

4. Symbols of ML include meta-linguistic variables [e.g., ‘A’, ‘B’, etc.] that range over 
expressions of L; this set is called Var(ML).  These are not symbols of L. 

5. Quotable strings: 
Any string of symbols from Sym(L) is a quotable string; nothing else is. 

6. Quote expressions: 
Any quotable string flanked by ordinary quotes is a quote expression; nothing else is; 
every such expression is a proper noun of ML. 
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7. Quine-quotable strings: 
Any string of symbols from Sym(L) ∪ Var(ML) is a Quine-quotable string; nothing else is. 

8. Quine-quote expressions: 
Any Quine-quotable string flanked by Quine-quotes is a Quine-quote expression; nothing else is; 
every such expression is a noun phrase of ML. 

With these rules in hand, we can answer the question concerning which expressions above are well-
formed. 

{A}  : well-formed  
{∼A}  : well-formed  
{∼}  : well-formed  
{‘∼’}  : ill-formed  
{P}  : well-formed  
{‘P’}  : ill-formed  
‘{P}’  : ill-formed  
{{P}}  : ill-formed  
{{A}}  : ill-formed  
{‘A’}  : ill-formed  
{∼A∼} : well-formed 

24. Dropping Quine Quotes Altogether 

 Now, Quine quotation is clearly notationally more economical than string addition.  However, it is 
not the most economical system available.  Really, the only thing that Quine quotes do is remind us that the 
expression in question is metalinguistic.  If we are clear about our notational conventions, then Quine 
quotes are unnecessary.   

 If we remove the Quine quotes, we obtain one of the following, depending on whether tilde’s 
metalinguistic name involves quotes or not. 

(m1) if Æ is a formula, then so is ∼Æ 
(m2) if Æ is a formula, then so is ‘∼’Æ 

These two sentences are perfectly O.K., so long as we adopt the following metalinguistic convention. 

 if µ1 and µ2 are metalinguistic noun phrases (simple or complex), which refer to 
object language expressions ε1 and ε2, respectively, then the bare juxtaposition of 
µ1 and µ2 is, by convention, a complex noun phrase that refers to the juxtaposition 
of the expressions ε1 and ε2. 

In other words, we simply drop the plus sign, and make it implicit in the notation.  As we have already 
noted, this is analogous to arithmetic, where one represents the multiplication operation simply by 
juxtaposition as in the formula ‘a(b+c)=ab+ac’. 
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25. Summary: Approaches to Metalinguistic Singular Terms 

 In conclusion, let us review the different approaches to metalinguistic singular terms.  We must 
deal with two kinds of metalinguistic singular terms. 

(1) names of atomic symbols of the object language; 

(2) names of molecular symbols (strings of symbols) of the object language.   

In each case, we discuss four approaches. 

1. 4 Ways to deal with atomic symbols 

(1) double-use method: 
use one symbol ambiguously, both in the object language, and in the metalanguage; 

(2) ornamental method: 
use two symbols, but which look very similar; for example, use tilde in the object 
language, and use bold-faced tilde in the metalanguage; 

(3) single-quote method: 
use single quotes to distinguish the symbol from its name; 

(4) no-display method: 
use one symbol, but exclusively in the metalanguage, to name the object language symbol; 
do not explicitly display the object language symbol, leaving its actual orthographic nature 
(glyph) completely unspecified. 

2. 4 Ways to deal with molecular symbols 

(1) binary string addition: ..+..; 

(2) anadic string addition: Σ(..,..,..); 

(3) Quine quotation: {...}; 

(4) implicit (bare) juxtaposition. 

Each approach to molecular symbols is consistent with each approach to atomic symbols.  Which 
combination of methods we choose is largely a matter of taste; of course, we should try to be consistent in 
any given context. 
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26. Appendix: General Translation Scheme for Elementary Logic 

 In this appendix we briefly discuss the salient features of elementary logic translation.   

 First, only a few simple grammatical categories are considered in first-order logic.  [See Chapter 
2 for explanation of the notion of first-order.]   These include the following. 

 sentences   S    
 noun phrases   N    
 predicates   Nk¢S    
 function signs   Nk¢N 
 connectives   Sk¢S 
 quantifiers   V+S¢S 
 description operator  V+S¢N 

See Appendix 3 for a more thorough description of categorial grammar. 

 In symbolizing a sentence Æ of English, one first identifies the grammatical components of Æ, the 
smallest of which are then abbreviated by Roman letters (plus category information), after which one 
translates Æ in a systematic manner.   

Example 1: 
Jay is a Freshman 

First, the abbreviation scheme is given as follows. 

j  : Jay    proper noun 
F[α]  : α is a Freshman  1-place predicate 

Note that the predicate symbolization includes category information; in particular, the square brackets 
indicate that it is a predicate; also, the single argument position is schematically filled by the Greek letter 
‘α’.  The final symbolization is: 

F[j]       sentence 

Example 2: 
Jay respects Kay 

j  : Jay    proper noun 
k  : Kay    proper noun 
R[α,β]  : α respects β   2-place predicate 
 
R[j,k]       sentence 

 So far we have only dealt with Predicate Logic translations.  We also must consider Function 
Logic, which adds function signs, which are grammatical functors that take noun phrases and generate noun 
phrases.  As with predicates, we use lower case Greek letters as schematic variables. 
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Example 3: 
Jay’s mother respects Kay’s mother 

First, let us “handicap” ourselves and translate this sentence into Predicate Logic.  This produces the 
following translation. 

m1  : Jay’s mother   proper noun(?) 
m2   : Kay’s mother   proper noun(?) 
R[α,β]  : α respects β   2-place predicate 
 
R[m1,m2]      sentence 

This is grammatically, and logically,  inadequate.  The problem is that Predicate Logic has no means of 
dealing with compound noun phrases.  Enter Function Logic, which provides the following symbolization. 

Jay’s mother respects Kay’s mother 

j  : Jay    proper noun 
k  : Kay    proper noun 
m(α)  : α’s mother   function sign 
R[α,β]  : α respects β   2-place predicate 
 
R[m(j),m(k)]      sentence 

Note that, for function signs, we use lower case Roman letters, and we use round parentheses for further 
categorial delineation. 

1. Summary of Translation Scheme: 

Proper nouns: lower case Roman letters: a, b, c, … (with or without subscripts) 

examples: j  : Jay 
  s  : the Sears Tower 
  2  : two 
 

Predicates:  upper case Roman letters, plus square brackets: 

  examples: H[α]  : α is happy 
    R[α,β]  : α respects β 
    S[α,β,γ] : α sold β to γ 
    H[α,β,γ,δ] : α is happy that β sold γ to δ 
 

Function Signs:  lower case Roman letters, plus parentheses: 

examples: m(α)  : the mother of α 
  s(α,β)  : the sum of α and β 
  s(α,β,γ) : the sum of α, β, γ 
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 Variables: lower case Roman letters: z, y, x, … 

27. Exercises 

#1. Symbolize the following using the language of elementary first-order logic.  See Section 26 for 
general symbolization scheme. 

1. Bush’s name is ‘Bush’. 
2. Although Bush can spell ‘Bush’, he cannot spell ‘‘Bush’’. 
3. The first letter of Bush’s name is ‘B’. 
4. The first letter of the name of ‘Bush’ is ‘ ‘ ’. 
5. The word ‘‘Bush’’ is used to mention the word ‘Bush’. 
6. If one takes an expression and encloses it in single quotes, then the result is a name of  
 that expression.  [ignore the anthropocentric nature of this sentence]. 

#2. For each “Bush-sentence” in #1, write down a true sentence concerning which occurrences of  
 Bush 
 ‘Bush’ 
 ‘‘Bush’’ 
 etc. 
are mentioned, and which occurrences are used categorially (grammatically), and which are used 
but not categorially.  Note, in this connection, that the word ‘bush’ occurs inside the larger word 
‘bushel’ but also inside the larger word ‘‘bush’’ — but not categorially. 

#3. Given the following metalinguistic identities,  

A = ‘P’ 
B = ‘∼Q’ 

complete each of the following metalinguistic equations to form a true and directly informative sentence 
using quote-only notation, unless it is ill-formed in the meta-language, in which case write ‘ill-formed’.  
[Example, if A = ‘P’, then {A→A} = ‘P→P’.]   

1. ¸{∼A¹}  =  
2. ∼{A}  = 
3. ¸{∼B¹}   =   
4. ¸{∼(A→B)}¹  = 
5. {A}→{B}  =   
6. {A→(B→A)} = 
7. {A∼B}  = 
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#4. The following is an example of a formal language (written somewhat sloppily, perhaps). 

1. Vocabulary: ‘p’, ‘Ø’, ‘N’, ‘K’. 

2. Rules of Formation: 
 Atomic Formulas: 
  a1. ‘p’ is an atomic formula; 
  a2. if σ is an atomic formula, then so is σØ. 
  a3. nothing else is an atomic formula. 
 Formulas: 
  f1. Every atomic formula is a formula; 
  f2. if σ is a formula, then so is: Nσ; 
  f3. if σ1 and σ2 are formulas, then so is: Kσ1σ2; 
  f4. nothing else is a formula. 

Rewrite this syntax, first using Quine-quote notation, then using quote-plus notation.  

#5. Symbolize the sentences in Problem #4 in the language of elementary logic.  Make sure that all 
implicit logical operators (quantifiers, functors, etc.) are made explicit.  Be sure to write down 
your lexicon with category information, and be sure to identify domain of quantification. 

#6. In reference to the formal language specified in Problem #4, the following are all true statements 
[where we use quote-notation]. 

1. ‘pØ’ is a formula. 
2. ‘KpØKpØØNp’ is a formula. 
3. ‘Øp’ is not an atomic formula. 
4. every atomic formula begins with the symbol ‘p’. 
5. no molecular formula begins with the symbol ‘p’. 
6. every molecular formula begins with ‘K’ or ‘N’. 
7. every formula begins with ‘p’, ‘K’, or ‘N’ 

For each of these, give a formal proof.   In some cases, the proof is impossible given the resources 
currently at our disposal.  Still… think about it! 
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28. Answers to Exercises 

#1.  
 1. n(b) = a 

2. S[b,a] & ∼S[b,c] 
3. f(n(b)) = e 
4. f(n(a)) = q 
5. M[c, a] 
6. ∀x{E[x] → N[q(x), x]} 

 
Lexicon: 
 n(α) : α’s name 

b : Bush 
a : ‘Bush’ 
c : ‘‘Bush’’ 
e : ‘B’ 
q : ‘ ‘ ’ 
S[α,β] : α can spell β 
M[α,β] : α is used to mention β 
E[α] : α is an expression 
N[α,β] : α is a name of β 
q(α) : the result of enclosing α in single quotes 

 
#2. 
1. Bush is mentioned, but not used;  

‘Bush’ is used and mentioned;  
‘‘Bush’’ is used but not mentioned; 
the rest are neither used nor mentioned. 

 
2. Bush is mentioned, but not used;  

‘Bush’ is used and mentioned;  
‘‘Bush’’ is used and mentioned; 
‘‘‘Bush’’’ is used but not mentioned; 
the rest are neither used nor mentioned. 

 
3. Bush is mentioned, but not used;  

‘Bush’ is used but not directly mentioned,  
 although it is indirectly mentioned [by ‘Bush’s name’]; 

 the rest are neither used nor mentioned. 
 
4. Bush is neither mentioned nor used; 
 ‘Bush’ is used (but not categorially) and mentioned; 
 ‘‘Bush’’ is used but not directly mentioned,  
  although it is indirectly mentioned [‘ the name of ‘Bush’ ’]; 
 the rest are neither used nor mentioned. 
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5.  Bush is neither mentioned nor used; 
 ‘Bush’ is mentioned; it is also used but not categorially 
  (similarly ‘u’ is used but not categorially) 
 ‘‘Bush’’ is both used and mentioned; 
 ‘‘‘Bush’’’ is used but not mentioned; 
 the rest are neither used nor mentioned. 
 
#3. 

1. ¸{∼A¹}  =  ‘∼P’ 
2. ∼{A}  = ill-formed 
3. ¸{∼B¹}   =  ‘∼∼Q’ 
4. ¸{∼(A→B)}¹  = ‘∼(P→∼Q)’ 
5. {A}→{B}  =  ill-formed 
6. {A→(B→A)} = ‘P→(∼Q→P)’ 
7. {A∼B}  = ‘P∼∼Q’ 

#4. 
Using Quine-Quotation: 

1. Vocabulary: ‘p’, ‘Ø’, ‘N’, ‘K’. 
2. Rules of Formation: 
 Atomic Formulas: 
  a1. ‘p’ is an atomic formula; 
  a2. if σ is an atomic formula, then so is {σØ}; 
  a3. nothing else is an atomic formula. 
 Formulas: 
  f1. Every atomic formula is a formula; 
  f2. if σ is a formula, then so is: {Nσ}; 
  f3. if σ1 and σ2 are formulas, then so is: {Kσ1σ2}; 
  f4. nothing else is a formula. 

 
Using plus-quote notation: 

1. Vocabulary: ‘p’, ‘Ø’, ‘N’, ‘K’. 
2. Rules of Formation: 
 Atomic Formulas: 
  a1. ‘p’ is an atomic formula; 
  a2. if σ is an atomic formula, then so is σ+‘Ø’. 
  a3. nothing else is an atomic formula. 
 Formulas: 
  f1. Every atomic formula is a formula; 
  f2. if σ is a formula, then so is: ‘N’+σ 
  f3. if σ1 and σ2 are formulas, then so is: ‘K’+σ1+σ2; 
  f4. nothing else is a formula. 
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#5. 
 1.1. A[p] 

1.2. ∀x(A[x] → A[j(x,s)]) 
1.3. this is very tricky; see later chapter on mathematical induction 
2.1. ∀x(A[x] → F[x]) 
2.2. ∀x(F[x] → F[j(n,x)]) 
2.3. ∀x∀y(F[x] & F[y] .→ F[j(k,x,y)]) 
2.4. see 1.3 above. 

 
 Lexicon: 

Domain of quantification: symbols and strings of symbols.  
p : ‘p’   A[α] : α is an atomic formula 
s : ‘Ø’   F[α] : α is a formula 
k : ‘K’    
n : ‘N’ 
j(α1,α2...) : the result of juxtaposing α1 in front of α2 in front of ... (anadic) 
 

#6.1 
Formal Proof: 

(1) �: ‘pØ’ is a formula DD 
(2) |‘p’ is an atomic formula a1 
(3) |‘pØ’ is an atomic formula 2,a2,QL 
(4) |‘pØ’ is a formula 3,f1,QL 

 
Informal Proof. 

By a1, ‘p’ is an atomic formula; so by a2, ‘pØ’ is an atomic formula; so by f1, ‘pØ’ is a 
formula (QED). 

 
#6.2 

Formal Proof: 

(1) �: ‘KpØKpØØNp’ is a formula DD 
(2) |‘p’ is an atomic formula a1 
(3) |‘pØ’ is an atomic formula  2,a2,QL 
(4) |‘pØØ’ is an atomic formula 3,a2,QL 
(5) |‘pØØ’ and ‘p’ are formulas 2,4,f1,QL 
(6) |‘KpØØp’ is a formula 5,f3,QL 
(7) |‘p’ is a formula 2,f1,QL 
(8) |‘Np’ is a formula 7,f2,QL 
(9) |‘KpKpØØp’ is a formula 6,8,f3,QL 
 
Informal Proof. 

By a1, ‘p’ is an atomic formula; so by a2, ‘pØ’ is an atomic formula; so by a2, ‘pØØ’ is a an 
atomic formula.  Since ‘pØØ’ and ‘p’ are atomic formula, by f1 they are also formulas.  But 
then by f3, ‘KpØØp’ is a formula.  But also, since ‘p’ is a formula, by f2, ‘Np’ is a formula.  
Finally, since ‘KpØØp’ and ‘Np’ are formulas, by f3, ‘KpKpØØNp’ is a formula (QED).   
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#6.3 

Very Informal Proof: 

(1) Every atomic formula begins with the letter ‘p’ Lemma 1 
(2) ‘Øp’ does not begin with the letter ‘p’ Lemma 2 
(3) therefore, ‘Øp’ is not an atomic formula 1,2,QL 

 
What is a lemma?  First, a theorem is a proposition/statement that can be deduced from the principles “on 
hand”.  For example, if we are proving something about a specific formal language L, then the formal 
rules of L count as “on hand”.  A lemma is a species of theorem, although the distinction is pragmatic, not 
theoretical.  A lemma is simply a subordinate theorem of one or more larger theorems.   

To make the above informal proof more formal, we need to formalize the notion of begins with, which 
requires a formal deductive theory of strings, which we do in a later Chapter.  Given this formal theory, it 
is easy to show logically that ‘Øp’ does not begin with ‘p’.  That takes care of Lemma 2.  Lemma 1 is not 
so easy.  It requires a formal elucidation of the extremal clause ‘nothing else is an atomic formula’.  This 
will wait until Chapter 3 (Mathematical Induction).  By way of preview, the very informal argument will 
go as follows. 

(1) ‘Øp’ ≠ ‘p’ follows from Lemma 2 
(2) if ‘Øp’ ≠ σ, then ‘Øp’ ≠ σ+‘Ø’ must be proven using theory of strings 
(3) ‘Øp’ ≠ any atomic formula 1,2 + math induction* 
(4) ‘Øp’ is not an atomic formula 3,IL 

 
*General mathematical induction constitutes the formal elucidation of all extremal clauses. 

6.4 – 6.7 
These require mathematical induction, so we postpone the solutions to these. 

 


