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1. General Ideas About Strings and String Addition 

 One can prove things about formulas and other syntactic expressions based on the premise that all 
such items are strings of symbols.  In order to facilitate these proofs, we examine some of the basic 
principles about strings and string addition. 

 First, in addition to the string addition (infix) operator ‘+’, we posit an infinite sequence of one-
place function signs e1, e2, e3, …, which are intuitively defined as follows. 

e1(σ) = the first component of σ; 
e2(σ) = the second component of σ; 
etc. 

For example, if  
σ = ‘abc’,  

then  
e1(σ) = ‘a’ 
e2(σ) = ‘b’ 
e3(σ) = ‘c’ 
e4(σ) = nothing 
e5(σ) = nothing 
etc. 

The fundamental principle of identity for strings is informally given as follows. 

a1: α = β  
↔ 
e1(α) = e1(β)  &   
e2(α) = e2(β)  &   
… 

Making this completely formal requires induction.  It also requires that we construe the component identity 
claims as implicitly conditional – for example, ‘e2(α) = e2(β)’ is short for ‘if either e1(α) or e2(α) exists, 
then e2(α) = e2(β)’. 

 Strings divide naturally into two categories – finite and infinite – which are informally defined as 
follows. 

a2: A string σ is infinite if and only if: 
e1(σ) exists  &  e2(σ) exists  &  e3(σ) exists  &  … 
 
A string σ is finite if and only if it is not infinite. 

 

a3: ∀n{E![en(σ)] → ∀m{m<n → E![em(σ)]}} 
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Here, ‘E!’ is the existence predicate – E![τ] =df ∃ν[ν=τ]. 

First, Last 
first(σ) =df  e1(σ) 
 
∀n{E![en(σ)]  & ∼E![en+1(σ)] .→ last(σ) = en(σ)} 

 
Examples of Theorems 

t1. ‘a’ is finite; ‘b’ is finite; etc. 
t2. if α and β are finite, then α+β is finite. 
t3. α+(β+γ) = (α+β)+γ. 
t4. α+β=β+α → α=β. 
t5. α+β=α+γ → β=γ. 
t6. first(α+β) = first(α). 
t7. last(α+β) = last(β). 

2. A Mostly Formal Theory of Finite Strings 

 So far, we have discussed strings both finite and infinite.  Every expression in a formal language is 
a finite string, so it is worthwhile to consider a theory of finite strings.  First, we propose a mostly formal 
theory; then we propose a formal theory.  The first theory is formulated in a first-order language based on 
the following non-logical vocabulary.   

(v1) … is an atomic string one-place predicate A[α] 
(v2) … is a string one-place predicate S[β] 
(v3) … plus … two-place function sign (α+β) 

[Note: we regard the terms ‘symbol’ and ‘atomic string’ to be synonymous; also, in programming contexts, 
the term ‘character’ is used.] 

 The following are axioms for this theory. 

(a1) ∀x{Ax → Sx} 
(a2) ∀x∀y{Sx & Sy .→ S[x+y]} 
(a3) ∀x{Ax → ∼∃yz{Sy & Sz & x=y+z}} 
(a4) ∀xyz[x+(y+z) = (x+y)+z] 
(a5) ∀xyz[x+y = x+z → y=z] 
(a6) ∀xyz[x+z = y+z → x=y] 
(a7) ∀xy∼∃z[x+y+z = x] 
(a8) ∀y∃x1x2…xm: Ax1 & Ax2 & … Axm & y = x1+x2+…+xm 

 The reason that this theory is not fully formal is axiom (a8) which is informal.  This axiom intends 
to convey the following principle about strings. 

every string is a finite concatenation of atomic strings. 
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3. A Formal Theory of Finite Strings 

 In order to render the theory of (finite) strings purely formal, we use the Peano technique.  
Furthermore, in order to render the theory as similar as possible, we introduce the concept of null or 
empty string, which we denote by ‘∅’.  The null string is the zero element in the algebra of strings. 

The formal theory in question is based on the following non-logical vocabulary. 

(v0) the null string proper noun ∅  
(v1) … is an atomic string one-place predicate A[α] 
(v2) … is a string one-place predicate S[β] 
(v3) … super-plus … two-place function sign (α+β) 

(s1) ∅ is a string. 
(s2) if σ is a string, and α is an atomic string, then σ+α is a string. 
(s3) nothing else is a string. 
(s4) ∼∃xy{Sx & Ay & ∅=x+y} 
(s5) ∀xyz{Sx & Sy & Az .→ x+z=y+z → x=y} 

As usual, the strict formalization of (s3) requires induction; this is given schematically as follows. 

(s3*) ∀x(Ax → Ã[x])  
 &  
 ∀x{Sx & Ã[x] .→ ∀y{Ay → Ã[x+y]}  
 .→  
 ∀x{Sx → Ã[x]} 

 The formal theory of finite strings is analogous to the formal theory of numbers.  The difference is 
that, numbers have single-succession, strings have multiple-succession – a string has arbitrarily-many 
successors, not just one. 

 As in the case of arithmetic, we can define addition inductively.  First, the inductive definition of 
numerical addition goes as follows, where the variables ‘m’ and ‘n’ range over numbers. 

(1) m+0 =df  m 
(2) m+n+ =df  (m+n)+ 

 The inductive definition of string addition is analogous.  The difference is that it is defined for 
every form of succession [every atomic string]. 

(b) σ1+α  =df  σ1
+α 

(i) σ1+(σ2
+α) =df (σ1+σ2)

+α 

Here the σ-variables range over strings, and ‘α’ ranges over atomic strings.  Note carefully the subtle 
orthographic difference between ‘+’ and ‘+’.  The latter is the multiple-successor operator for strings; the 
former is the general string addition operator. 

4. Base-One Arithmetic 

 Evidently, Peano Arithmetic is a special case of the theory of strings.  Specifically, one obtains 
arithmetic by restricting the class of atomic strings to just one, let us designate this string ‘|’.  So in 
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addition to the null string ∅, which we identify as zero, there are all the molecular strings obtained by 
successive applications of the one and only successor operator, which appends ‘|’ to the string.  Let us use 
quotes around nothing as an alternative name of the null string [as in many programming languages].  Then 
we have the following examples. 

‘’ zero 
‘’ + ‘|’ = ‘|’ one 
‘|’ + ‘|’ = ‘| |’ two 
‘| |’ + ‘|’ = ‘| | |’ three 
etc. 

 What we have reproduced here is, in all probability, the original formulation of arithmetic, which 
may be called base-one arithmetic.  To use this symbolic language is quite simple  One makes a mark, or 
uses a digit (i.e., finger), for each application of the successor operation, thereby counting (e.g., the 
number of mouths one must feed!) 

5. Other Definitions 

 Although it is not crucial to the formal account of strings, we include numbers in some of the 
following definitions. 

(f∅) first(∅) = nothing 
(f+) first(σ+α) = first(σ), if it exists 
  = α, otherwise 

(l∅) last(∅) = nothing 
(l+) last(σ+α) = α 

(L∅) len(∅) = 0 
(L+) len(σ+α) = len(σ)+1 

(e) em(σ) = α if σ = σ1+σ2 
    and len(σ1) = m 
    and last(σ1) = α 

  


