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1. Introduction 

 In this chapter, we present the salient features of categorial grammar, which is employed 
throughout this book to do syntactic analysis. 

2. Basic Ideas – Noun Phrases, Sentences, Functors 

 Categorial grammar classifies grammatical expressions according to category.  The grammatical 
categories consist of primitive and derivative categories.  There are two primitive categories. 

N  noun phrase 
S sentence 

 In addition to these two primitive categories, there are also derivative categories, which classify 
the huge variety of functors (officially defined below).   

 In Simple Categorial Grammar, the categories are inductively defined as follows. 

Df  
N is a category; 
S is a category; 
if K0, K1, ..., Km are categories, where mÕ0,  
then the following is also a category: 〈K1, ..., Km,K0〉; 
nothing else is a category. 
 

We will depict the category 〈K1, ..., Km,K0〉 in various ways, including the following. 

(K1, ..., Km¢K0) 
(K1+ ...+ Km¢K0) 
(K1+ ...+ Km)¢K0 

Also, parentheses are often dropped, the rules of omission paralleling those for sentential connectives. 

 Associated with derivative categories are the class of grammatical expressions called functors, 
which are defined as follows. 

Df 
A functor is a grammatical expression with blanks (gaps, places, slots), which 
yields a grammatical expression of a particular category, when its blanks are filled 
with grammatical expressions of the appropriate categories. 
 

The basic idea is this. 
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Suppose functor φ has category (K1+ ...+ Km¢K0).  Then 
φ has m blanks, which require fill-in expressions of category K1, ..., Km, 
respectively, and when so filled, φ yields an expression of category K0. 
 

3. Monadic, Polyadic, Anadic Functors 

Df  
Where k is any natural number (0, 1, 2, ...), a k-place functor is a functor with k 
blanks (places). 
 

 Alternative names:  
monadic : 1-place 
dyadic  : 2-place 
triadic  : 3-place 
polyadic : 2-place or 3-place or … 

 Some functors are not specifically 1-place, 2-place, or any particular place.  These are called 
anadic functors.  The prefix ‘an’ means ‘without’, so an anadic functor is a functor without “adic”.  It is 
arguable that conjunction and disjunction (especially exclusive disjunction) are examples of anadic 
connectives.  The following is our official definition. 

Df 
An anadic functor is a syntactic expression with an open-ended blank that, when 
filled with any number (≥ 0) of expressions, all of a single particular category, 
results in an expression of a particular category. 
 

A simple example of an anadic functor is anadic conjunction, which takes any number of sentences and 
yields a sentence.  This is categorially depicted as follows. 

S* ¢ S 

Here, the symbol ‘*’ indicates that the functor takes any number of sentences and produces a sentence.  
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4. Simple Functors 

Df 
A homogeneous functor is a functor whose input must all be of the same category. 
 

 
Homogeneous functors allow for a simplification of notation as follows. 

S1¢S  =df S¢S 
S2¢S  =df  (S+S)¢S 
S3¢S  =df  (S+S+S)¢S 
etc. 

For example, a functor of category [S2¢S] takes two sentences and produces a sentence. 

Df 
A rank-one functor is a functor whose input and output must be one of the primitive 
categories – N and S. 
 

This is a special case of the more general notion of rank, which is officially defined in Section 12. 

Df 
A simple functor is a homogeneous rank-one functor. 
 

Simple functors come in exactly four general varieties. 

 

function signs (operators)  N*¢N; Nk¢N takes zero or more noun phrases, 
and yields a noun phrase 

connectives (sentential operators) S*¢S; Sk¢S takes zero or more sentences, 
and yields a sentence 

predicates N*¢S; Nk¢S takes zero or more noun phrases, 
and yields a sentence 

subnectives S*¢N; Sk¢N takes zero or more sentences, 
and yields a noun phrase 

 

See Section 7 for examples of non-simple functors in elementary logic. 
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5. Zero-Place Functors 

 Curiously, the theory of grammatical categories allows for zero-place functors.  For example, a 
zero-place connective takes zero-many(!) sentences, and produces a sentence.   Similarly, a zero-
place predicate takes zero-many noun phrases and produces a sentence, and a zero-place function sign 
takes zero-many noun phrases and produces a noun phrase.  These are categorially depicted as follows. 

S0¢S  N0¢S  N0¢N 
∅¢S  ∅¢S  ∅¢N 

Here, ∅ is the “null” category. [See Section 12 for official notation.]   

 Zero-place connectives do not occur naturally.  The most prominent theoretical example of a zero-
place connective is the contradiction symbol ‘Ð’ used primarily in derivations.  Note, however, that ‘Ð’ 
has other theoretical uses; for example, one can prove that all truth-functional connectives are definable in 
terms of ‘→’ and ‘Ð’. [See Chapter 4.] 

 Zero-place function signs and zero-place predicates are also primarily of theoretical use.  For 
example, one can treat proper nouns as zero-place function signs, and one can treat sentential constants 
(inherited from elementary SL) as zero-place predicates.  Also, subject-less sentences (for example, ‘it is 
raining’) can be fruitfully analyzed using zero-place predicates. 

6. Variable Binding Functors 

 An additional critical feature of logical syntax is variable binding.  The following is the general 
definition. 

Df 
A variable-binding functor is a functor, at least one blank of which must be filled 
by a variable.  Whenever a functor requires a variable as input, it binds that 
variable. 
 

Variable-binding functors are well-known in first-order logic, and include the two quantifiers and the 
description operator.  They appear in second-order logic as well, and include the second-order quantifiers 
and the lambda operator.  Also, set theory provides a prominent example of a variable-binding functor – 
the set-abstract operator – {v: __}; filling the blank with a formula generates a singular term. 

 In order to accommodate variable-binding in categorial grammar, we introduce subcategories, 
described by the following definition. 

Df 
For every category K, there is a subcategory K(v) of variables associated with that 
category; any expression of category K(v) is automatically also an expression of 
category K; any functor that takes category K(v) as input binds the associated 
variable. 
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Generally, a given formal language utilizes only a few variable categories.  For example, standard first-
order logic uses just one variable category – the category of individual variable, which is a subcategory 
of N.  Also, this sub-category is sufficiently important that we give it a special name – V0.   

V0  =df N(v) 

7. Examples of Variable-Binding Functors 

 Elementary logic provides three well-known examples of variable-binding functors – the 
quantifiers and the description operator, which may be categorially described as follows. 

 

Symbol Category Grammatical Function 

∀ (V0+S)¢S takes an individual variable, and a sentence, 
and yields a sentence 

∃ (V0+S)¢S takes an individual variable, and a sentence, 
and yields a sentence 

ψ (V0+S)¢N takes an individual variable, and a sentence, 
and yields a noun phrase 

 

Note that although these categories are rank-1, they are not homogeneous, so they are not simple according 
to our definition.  For example, the functor ∀ takes an individual variable and a sentence as input and 
generates a sentence as output.   

 An alternative categorial account of these functors is given as follows.  

Symbol Category Grammatical Function 

∀ V0¢(S¢S) takes an individual variable,  
and yields a one-place connective 

∃ V0¢(S¢S) takes an individual variable,  
and yields a one-place connective 

ψ V0¢(S¢N) takes an individual variable,  
and yields a one-place subnective 

 

According to the latter account, these functors are not rank-1 functors.  In particular, ∀ and ∃ generate a 
one-place connective as output; and ψ generates a one-place subnective as output.  The notion of rank, and 
the rank-discrepancy between the two accounts of quantifiers, is reconsidered in Section 12.    

 The immediate lesson here is that categorial analysis is not cut-and-dried; a given linguistic entity 
may receive different categorial analyses.  For a more thorough discussion, see Section 12.  
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8. More Examples of Complex Functors 

Category Grammatical Function 

N¢(N¢S) takes an expression of category N,  
and yields an expression of category N¢S;  
in other words, it takes a noun phrase  
and yields a 1-place predicate. 

(N¢S)¢(N¢S) takes an expression of category N¢S,  
and yields an expression of category N¢S;  
in other words, it takes a predicate   
and yields a predicate;  
these are sometimes called predicate adverbs. 

N¢[(N¢S)¢(N¢S)] takes something of category N,  
and yields an expression of category 
(N¢S)¢(N¢S);  
in other words, it takes a noun phrase  
and yields a predicate adverb. 

[(N¢S)¢(N¢S)]¢[(N¢S)¢(N¢S)] takes an expression of category (N¢S)¢(N¢S), 
and yields an expression of category 
(N¢S)¢(N¢S);  
in other words, it takes a predicate adverb  
and yields a predicate adverb. 

V0+S¢(N¢S) takes an individual variable (binding it),  
and a sentence,  
and yields an expression of category (N¢S), 
which is to say a one-place predicate. 

V0+V0+S¢(N+N¢S) takes two individual variables (binding them), and 
a sentence,  
and yields an expression of category (N+N¢S), 
which is to say a two-place predicate. 

 

9. Alternative Categorial Descriptions – 1 

 In an earlier section, we described quantifiers as having the following category. 

V0 + S ¢ S 

In other words, according to this account, a quantifier functor ‘∀’ takes two input, one individual variable, 
and one formula, and generates a formula. 

 An alternative rendering of ‘∀’ describes it as a rank-2 functor, whose category is: 

V0 ¢ (S ¢ S). 
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According to this account, ‘∀’ is a functor that takes a single input – an individual variable – and 
generates an expression of category (S¢S), which is to say a one-place connective (or sentential adverb). 

 The difference between these two accounts is largely theoretical; the question is whether there is 
an autonomous intermediate grammatical expression ‘∀x’; it seems plausible that there is.   

 The trick we just used on ‘∀’ can be applied to all polyadic functors.  For example, the usual 
logical analysis of verbs like ‘respects’ treats them as two-place predicates – whose official category is 

(N + N) ¢ S. 

An alternative categorial analysis of such expressions is 

N ¢ (N ¢ S). 

According to this analysis, ‘respects’ takes a single noun phrase, and generates a one-place predicate, 
which in turn takes a single noun phrase and generates a sentence.  For example, the sentence 

Jay respects Kay 

is analyzed at first as follows. 

subject: Jay N (atomic) 
predicate: respects Kay N¢S 

The resulting non-atomic expression ‘respects Kay’ is then analyzed as follows. 

functor: respects(.) N ¢ (N¢S) 
argument: Kay atomic N 

Algebraically formulated, the sentence has the following form. 

[respects(Kay)](Jay) 

In other words,  

respects(.) 

takes 

Kay  

as input, and produces  

[respects(Kay)](.).   

This latter expression, in turn, is a functor that takes  

Jay 

as input, and produces  

[respects(Kay)](Jay). 



Categorial Grammar 9 

 

 This is in contrast with the usual logical analysis, 

respects(Jay, Kay), 

according to which ‘respects(..)’ is a two-place functor that takes ‘Jay’ and ‘Kay’ (on equal footing), and 
generates a sentence. 

10. Alternative Categorial Descriptions – 2 

 Sometimes a difference in categorial analysis is not particularly profound, as illustrated in the 
previous section.  Other times, a difference may be more theoretically cogent.  Consider the following 
sentence. 

Jay believes that Kay is intelligent. 

There are several plausible categorial analyses of this sentence; the following are a few that come to 
mind. 

#1: believes[Jay, that(Kay is intelligent)] 
 
 [(N+N)¢¢S]〈〈N, (S¢¢N)〈〈S〉〉 〉〉  
 

functor (verb): believes N+N¢S 
subject: Jay N 
object: that Kay is intelligent N* 
 
sub-analysis (that Kay is intelligent): 
subnective: that ___ S¢N 
argument: Kay is intelligent S* 

#2: believes that[Jay, Kay is intelligent] 
 
 {(N+S)¢¢S}〈〈N,S〉〉  
 

functor: believes that N+S¢S 
argument 1: Jay N 
argument 2: Kay is intelligent S* 

#3: [believes that〈〈Jay〉〉 ](Kay is intelligent) 
 
 {[N¢¢ (S¢¢S)]〈〈N〉〉 }〈〈S〉〉  
 

functor: Jay believes that ___ (S¢S)* 
argument: Kay is intelligent S* 
 
sub-analysis (Jay believes that): 
functor: ____ believes that N¢(S¢S) 
argument: Jay N 
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#4: [believes that Kay is intelligent](Jay) 
 
 (N¢¢S)〈〈N〉〉  
 

functor (predicate): believes that Kay is intelligent (N¢S)* 
argument: Jay 
 
sub-analysis (believes that Kay is intelligent): 
left open at the moment! 
 

In each case, a starred category just means that the expression is complex.  In some cases, the complex 
expression has been further analyzed; in other cases, it has not. 

11. Categorial Equivalence 

 Examples from the two previous sections strongly suggest that categorial analysis is not so cut-
and-dried as we might hope.  In general, a given sentence can be categorially analyzed in many different 
ways.  One important theoretical question is: 

 Under what circumstances are two categorial analyses equivalent (in some sense), 
and conversely, under what circumstances are two analyses genuinely different? 

For example, I consider some of the examples in the previous two sections to be superficially different, 
not genuinely different, and I consider other examples to be genuinely different.   

 Towards clarifying this question, I propose several sufficient (not necessary) conditions for 
categorial equivalence, which are stated algebraically.  In the following, the variables range over 
categories. 

(e1) (A+B)¢C ≡ (B+A)¢C; 
(e2) [A+(B+C)]¢D ≡ [(A+B)+C]¢D 
(e3) (A+B)¢C ≡ A¢(B¢C) 
(e4) (∅+A)¢B ≡ A¢B 
(e5) ∅¢A ≡ A 
(e6) if A≡B, then K[A/B] 
 Here K is a category, and K[A/B] results from K  
 by substituting A for B in any of its occurrences. 

Note that we have some logical consequences of these conditions, supposing from the outset that ≡ is an 
equivalence relation. 

(1) A¢(B¢C) ≡ B¢(A¢C) 
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Proof: 
(1) A¢(B¢C) ≡ (A+B)¢C e3+Sym≡ 
(2) (A+B)¢C ≡ (B+A)¢C e1 
(3) (B+A)¢C ≡ B¢(A¢C) e3 
(4) A¢(B¢C) ≡ B¢(A¢C) 1,2,3,Eq≡ 

 
Examples: 
 

(V0+S)¢S ≡  V0¢(S¢S) 
 
(N+N)¢S ≡  N¢(N¢S) 
 
(N+N+N)¢S ≡  N¢[(N+N)¢S] 
 ≡  (N+N)¢(N¢S) 
 ≡  N¢[N¢(N¢S)] 

 We conclude this section by noting a formal similarity between categorical equivalence and 
logical equivalence.  In particular, if we translate ‘+’ as ‘&’, and ‘¢’ as ‘→’, then the equivalences 
proposed above translate as logical equivalences.  For example, the categorial equivalences 

(A+B)¢C  ≡  A¢(B¢C) 
(A+B)¢C  ≡  (B+A)¢C 

translate respectively as the following logical equivalences: 

(A&B)→C  ≡  A→(B→C) 
(A&B)→C  ≡  (B&A)→C. 

 We should not get carried away, however.  Reverse translations don’t always work.  For example, 
the logical equivalence 

  (A&A)→B  ≡  A→B 
translates as 
  (A+A)¢B  ≡  A¢B 

which is not a categorial equivalence. 

12. The Concepts of Rank and Order 

 We have already encountered the notion of rank, in the form of rank-one functors.  In the present 
section, we generalize on this concept to include rank-2, rank-3, etc., and we also offer a related notion of 
order.  The generalized notion of rank can be inductively defined as follows. 

  
rank(∅) = 0 
rank(N) = 0 
rank(S) = 0 
rank(K1+K2+…+Km¢K0)  =  1+max{rank(K1) , …, rank(Km), rank(K0)} 
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Examples: 

rank(N¢S)  =   
1+max{rank(S), rank(N)}  =   
1+max{0, 0}  =   
1 

rank(N¢(N¢S))  =   
1+max{rank(N), rank(N¢S)}  =   
1+max{0,1} =  
2 

rank((N¢S)¢S)  =   
1+max{rank(N¢S)}, rank(S)}  =   
1+max{2, 1}  =   
2 

 The theoretical uses of the notion of rank are limited.  The main problem is that different rank 
functors can nevertheless be categorially equivalent.  For example, 

(N+N)¢S 

is categorially equivalent to 

N¢(N¢S). 

but  

rank[(N+N)¢S] = 1 

whereas 

rank[N¢(N¢S)] = 2. 

 In order to deal with this problem, it is useful to formulate a notion of level – which we call order 
– that is sensitive to categorial equivalence.  In particular, the following is a key desideratum. 

Des 
If functors φ1 and φ2 are equivalent, then order(φ1) = order(φ2). 
 

The following turns out to be our official definition of order. 

  
order(∅) = 0 
order(N) = 0 
order(S) = 0 
order(K1+K2+…+Km¢K0)  =  max{1+max{order(K1) , …, order(Km)}, order(K0)} 
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Examples: 

order(N¢S)  =   
max{1+max{order(S)}, order(N)}  =   
max{1+max{0} , 0}  =   
max{1, 0}  =   
1 

order(N¢(N¢S))  =   
max{1+max{order(N)}, order(N¢S)}  =   
max{1+max{0}, 1}  =   
max{1, 1}  =   
1 

order((N¢S)¢S)  =   
max{1+max{order(N¢S)}, order(S)}  =   
max{1+max{1}, 0}  =   
max{2, 0}  =   
2 

Theorems About Rank and Order 
 The following are two theorems about rank and order. 

T1: 
If output(K) = N or S, then rank(K) = order(K). 
 

Here, output is defined in the obvious manner. 

output(K1,…,Km,K0) = K0 

In other words, output(K) is the output category of category K 

T2: 
If K1 ≡ K2, then order(K1) = order(K2) 
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13. A Formal Account of Basic Categorial Grammar 

 In the present section, we present general categorial syntax.  Our definitions subsume the 
definitions given for simple categorial grammar. 

1. Basic Categories 

Df 
N is a category; 
S is a category; 
 
if K0, K1, ..., Km are categories, where mÕ0,  
then the following is also a category: 〈K0, K1, ..., Km〉; 
 
nothing else is a category [unless it is anadic – see next section]. 
 

 

2. Anadic Categories 

Df 
If K and K0 are categories, then so is: (K*¢K0). 
 

 [Note carefully that K* is not itself a category; the *-sign is not categorimatic!] 

 

3. Variable Categories 

Df 
For every category K, there is the sub-category K(v), which is the category of 
variables associated with category K. 
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4. Shorthand Definitions 

 ((K1, ..., Km)¢K0) =df 〈K0, K1, ..., Km〉 
∅¢K =df  〈K〉 
(K1+K2)¢K0 =df (K1, K2)¢K0 
(K1+K2+K3)¢K0 =df (K1, K2,K3)¢K0 
etc. 
K1 =df  K 
K2 =df (K+K) 
K3 =df (K+K+K) 
 etc. 
[parentheses are optional when unnecessary for parsing.] 
 

5. Functor Application 

Df 
if Φ is an expression of category (K1, ..., Km¢K0), 
and η1, ..., ηm are expressions of category K1, ..., Km, respectively, 
then Φ(η1, ..., ηm) is an expression of category K0. 
 
if Φ is an expression of category K*¢K0, 
and η1, ..., ηm are all expressions of category K, 
then Φ(η1, ..., ηm) is an expression of category K0. 
 
Here, Φ(η1, ..., ηm) is the result of “applying” functor Φ to expressions η1, ..., ηm 
the details of which (prefix, infix, postfix, etc.) will depend upon the specific 
language. 
 

6. A Note Concerning Functor Application 

 As indicated in the rules of application, the way functor application is syntactically implemented 
will depend upon the specific language.  For example, in ordinary first-order logic, we have the 
following. 

∀(ν, ¹) =: ∀ν¹ 
∃(ν, ¹) =: ∃ν¹ 
=(σ, τ) =: [σ = τ] 
∼(¹) =: ∼¹ 
→(¹, º) =: (¹ → º) 
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14. An Alternative Formal Account of Categories 

 In previous sections, we have presented the theory of categories in a way in which the symbols ‘+’ 
and ‘¢’ are merely shorthand forms of the official expressions.  In the present section, we present an 
alternative theory of categories in which these notions are taken as fundamental (primitive).  This theory 
also offers a formal account of order and categorial equivalence.  Note, this theory does not include either 
anadic categories or variable categories, which are left as an exercise for the reader. 

Vocabulary: 
 
variables:  K, K0, K1, etc.; Σ, Σ1, Σ2, etc. 
proper nouns: N, S, ∅; 
2-place function signs: +, ¢, written in infix notation; 
1-place predicates: …is a category, …is a category sum, written in postfix notation; 
2-place predicate: ≡, written in infix notation. 

Axioms: 
 
(c1) N is a category; 
(c2) S is a category; 
(c3) if Σ is a category sum, and K is a category, then Σ¢K is a category; 
(c4) nothing else is a category. 

(s1) ∅ is a category sum; 
(s2) every category is a category sum; 
(s3) if Σ1 and Σ2 are category sums, then so is Σ1+Σ2; 
(s4) nothing else is a category sum. 

(a1) ∅+Σ = Σ; 
(a2) (Σ1+Σ2)+Σ3 = Σ1+(Σ2+Σ3); 
(a3) Σ1+Σ2 = Σ2+Σ1; 
(a4) ∅¢K ≡ K; 
(a5) K≡K; 
(a6) if K1≡K2, then K2≡K1; 
(a7) if K1≡K2, and K2≡K3, then K1≡K3; 
(a8) (Σ1+Σ2)¢K ≡ Σ1¢(Σ2¢K). 

Parenthesis Convention: 
Officially, every application of a two-place infix functor requires outer parentheses.  On the other 
hand, we adopt the standard informal convention that if the resulting expression “stands alone”, 
then the outer parentheses may be dropped.  This convention is repeatedly applied in the axioms 
above. 

Sortal Convention: 
In axioms (o3)-(a8), the variables are understood as “sortal”.  In particular, the Σ-variables range 
over category sums, and the K-variables range over categories.  These two classes overlap, of 
course, since every category is automatically a category sum.   

Extremal Clause Convention: 
Three of the axiom groups end with extremal clauses.  This is a convenient shorthand for an 
inductive clause, the precise nature of which varies from situation to situation.  For a clarification 
of extremal clauses, see Chapter 3 on mathematical induction. 
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The following are a few examples of theorems of this theory. 

T1. If K is a category, then ∅¢K is a category. 
 
Proof.  Suppose K is a category.  By s1, ∅ is a category sum, so by c3, ∅¢K is a 
category. 

T2. If K1 and K2 are categories, then K1¢K2 is a category. 
 
Proof.  Suppose K1 and K2 are categories.  Then by s2, K1 is a category sum, so by c3, 
K1¢K2 is a category. 

T3. N¢(N+N) is neither a category sum nor a category. 
 
Proof.  This requires math induction; see Chapter 3. 

T4. Let K be a category.  Then there are category sums Σ1, …, Σm such that: K ≡ 
Σ1¢(Σ2¢(…(Σm¢K0)…), where K0=N or K0=S. 
 
Proof.  This requires induction; see Chapter 3. 

T5. Let K1 and K2 be categories.  Suppose K1 is first-order, and suppose K1≡K2.  Then K2 is 
first-order. 
 
Proof.  This theorem,  which involves the notion of order (Section 12) requires induction; 
see Chapter 3. 


