Creative Model Construction in Scientists and Students

The Role of Analogy, Imagery, and Mental Simulation
John J. Clement

Creative Model Construction in Scientists and Students

The Role of Imagery, Analogy, and Mental Simulation

Springer
Acknowledgments

I would like to acknowledge the contributions of the following persons in preparing this book: First to my wife Barbara Morrell for all her support; and to the following for very valuable discussions: Ryan Tweney, Carol Smith, Lynn Stephens, Neil Stillings, David Brown, Melvin Steinberg, Tom Murray, William Barowy, and Jack Lochhead.

The research reported in this document was supported by the National Science Foundation under Grants MDR-8751398, DRL-0723709, and REC-0231808. Any opinions, findings, and conclusions or recommendations expressed in this book are those of the author and do not necessarily reflect the views of the National Science Foundation.
Acknowledgments ... v

1 Introduction: A “Hidden World” of Nonformal
 Expert Reasoning ... 1

Part One Analogies, Models and Creative Learning
 in Experts and Students

Section I Expert Reasoning and Learning via Analogy 19

2 Major Processes Involved in Spontaneous
 Analogical Reasoning .. 21

3 Methods Experts Use to Generate Analogies 33

4 Methods Experts Use to Evaluate an Analogy Relation 47

5 Expert Methods for Developing an Understanding
 of the Analogous Case and Applying Findings 57

Section II Expert Model Construction and Scientific
 Insight ... 65

6 Case Study of Model Construction and Criticism
 in Expert Reasoning ... 67

7 Creativity and Scientific Insight in the Case Study for S2 97

Section III Creative Nonformal Reasoning in Students
 and Implications for Instruction ... 117

8 Spontaneous Analogies Generated by Students Solving
 Science Problems ... 119
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Case Study of a Student Who Counters and Improves His Own Misconception by Generating a Chain of Analogies</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>Using Analogies and Models in Instruction to Deal with Students’ Preconceptions</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>by John J. Clement and David E. Brown</td>
<td></td>
</tr>
<tr>
<td>Part Two</td>
<td>Advanced Uses of Imagery and Investigation Methods in Science and Mathematics</td>
<td></td>
</tr>
<tr>
<td>Section IV</td>
<td>Imagery and Physical Intuition in Experts and Students</td>
<td>159</td>
</tr>
<tr>
<td>11</td>
<td>Analogy, Extreme Cases, and Spatial Transformations in Mathematical Problem Solving by Experts</td>
<td>161</td>
</tr>
<tr>
<td>12</td>
<td>Depictive Gestures and Other Case Study Evidence for Use of Imagery by Experts and Students</td>
<td>171</td>
</tr>
<tr>
<td>13</td>
<td>Physical Intuition, Imagistic Simulation and Implicit Knowledge</td>
<td>205</td>
</tr>
<tr>
<td>Section V</td>
<td>Advanced Uses of Imagery in Analogies, Thought Experiments, and Model Construction</td>
<td>235</td>
</tr>
<tr>
<td>14</td>
<td>The Use of Analogies, Imagery, and Thought Experiments in both Qualitative and Mathematical Model Construction</td>
<td>237</td>
</tr>
<tr>
<td>15</td>
<td>Thought Experiments and Imagistic Simulation in Plausible Reasoning</td>
<td>277</td>
</tr>
<tr>
<td>16</td>
<td>An Evolutionary Model of Investigation and Model Construction Processes</td>
<td>325</td>
</tr>
<tr>
<td>17</td>
<td>Imagistic Processes in Analogical Reasoning: Transformations and Dual Simulations</td>
<td>383</td>
</tr>
<tr>
<td>18</td>
<td>How Grounding in Runnable Schemas Contributes to Producing Flexible Scientific Models in Experts and Students</td>
<td>409</td>
</tr>
<tr>
<td>Section VI</td>
<td>Conclusions</td>
<td>431</td>
</tr>
<tr>
<td>19</td>
<td>Summary of Findings on Plausible Reasoning and Learning in Experts I: Basic Findings</td>
<td>433</td>
</tr>
</tbody>
</table>
Contents

20 Summary of Findings on Plausible Reasoning and Learning in Experts II: Advanced Topics 457

21 Creativity in Experts, Nonformal Reasoning, and Educational Applications ... 507

References ... 575

Name Index ... 591

Subject Index ... 597
Detailed Table of Contents

Acknowledgments ... v

1 Introduction: A “Hidden World” of Nonformal Expert Reasoning ... 1
 1.1 Why Study Nonformal Reasoning? 1
 1.1.1 The Need for a Theory of Learning with Understanding 1
 1.1.2 A Strong Parallel Between Expert and Student Learning Processes ... 2
 1.2 The Background from Which I Approached This Work 2
 1.2.1 Novice Problem Solving 2
 1.2.2 Expert Studies .. 3
 1.2.3 Background of Work on Expertise and Science Studies and Remaining Gaps in Our Understanding of Scientific Thinking ... 4
 1.2.4 Educational Applications of Expert Studies 9
 1.2.5 Summary ... 9
 1.3 Generative Methodology: Qualitative Nature of the Study 10
 1.3.1 Descriptive Case Studies 10
 1.3.2 Exploratory Documentation of Imagery and Mental Simulation .. 11
 1.3.3 Instructional Applications 11
 1.4 General Features of the Analysis Method Used:
 Contact Between Data and Theory 12
 1.5 General Theoretical Framework 14
 1.6 Section Summaries and Approaches to Reading This Book 15
 1.6.1 Creativity, Imagery, and Natural Reasoning 15
Part One Analogies, Models and Creative Learning in Experts and Students

Section I Expert Reasoning and Learning via Analogy

2 Major Processes Involved in Spontaneous Analogue Reasoning

3 Methods Experts Use to Generate Analogies

4 Methods Experts Use to Evaluate an Analogy Relation
Detailed Table of Contents

4.2.3 A Pulley as an Analogy for the Wheel 50
4.3 Analogy Evaluation in the Doughnut Problem 52
4.3.1 Bridging from Tori to Cylinders 52
4.4 Discussion of Findings and Connections to History of Science 53
4.4.1 Discussion of Findings on Bridging 53
4.4.2 Analogies and Bridges in the History of Science 54
4.4.3 Beyond Bridging ... 55
4.5 Summary .. 56

5 Expert Methods for Developing an Understanding of the
Analogous Case and Applying Findings 57
5.1 Evaluating and Developing an Understanding of the
Analogous Case .. 57
5.1.1 Direct Methods .. 57
5.1.2 Indirect Methods 58
5.1.3 Summary: Developing Understanding
of the Source Analogue 60
5.2 Transferring Findings 61
5.2.1 Why Are Analogies Useful? 61
5.2.2 Data on Transfer .. 62
5.3 Section I Summary for Creative Analogy Generation 63

Section II Expert Model Construction and Scientific
Insight .. 65

6 Case Study of Model Construction and Criticism
in Expert Reasoning ... 67
6.1 Issues Surrounding Theory Formation 67
6.2 Background Questions from Philosophy of Science 68
6.2.1 The Source and Pace of Theory Change 68
6.2.2 Philosophical Positions: Empiricism vs. Rationalism 70
6.3 How are Theoretical Hypotheses Formed in the
Individual Scientist? .. 72
6.3.1 Answer 1: Hypothetico-deductive Method
Plus Induction ... 72
6.3.2 Answer 2: “Creative Intuition” 73
6.3.3 Answer 3: Analogies as a Source of Theoretical
Hypotheses ... 73
6.3.4 Definitions of “Model”: A Thorny Issue 74
6.4 Protocol Evidence on Construction Cycles That
Use Analogies .. 76
6.4.1 Purpose of Case Study 76
6.4.2 S2’s Protocol .. 76
6.4.3 Analysis of Insight Episode 81
Detailed Table of Contents

6.5 Summary of Evidence for a Model Construction Cycle as a Noninductive Source for Hypotheses .. 84
 6.5.1 Model Construction Cycles .. 84
 6.5.2 Explanatory vs. Nonexplanatory ("Expeditious") Models ... 88

6.6 Major Nonformal Reasoning Patterns in the Preceding Chapters ... 95

6.7 Appendix: Introduction to Concepts of Torque and Torsion 95

7 Creativity and Scientific Insight in the Case Study for S2 97

7.1 Eureka or Accretion? The Question of Insight in S2's Protocol ... 97
 7.1.1 Defining a Pure Eureka Event .. 97
 7.1.2 Is There a Sudden Reorganizing Change in S2's Understanding?... 98
 7.1.3 Does the Subject Use Extraordinary Reasoning Processes? ... 100
 7.1.4 Defining "Insight" .. 102
 7.1.5 Summary ... 104

7.2 Creative Mental Processes .. 104
 7.2.1 Anomalies and Persistence in Protocols and Paradigms ... 105
 7.2.2 Transformations, Invention, and Memory Provocation .. 108
 7.2.3 Productive Processes: Constrained Successive Refinement vs. Blind Variation ... 110

7.3 Darwin's Theory of Natural Selection 112

7.4 Initial List of Features of Creative Thinking from This Case Study and Remaining Challenges .. 113
 7.4.1 Creative Thought ... 113
 7.4.2 Limitations of the Case Study ... 115

Section III Creative Nonformal Reasoning in Students and Implications for Instruction ... 117

8 Spontaneous Analogies Generated by Students Solving Science Problems ... 119

8.1 Use of Analogies by Students .. 120
 8.1.1 Frequency ... 120
 8.1.2 Features of Spontaneously Generated Analogies 120

8.2 Conclusion ... 123
 8.2.1 Similarities Between Experts and Students 123
 8.2.2 Implications ... 123

8.3 Appendix: Examples of Problems and Spontaneous Analogies .. 124
 8.3.1 Chariot Problem ... 124
8.3.2 Space Carts Problem ... 124
8.3.3 Forces on a Stationary Cart Problem 124
8.3.4 Rocket Problem .. 125
8.3.5 Skaters Problem .. 125

9 Case Study of a Student Who Counters and Improves
His Own Misconception by Generating
a Chain of Analogies ... 127

9.1 Spontaneous Analogies in a Student’s
Problem Solution ... 127
9.1.1 Protocol for S20 ... 129
9.1.2 Protocol Summary .. 130
9.1.3 Protocol Observations: Creative Case Generation ... 132
9.1.4 Developing Hypotheses about Cognitive Events that can
Account for the Observations 133

9.2 Conclusion: Expert-Novice Similarities 136
9.2.1 Instructional Implications 137

10 Using Analogies and Models in Instruction to Deal with
Students’ Preconceptions .. 139
John J. Clement and David E. Brown

10.1 Introduction .. 139
10.2 Teaching Strategy ... 140
10.2.1 Introducing the Target 140
10.2.2 Anchoring Case ... 141
10.2.3 Bridging Strategy .. 141
10.3 Teaching Interviews .. 141
10.3.1 Tutoring Session .. 142
10.3.2 Discussion of First Case Study 144
10.3.3 A Second Case Study 145
10.3.4 Explanatory Models 148
10.3.5 Abstract Transfer vs. Explanatory
Model Construction ... 149
10.3.6 Summary of Cases .. 150

10.4 Applications to Classroom Teaching 150
10.4.1 Study of Classroom Lessons 150

10.5 Conclusion .. 153
10.5.1 Persistent Misconceptions 153
10.5.2 Explanatory Models vs. Specific
Analogous Cases .. 153
10.5.3 Two Roles for Anchors 153
10.5.4 Plausible Reasoning vs. Logical Proof Processes
in Learning ... 154
10.5.5 Role of Thought Experiments vs. Observation
Activities in Instruction 154
Part Two Advanced Uses of Imagery and Investigation
Methods in Science and Mathematics

Section IV Transformations, Imagery and Simulation
in Experts and Students. 159

11 Analogy, Extreme Cases, and Spatial Transformations
in Mathematical Problem Solving by Experts. 161

11.1 Introduction. .. 161
11.2 Case Study of Analogical Reasoning
in a Mathematics Problem 161
 11.2.1 Method ... 161
11.3 Results on the Use of Analogies for Eight Subjects 163
 11.3.1 Analogy Generation Methods 163
 11.3.2 Evaluating the Cylinder Conjecture 163
11.4 Other Creative Nonformal Reasoning Processes 165
 11.4.1 Extreme Cases 165
 11.4.2 Partitioning and Symmetry Arguments 165
 11.4.3 Reassembly of a Partition 167
 11.4.4 Embedding ... 168
11.5 Discussion ... 168
 11.5.1 Imagistic Reasoning 169
 11.5.2 Conserving Transformations 169
11.6 Conclusion ... 170

12 Depictive Gestures and Other Case Study Evidence
for Use of Imagery by Experts and Students. 171

12.1 Introduction ... 171
 12.1.1 Hand Motions 171
 12.1.2 Imagery Questions and Hypotheses 172
 12.1.3 Previous Research on Hand Motions 173
 12.1.4 Limitations of Previous Research 175
12.2 Constructing Observational and Theoretical Descriptors 175
 12.2.1 Proposed Set of Hypotheses 175
 12.2.2 Relations Between Observations and Hypotheses 177
12.3 Case Studies ... 181
 12.3.1 An Expert Protocol 181
 12.3.2 Analysis of S15’s Protocol 182
 12.3.3 Evidence Supporting the Use of Imagery
 in the Solution 183
 12.3.4 Argument Structure 184
 12.3.5 A Student Protocol 189
 12.3.6 Analysis of S20’s Protocol 190
 12.3.7 Summary of S20 Analysis 192
12.4 Discussion .. 192
 12.4.1 Types of Processes Associated with Motions 192
 12.4.2 Can Depictive Hand Motions be a Direct
 Product of Imagery? ... 193
 12.4.3 Summary of Relations Between Observations
 and Hypotheses .. 194
12.5 Relationship of These Findings to Others in the Literature 194
 12.5.1 The Existence of Kinesthetic Imagery 195
 12.5.2 Depictive Motions Are Not Simply Translated
 from Sentences ... 195
 12.5.3 Movements Are a Partial Reflection of Core
 Meaning or Reasoning ... 195
 12.5.4 Gestures Can Reflect Imagery 196
12.6 Conclusion ... 197
 12.6.1 Sources of Information About Imagery
 and Simulation ... 197
 12.6.2 Limitations .. 198
12.7 Appendix 1 – Detailed Justification for Using Evidence
 of Imagery from Hand Motions in $15's Protocol 199
 12.7.1 Motions Are Concurrent with
 Solution Process .. 199
 12.7.2 Motions Can Be a Direct Product
 of Solution Process ... 201
 12.7.3 Motions Not Translated from Verbal Sentences 201
 12.7.4 Evidence for Imagery 201
12.8 Appendix 2 – Observation Categories in Numerical Order 202

13 Physical Intuition, Imagistic Simulation and Implicit
 Knowledge ... 205
 13.1 Introduction: Issues in the Area of Imagery, Simulation
 and Physical Intuition ... 205
 13.1.1 Abstract vs. Concrete Thinking in Experts 206
 13.2 Initial Examples of Physical Intuition 207
 13.2.1 Intuition Reports ... 207
 13.2.2 Defining Features and Observable Behaviors
 Associated with Intuitions 208
 13.2.3 Physical Intuitions 209
 13.3 Imagery Reports and Imagistic Simulation 209
 13.3.1 Moving from the Findings in Chapter 12 to
 Models of Imagistic Simulation 209
 13.3.2 Schema-driven Imagistic Simulation Processes 210
 13.3.3 Precedents in the Literature on
 Perceptual/Motor Schemas 215
 13.3.4 Relations Between Observations and Hypotheses 218
13.3.5 Importance of Concrete Intuitions and Imagistic Simulation
13.4 Implicit Knowledge
 13.4.1 Distinguishing Different Levels of Implicit Knowledge
 13.4.2 Evidence for Unconscious Knowledge
13.5 Knowledge Can Be Dynamic
 13.5.1 Different Uses of the Term “Simulation”
 13.5.2 Knowledge Experienced in Imagistic Simulations Is Not Static
13.6 Conclusion: The Role of Concrete Physical Intuitions and Simulations in Embodied Thinking by Experts
 13.6.1 Summary of an Initial Framework for Modeling Physical Intuition and Mental Simulation via Perceptual/Motor Schemas and Imagery
 13.6.2 Imagery
 13.6.3 Intuitions and Imagistic Simulation
 13.6.4 How Is New Knowledge Generated from an Elemental Simulation?
 13.6.5 Using Perceptual/Motor Schemas as an Initial Foothold for Understanding the Use of Intuitions and Imagistic Simulation
 13.6.6 Imagery, Intuitions, and Anchoring

Section V Advanced Uses of Imagery in Analogies, Thought Experiments, and Model Construction

14 The Use of Analogies, Imagery, and Thought Experiments in both Qualitative and Mathematical Model Construction

14.1 Introduction to Chapter 14–16
 14.1.1 Stages in Model Construction Leading up to Quantitative Modeling During the Solution
 14.1.2 Issues in the Field
 14.1.3 Ways to Read this Chapter

14.2 Composite Protocol Monologue for the Spring Problem
 14.2.1 I. Efforts to Develop an Initial Qualitative Description or Prediction for the Targeted Relationship
 14.2.2 II. Searching for and Evaluating Initial, Qualitative, Explanatory Model Elements
 14.2.3 III. Seeking a More Fully Imageable and Causally Connected (Integrated) Model: Attempts to Align and Elaborate the Model
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.4</td>
<td>IV. Increasing the Geometric Level of Precision</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>of the Spatial and Physical Relationships Projected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from the Model into the Target Until They Are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready to Support Quantitative Predictions</td>
<td></td>
</tr>
<tr>
<td>14.2.5</td>
<td>V. Developing a Quantitative Model</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>on the Foundation of the New Qualitative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Geometric Models</td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Stages in the Solution</td>
<td>265</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Some Possible Precision Levels for</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Relationship R Between X and Y</td>
<td></td>
</tr>
<tr>
<td>14.3.2</td>
<td>Transforms to “Close” Analogies in</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Later Stages of Solution</td>
<td></td>
</tr>
<tr>
<td>14.3.3</td>
<td>Summary</td>
<td>270</td>
</tr>
<tr>
<td>14.4</td>
<td>Building a Theoretical Distinction: Explanatory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Models vs. Expedient Analogies</td>
<td>270</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Expedient Analogies</td>
<td>270</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Source Analogues</td>
<td>271</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Triangular, Not Dual, Relation in Model Construction</td>
<td>272</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Source analogues are Projected into the Composite Model, and Must Be</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Imagistically Aligned</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>Conclusion</td>
<td>274</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Plausible Reasoning and Stages of Investigation</td>
<td>274</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Parallels and Differences Between Qualitative</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>and Mathematical Modeling</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Thought Experiments and Imagistic Simulation in Plausible Reasoning</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Nature of Thought Experiments</td>
<td>277</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Fundamental Paradox of Thought Experiments</td>
<td>277</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Nersessian</td>
<td>278</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Focus of This Chapter</td>
<td>279</td>
</tr>
<tr>
<td>15.1.4</td>
<td>What are Some Major Functions of and Benefits from Untested</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>Thought Experiments?</td>
<td></td>
</tr>
<tr>
<td>15.1.5</td>
<td>Primary Function</td>
<td>280</td>
</tr>
<tr>
<td>15.1.6</td>
<td>Secondary Functions</td>
<td>281</td>
</tr>
<tr>
<td>15.1.7</td>
<td>Can Schema-based Imagistic Simulation be Involved in Untested</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Thought Experiments with These Different Functions, and if so, What is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Its Role?</td>
<td></td>
</tr>
<tr>
<td>15.1.8</td>
<td>Summary</td>
<td>285</td>
</tr>
</tbody>
</table>
15.2 Addressing the Thought Experiment Paradox: How Can an Untested Thought Experiment Generate Findings with Conviction?

15.2.1 Introduction .. 286
15.2.2 Sources of Conviction: Perceptual–Motor Schemas . . . 287
15.2.3 Sources of Conviction: Spatial Reasoning, Symmetry, and Compound Simulation 290
15.2.4 Summary ... 293

15.3 Imagery Enhancement Phenomena Support the Proposed Answer to the Paradox 294

15.3.1 Limitations on Simulation Ability 294
15.3.2 Imagery Enhancement Focused on Enhancing the Application of a Schema in a Simulation 295
15.3.3 Analysis of Transcripts 297
15.3.4 Sources of Conviction in Imagery Enhancement 298
15.3.5 Implications of These Extreme Case Examples for a Theory of Thought Experiments 300
15.3.6 Imagery Enhancement Focused on Enhancing Spatial Reasoning or Symmetry or Compound Simulations 301
15.3.7 Enhancing Spatial Reasoning Via Image Size and Orientation 302
15.3.8 Symmetry Enhancement 303
15.3.9 Compound (or “Linearity”) Enhancement 304
15.3.10 The Effectiveness of Enhancement Can Be Explained Using the Present Theory of Conviction in Thought Experiments 304

15.4 How are Thought Experiments Used Within More Complex Reasoning Modes? 305

15.4.1 Four Important Types of Plausible Reasoning 305
15.4.2 Evaluative Gedanken Experiments as the Most Impressive Kind of Thought Experiment 312
15.4.3 Multiple Types of Reasoning Processes that can Utilize Thought Experiments Run Via Imagistic Simulations .. 315

15.5 Are Imagistic Simulations Operating in the Mathematical Part of the Solution? 316

15.6 How Thought Experiments Contribute to Model Evaluation .. 317

15.6.1 Evaluation Strategies .. 317
15.6.2 Summary ... 319
15.6.3 Combining Reasoning Processes into a Model Construction Process 319

15.7 Chapter Summary .. 321

15.7.1 Addressing the Fundamental Paradox of Thought Experiments: Sources of Conviction 322
16 A Punctuated Evolution Model of Investigation and Model Construction Processes 325

16.1 Abductive Processes for Generating and Modifying Models 325
 16.1.1 Defining Abduction ... 325
 16.1.2 Construction Occurred via Generative Abduction Rather than Induction or Deduction 327
 16.1.3 Generative Abduction: Basic Model 330

16.2 Qualitative Investigation Processes ... 332
 16.2.1 Introduction to Three-part Model of Investigation Processes ... 332
 16.2.2 GEM Cycles ... 338
 16.2.3 The Explanatory Depth and Precision of Description Dimensions 338
 16.2.4 The Three Cycles in the Outlined Investigation Process can Generate the Five Major Observed Modes of Investigation in the Protocol 342
 16.2.5 Separate Explanation and Description Processes 347
 16.2.6 Computational Model of Todd Griffith 348
 16.2.7 Evaluation Functions can Guide Control 350
 16.2.8 Comparison to Griffith Study 352
 16.2.9 Explaining Insight: Unpredictable Spontaneous Accessing of Subprocesses 354
 16.2.10 Generality ... 355
 16.2.11 Levels of Explanation and Precision 355
 16.2.12 Limitations of Model Presented 357

16.3 Mathematical Modeling Processes ... 359
 16.3.1 Cycle III: Mathematical Modeling 359
 16.3.2 Untested Thought Experiments at Higher Levels of Precision than Qualitative Modeling 361
 16.3.3 Mathematics and Explanation 362

16.4 Abduction II: How Evaluation Processes Complement Generative Abduction 363
 16.4.1 Multiple Sources of Ideas and Constraints for the Generative Abduction Process 364
 16.4.2 Model Evaluation can Provide Inputs to the Next Abduction Cycle 364
 16.4.3 Role of Transformations in Model Modification 367
 16.4.4 Distinctions Between Constructive Transformations, Running a Schema in an Imagistic Simulation, and Basic Spatial Reasoning Operators 368
 16.4.5 Coherence and Competition Between Models 369

16.5 Seeking an Optimal Level of Divergence 370
 16.5.1 The Problem of Accessing Relevant Prior Knowledge: An Ill-Structured Problem 370
16.5.2 Need for an Effective Middle Road with Respect to Creative Divergence 371
16.5.3 Analogies and Extreme Cases Appear to be a Fruitful Source of Divergence 371
16.5.4 Dangers of Divergence: The Need for Optimal Divergence .. 372
16.5.5 Some Methods for Reducing Einstellung Effects Via “Contained” Divergence 372
16.5.6 Mechanisms for Modulating Divergence ... 374
16.5.7 Summary for Section on Divergence ... 374
16.6 Chapter Summary .. 376
16.6.1 Diagrammatic Summary 377
16.6.2 Multiple Cycles and Goals in the Overall Investigation Process 378
16.6.3 Four Subprocesses at the Core of Complex Model Construction: Generative Abduction, Model Evaluation, Schema Alignment, and Mathematization 380

17 Imagistic Processes in Analogical Reasoning: Transformations and Dual Simulations 383
17.1 Two Precedents from the Literature 383
17.1.1 Structural Mapping and Evaluation 383
17.1.2 Wertheimer’s Parallelogram 384
17.2 Conserving Transformations 385
17.2.1 Transformations are not Equivalent to Mapping Symbolic Relations 385
17.2.2 Are Conserving Transformations Just Memorized Rules? 386
17.3 Conserving Transformations in Science 386
17.3.1 Wheel Problem 386
17.3.2 Spring Problem 387
17.3.3 Newton’s Canon 389
17.4 Dual Simulation 389
17.4.1 Do Dual Simulations Differ from Transformations? 391
17.4.2 Dual Simulation for the Square and Circular Coils 392
17.5 Overlay Simulation 392
17.5.1 Examples of Overlay Simulation 392
17.5.2 Connection to Model Construction: Overlay Simulations and Model Projections May Involve Similar Processes 395
17.5.3 Model Projection 396
17.5.4 Imagistic Alignment Analogies 396
17.5.5 Dual Simulation vs. Compound Simulation in Modeling 397
17.6 Summary and Discussion of Types of Evaluation Processes:
Contrasting Mechanisms for Determining Similarity 398
17.6.1 Mechanisms for Dual Simulation (Including Overlay Simulation) 399
17.6.2 Mechanisms for Conserving Transformations 400
17.6.3 Bridging is a Higher-order Strategy Compared to Others 401
17.6.4 Combination of Evaluation Methods 401
17.6.5 Contrast to Structural Mapping of Images 404
17.6.6 Conclusion on Evaluation: Four Main Analogy Evaluation Methods, Not One. 405
17.7 Use of Imagistic Transformations During the Generation of Partitions, Analogies, Extreme Cases, and Explanatory Models 405
17.8 Conclusion 407

18 How Grounding in Runnable Schemas Contributes to Producing Flexible Scientific Models in Experts and Students 409
18.1 Introduction: Does Intuitive Anchoring Lead to Any Real Advantages? 409
18.1.1 Review of Findings on Imagistic Simulation and Runnable Schemas 410
18.1.2 Transfer of Runnability Hypothesis 410
18.1.3 Models Can Inherit the Capacity for Simulation from Anchors 412
18.1.4 What, Exactly is Transferred? 415
18.1.5 Example of Transfer of Imagery and Runnability in Instruction 416
18.2 Cognitive Benefits of Anchoring and Runnability for Models 418
18.2.1 Traditional Benefits of Building on Prior Knowledge 419
18.2.2 Benefits of Transferring Runnability from a Schema to an Explanatory Model 419
18.2.3 Recursive Runnability of Models As Thought Experiments Explain Many of These Benefits 424
18.2.4 Transfer of Conviction 424
18.3 How Runnable Models Contribute Desirable Properties to Scientific Theories 425
18.3.1 Scientific Theories and the Role of Runnability 426
18.4 Conclusion 428
18.4.1 Initial Support for the Runnability Hypothesis 429
Section VI Conclusions .. 431

19 Summary of Findings on Plausible Reasoning and Learning in Experts I: Basic Findings ... 433
 19.1 Brief Overview of Theoretical Findings 433
 19.1.1 Model Construction in Experts 433
 19.1.2 Model Construction in Students 435
 19.1.3 Summary Table of Expert Subprocesses 435
 19.2 Analogy Findings, Part One 435
 19.2.1 The Presence and Importance of Analogy in Expert Thinking: Significant Analogies 435
 19.2.2 Literal Similarity and the Problem of What Counts as an Analogy ... 438
 19.2.3 Analogy Subprocesses 438
 19.2.4 Initial New Distinctions and Findings on Analogy 439
 19.3 Model Construction Findings, Part One and Initial Connections to General Issues in History/Philosophy of Science 440
 19.3.1 Extraordinary vs. Natural Reasoning 440
 19.3.2 Extraordinary Thinking? 441
 19.3.3 Eureka vs. Accretion Question 441
 19.3.4 A Case Study of Scientific Insight 442
 19.3.5 Initial Exploration of Mechanisms of Hypothesis Generation ... 444
 19.3.6 Section Summary ... 445
 19.4 Imagistic Simulation Findings, Part One 446
 19.4.1 Imagery Indicators as Observational Concepts 446
 19.4.2 Mechanisms for Imagistic Simulation 447
 19.4.3 Terminology for Imagistic Simulations 448
 19.4.4 Imagery During Simulation Behavior 449
 19.4.5 Image-generating Perceptual Motor Schemas as Embodied Knowledge ... 449
 19.4.6 Sources of New Knowledge in Imagistic Simulations ... 451
 19.4.7 How Perceptual Motor Schemas are Useful in Scientific Thinking ... 452
 19.4.8 Intuitive Anchors .. 453
 19.4.9 Role of Perceptual/Motor Schemas in the Construction of Model Assemblies ... 453
 19.4.10 Connection to Experiments and Situated Action 454
 19.4.11 Section Summary ... 454

20 Summary of Findings on Plausible Reasoning and Learning in Experts II: Advanced Topics .. 457
 20.1 Analogy Findings, Part Two 457
21 Creativity in Experts, Nonformal Reasoning, and Educational Applications .. 507

21.1 Summary of the Overall Framework 507
 21.1.1 View from Multiple Diagrams 507
 21.1.2 Central Role of Imagery 510
 21.1.3 Highlighted Findings 510
 21.1.4 Larger Integrating Processes 517
 21.1.5 Position on Concrete vs. Abstract Thinking 518

21.2 How Experts Used Creativity Effectively 521
 21.2.1 Do Expert Discovery Processes in Science Always Have an Empirical Focus? 521
 21.2.2 How a Coalition of Weak, Nonformal Methods are Able to Overcome the Dilemma of Fostering both Creativity and Validity .. 523
 21.2.3 Overlap Between the Context of Discovery and Context of Evaluation .. 530
 21.2.4 Section Conclusion 531

21.3 Educational Applications: Needed Additions to the Classical Theory of Conceptual Change in Education 532
 21.3.1 Uses and Criticisms of Kuhn 532
 21.3.2 Criticisms of Classical Conceptual Change Theory ... 532
 21.3.3 Need for an Expanded Theory of Conceptual Change for Education .. 533

21.4 Expert–Novice Similarities in Nonformal Reasoning and Learning .. 533
 21.4.1 Similarities Concerning Resistance to Change 534
 21.4.2 Similarities in the Use of Intuition and Imagery 536
 21.4.3 Use of Analogies by Students 537
 21.4.4 Model Construction by Students 538
 21.4.5 Summary: Expert–Novice Comparisons 540

21.5 Implications for Instructional Strategies and Theory 540
 21.5.1 Strategies Suggested by Initial Studies of Analogy and Model Construction in Part One of the Book 541
 21.5.2 Strategies Suggested by Findings on Imagistic Knowledge Representations in Part Two of the Book 548
 21.5.3 Educational Implications of Imagistic Learning Processes in Part Two of the Book 552
 21.5.4 Conclusion–Educational Applications 556

21.6 Are Creative Processes in Experts a Natural Extension of Everyday Thinking? 559
 21.6.2 Expert–Novice Differences in Reasoning 560
 21.6.3 Expert–Novice Similarities in Reasoning 560
21.6.4 Some Expert Processes are Neither Extraordinary Nor Ordinary
21.6.5 A Spectrum from Ordinary Thinking to Unusually Effective Creative Thinking to Extraordinary Thinking
21.6.6 Summary: How Creative Expert Reasoning is not Ordinary
21.6.7 Implications for Instruction: Utilizing Natural Reasoning Processes

21.7 Assessing the Potential for a Model of Creative Theory Construction in Science
21.7.1 Expertise and Domain Specificity
21.7.2 Can Creative Behavior Be Explained?

21.8 Conclusion
21.8.1 Creative Thinking
21.8.2 The Model Construction Process Portrayed Here in Contrast with Oversimplified Models
21.8.3 Questions About Scientific Thinking

References
Name Index
Subject Index