\[D = \frac{\sigma^2}{2 \cdot \Delta t} \]

where \(\sigma \) is the dispersion of the displacement during the interval of time \(\Delta t \).

Take \(\Delta t = m \cdot t_* \),

where \(m \) is some integer \(\geq 1 \). Note that we can apply Central Limiting Theorem only at \(m \gg 1 \).

The displacement during \(\Delta t = m \cdot t_* \) consists of \(m \) elementary displacements, which are independent random numbers. Hence

\[\sigma^2 = m \cdot \sigma_0^2, \]

where \(\sigma_0 \) is the dispersion of elementary displacement.

\[\sigma_0^2 = (e-0)^2 \cdot \frac{1}{2} + (-e-0)^2 \cdot \frac{1}{2} = e^2. \]

Hence

\[D = \frac{\sigma_0^2}{2 m \cdot t_*} = \frac{e^2}{2 t_*} \]