D₁ Dopamine Receptor Agonist (SKF-38393) Induction of Fos Immunoreactivity in Progestin Receptor-Containing Areas of Female Rat Brain

J. M. Meredith, A. P. Auger and J. D. Blaustein
Psychology Department and Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003, USA.

Key words: SKF-38393, progestin receptor, D₁ receptor, c-fos, hypothalamus.

Abstract

Injection of dopamine or dopamine receptor subtype agonists facilitates the expression of lordosis in estrogen-primed female rats. The D₁ receptor specific agonist, SKF-38393, facilitates lordosis in estradiol-primed female rats via a process that requires progestin receptors. Based on these data, neuronal response to the D₁ receptor agonist SKF-38393 was assessed by expression of the immediate early gene protein, Fos. In the first experiment we examined the modulation of Fos expression by D₁ agonists in progestin receptor-containing areas of estradiol-primed female rat brain. In the second experiment we examined if there are progestin receptor-containing cells that respond to stimulation of D₁ receptors with increased Fos expression. Ten to 14 days following ovariectomy and stereotoxic surgery, animals were injected with 5 μg estradiol benzoate. Forty eight h later they were injected intracerebroventricularly with 100 ng of SKF-38393 or saline. One h following injection animals were perfused, and brain sections immunostained for Fos protein. Results from the first experiment suggest that SKF-38393 increased the total number of Fos immunoreactive cells in the mid-ventromedial hypothalamic nucleus/ventrolateral portion (VMHVL), the caudal VMHVL, the paraventricular hypothalamic nucleus and the caudate putamen. In the medial preoptic area, the rostral VMHVL and the arcuate hypothalamic nucleus, there was a significant increase in the number of densely stained Fos immunoreactive cells following the SKF-38393 treatment. In the second study, SKF-38393 increased the number of progestin receptor-containing cells which contained Fos immunoreactivity in the caudal VMHVL. The results suggest potential sites of action for the facilitation of sexual behavior by centrally administered D₁ agonists.

In female rats, the neuroendocrine and hormonal events which take place during the estrous cycle tightly regulate the timing of physiological as well as behavioral events leading to optimal reproductive efficiency. The behavioral events associated with behavioral estrus in ovariectomized rats can be mimicked using a sequential hormonal paradigm of estradiol followed by progestrone (1-3). While estradiol induces some of the behaviors associated with female sexual behavior, both estradiol and progesterone are required to achieve the full complement of sexual behaviors (1-3). Furthermore, progesterone has the additional property of facilitating the effects of estradiol, such that lower doses of estradiol can be used (1-3).

A number of neurotransmitters and neuropeptides can substitute for progesterone in facilitating female rat sexual behavior (4-19). One neurotransmitter that has been extensively studied in the facilitation of sexual behavior is dopamine. Systemic and central administration of dopamine or dopamine agonists facilitate female rat sexual behavior under some hormonal conditions (10, 11, 19-23). The dopaminergic facilitation of sexual behavior can be blocked using dopamine antagonists (10, 11, 19, 21).

With the advent of more specific dopaminergic agonists and antagonists, it has been possible to examine whether activation of specific subsets of dopaminergic receptors such as the D₁ and D₂ receptor subtypes facilitate female rat sexual behavior. For example, dopamine facilitated sexual behavior can be blocked using specific antagonists to D₂ receptors (11) suggesting that D₂ receptors play a role in facilitation of sexual behavior. Interestingly, the effects of D₁ agonists on sexual behavior appear to depend on the state of receptivity of the animal. In non-receptive rats treated with low levels of estradiol, D₁ agonists facilitate sexual behavior (11, 21). However in sexually receptive animals treated with high levels of estradiol or estradiol benzoate/ progesterone, D₂ activation inhibits sexual behavior (11, 21, 24).

Recently, the role of brain D₁ receptors in the facilitation of female rat sexual behavior has been more closely examined (10, 19, 25). These experiments suggest that stimulation of D₁ receptor subtypes in the brain facilitates sexual behavior under some hormonal conditions (10, 19, 25). Of particular interest was the observation that the D₁ agonist facilitation can be blocked by progestin receptor antagonists (10, 19, 25), antispastic oligonucleo-

Correspondence to: John M. Meredith, Psychology Department and Neuroscience and Behavior Program, Tobin Hall, Box 37710, University of Massachusetts, Amherst, MA 01003, USA.

© 1997 Blackwell Science Ltd
D1 agonist induces Fos in progestin receptor-containing areas
tides to progestin receptor mRNA (10, 19, 25) and antisense oligonucleotides to the dopamine D1 receptor (19). These data suggest that dopamine D1 agonists facilitate female rat sexual behavior through stimulation of the D1 receptor and that this facilitation occurs via a progestin receptor-mediated event.

Increases in the expression of the Fos protein—a product of the immediate early gene, c-fos—have been observed following the administration of progesterone in estradiol-primed female rats (26, 27). Furthermore, progesterone has been shown to increase the expression of Fos in a population of cells which contain progesterin receptors (28). Based on these observations we used Fos immunocytochemistry to determine if a D1 agonist (SKE-38393; injected i.c.v.) modulates Fos expression. The purpose of using Fos in this series of experiments was not to identify all cells that respond to the D1 agonist (not every cell stimulated by the D1 agonist is expected to exhibit increases in Fos expression) but to determine if there are populations of cells which may be potential sites of interaction between dopamine and progestin receptors. We first examined the modulation of Fos expression by D1 agonists in progestin receptor-containing areas of estradiol-primed female rat brain. We then examined if there are progestin receptor-containing cells that respond to stimulation of D1 receptor with increased Fos expression. Specific brain areas that were examined for changes in Fos immunoreactivity induced by the dopamine agonist included those associated with female rat sexual behavior as well as the caudate-putamen (CPu), which has high levels of dopamine receptors (Fig. 1).

SKF-38393 did not induce any increase in intensity of Fos immunostaining in the medial preoptic nucleus/central (MPO), the dorsomedial hypothalamic nucleus (DM), the medial amygdaloid nucleus (Me) or the VMHVL combined with the ovarian steroid hormone receptor area that extends toward the fornix (VMHVL-ORA).

Experiment 2: SKF-38393 induction of Fos immunoreactivity in progestin receptor immunoreactive (PR-Ir) cells
We examined D1 agonist induced Fos immunoreactivity in progestin receptor-containing cells in the VMHVL-ORA, cVMHVL, the MPO (Fig. 5) and the Arc based on where progesterone induces Fos in progestin receptor containing cells (26, 27). Of these areas, the only one in which SKE-38393 significantly increased the number of PR-Ir cells expressing Fos was the cVMHVL (15.0 ± 2.48 vs 7.5 ± 2.25) (Fig. 6). There was no change in the number of PR-Ir cells expressing Fos in the VMHVL-ORA or in the MPO, which is consistent with our observations that overall Fos immunostaining did not change in these areas. However, there also was no change in the number of PR-Ir cells expressing Fos in the Arc, an area which showed changes in the number of darkly stained Fos-Ir cells. This suggests that the increase in Fos expression in the Arc may be occurring in cells which either do not contain progestin receptors or which contained low, undetected levels of progestin receptors.

Discussion
Dopamine and dopaminergic drugs have been implicated in the facilitation and inhibition of female rat sexual behavior. Interestingly, the effects of dopaminergic drugs on sexual behavior are influenced by the hormonal state of the animal. In female rats treated with low levels of estrogens, administration of dopamine and dopamine agonists such as apomorphine facilitate sexual behavior (11, 21, 23). However, dopamine and dopamine agonists suppress sexual behavior in female rats which have been made sexually receptive by either the administration of high doses of estrogens or by administration of estrogens followed by progesterone (11, 22, 24). In addition to facilitating and inhibiting the onset of sexual behavior, dopamine may also play a role in the events which take place during and after mating. For example, in female rats and hamsters, mating stimulation evokes the release of dopamine from nerve terminals in the CPu (29, 30), nucleus accumbens (30) and the ventromedial hypothalamus (31).

It appears that at least some of the facilitatory effects of dopamine may be due to a central site of activation. This is supported by observations in which direct infusion of dopamine, or dopamine agonists into the MPO (22) or VMH (19, 22) areas or i.c.v. infusions of apomorphine (10, 25) facilitate sexual behavior in estrogen-primed rats. It appears that activation of D1 subtype receptors may play an important role in central nervous system facilitation of sexual behavior. For example, i.c.v. injection of various dopamine D1 agonists facilitated sexual behavior in estradiol-primed female animals (10, 19, 25). On the other hand, i.c.v. infusions of the D2 agonist quinipride did not affect sexual behavior (10, 25). The fact that the facilitation by the centrally administered D1 agonist was blocked by progesterone antagonists (10, 19, 25), by administration of an antisense oligonucleotide directed toward the progestin receptor mRNA (10, 19, 25) and by antisense oligonucleotides directed toward D1 recep-

Fig. 1. Composite drawings of sections that were analyzed from the (A) CPU, (B) the MPA, (C) the MPO, (D) the Pa, (E) the rVMHVL-ORA and sVMHVL, (F) the DM, Arc, mVMHVL, Me and (G) the eVMHVL. Shaded areas represent areas containing PR-Ir cells within and continuous with the areas analyzed. Abbreviations: 3V, 3rd ventricle; AC, anterior commissure; Arc, arcuate hypothalamic nucleus; CPU, caudate putamen; DM, dorsomedial hypothalamic nucleus; f, fornix; IC, internal capsule; LV, lateral ventricle; Me, medial amygdaloid nucleus; MPA, medial preoptic area; MPO, medial preoptic nucleus; mt, mammillothalamic tract; opt, optic tract; ox, optic chiasm; Pa, paraventricular hypothalamic nucleus; rVMHVL-ORA, the ovarian receptor-containing area associated with the rVMHVL that extends dorsolaterally towards the fornix; SFI, septofimbrial nucleus; sm, stria medullaris thalami; SO, supraoptic nucleus; TS, triangular septal nucleus; VMHVL, ventromedial hypothalamic nucleus, ventrolateral.
tor subtypes (19) suggests that the pathway by which the D₁ agonist activates sexual behavior involves the D₁ receptor and includes a progestin receptor-mediated component.

Based on these findings, we examined whether D₁ receptor induction of Fos expression occurs in progestin receptor-containing areas and cells. In experiment 1, we examined several areas which are associated with female sexual behavior including the MPA, MPO, VMHVL, rVMHVL-ORA, DM, and Arc for changes in Fos immunoreactivity. Of these areas, all but the DM have high levels of estrogen-induced progestin receptors in rats (32, 33) and guinea pigs (34, 35). In all of the progestin receptor-containing areas except for the MPO and the rVMHVL-ORA we found increases in either Fos-Ir cell number or maximum optical density following D₁ receptor activation.

The observation that some areas exhibit changes in total cell number while other areas exhibit changes in the number of darkly stained cells, does not necessarily suggest that these areas respond in a qualitatively different manner to the stimuli. The differential staining in response to the D₁ agonist may be due to technical issues associated with differences in the titration curve of primary antibody in different areas. For example, one may titrate the primary antibody so that control groups show very little staining. Under these conditions, any increases in immunostaining due to treatment become readily apparent as changes in cell number. As primary antibody concentrations increase, changes in absolute cell number shift towards changes in optical density. We have recently demonstrated that changes in optical density as measured by computer-assisted image analysis are comparable to changes in cell number when analyzed using lower primary antibody concentrations (26). While it might be desirable to titrate the antibody concentration for every area analyzed, it would be impractical due to the enormous amounts of tissue that would be required. The compromise is to examine changes in absolute cell number as well as changes in the number of darkly immunostained cells. Finally, it is also possible that the differences in the intensity of the response to the D₁ agonist may be due to different rates of diffusion of the agonist to the various areas.

In experiment 2, areas within the MPO, rVMHVL-ORA, cVMHVL, and Arc were analyzed to determine whether SKF-38393 increased Fos expression in progestin receptor-containing cells. Of the four areas analyzed, the cVMHVL was the only one in which SKF-38393 increased the number of progestin receptor-containing cells expressing Fos. These data suggest that some progestin receptor-containing cells respond to D₁ receptor stimulation. However, there are probably progestin receptor-containing cells that were stimulated by the D₁ agonist but which did not exhibit changes in Fos expression. Therefore, the progestin receptor-containing cells within the cVMHVL are
binding sites, D₁ receptor immunoreactivity, D₁ receptor mRNA and localization of dopaminergic terminal fields. For example, the medial aspect of the caudate putamen exhibited a large increase in Fos immunoreactivity following SKF-38393. This is consistent with studies showing very high levels of D₁ binding (36, 37), immunoreactivity (38, 39) and receptor mRNA (19, 40, 41) as well as dopaminergic terminal fields (42) within this area.

The observation that SKF-38393 increases Fos expression in the CPU is also consistent with observations that SKF-38393 increased Fos mRNA in the CPU of mice (43) and that the D₁ agonist A-77566 increased Fos immunoreactivity in the CPUs of rats (44). Both of these studies found that the density of Fos expression was greatest in the medial aspect of the CPUs, the area in which Fos expression was measured in the current experiment. Interestingly, there is evidence that D₁ induction of Fos can be greatly enhanced when the CPU has been sensitized to D₁ receptor stimulation by lesioning of the nigrostriatal pathway (45-47). While the animals in the current experiment did not receive nigrostriatal lesions, they were exposed to estrogens which have been shown to modulate CPU D₁ receptor levels (48). Therefore, it is possible that the estradiol used in this experiment may have increased responsiveness of some CPU cells to SKF-38393.

The hypothalamic areas in which the D₁ agonist increased Fos expression (MPA, Pa, VMHVL, Arc) also have relatively high levels of D₁ receptor binding, immunoreactivity and mRNA as well as staining for dopaminergic terminal fields. D₁ binding has been reported in the MPA (37), the VMH (36), and the Arc (36). Dense immunostaining for D₁ receptors can be found in the Pa and the Arc (39). D₁ receptor mRNA has been reported in the Pa (40, 41), the VMH (19, 40), and the MPA (40). However, in the MPA, D₁ mRNA distribution is somewhat less clear, as some have also reported no clear labeling of D₁ mRNA containing cells (41). Finally, partialing for dopaminergic terminal field has been reported in the MPA (42, 49, 50) and the Pa (42, 49, 50). It therefore appears that all of the sites which respond to i.c.v. infusions of the D₁ agonist with increased Fos expression contain either D₁ binding sites, immunostaining for D₁ receptors, or both.

Of the areas in which Fos expression did not change following D₁ receptor stimulation, only the Me has been shown to contain D₁ binding sites (36, 37) and labeling for D₁ receptor mRNA (40, 41). It is possible that the placement of the injection site of the D₁ agonist into the third ventricle was ineffective in stimulating D₁ receptors in the Me. Nonetheless, it would be unlikely that D₁ stimulation would increase Fos expression in the Me via a progestin receptor-mediated event, as progesterone itself does not seem to increase Fos expression in this area (26).

It is possible that the D₁ agonist may directly increase Fos expression in the MPA, VMH, Arc and Pa as all of these areas contain either D₁ binding sites, immunostaining for D₁ receptors or both. On the other hand, D₁ agonist-induced changes in Fos expression do not in themselves imply direct stimulation of D₁ receptors in that area. That is, 'direct' activation of cells in one area such as the VMH, may lead to an 'indirect' increase in Fos in a projection site such as the MPA. Therefore, it is likely that the D₁ agonist induces Fos expression, both directly and indirectly.

In summary, i.c.v. administration of a dopamine D₁ receptor agonist (SKF-38393) increased Fos expression in areas of the hypothalamus associated with female sexual behavior including the MPA and the VMHVL. More importantly, in the cVMHVL, the number of BrdU containing Fos increased in response to the D₁ agonist injection. The present results are consistent with the idea that the localization of Fos is controlled by both direct and indirect actions of dopamine D₁ receptors in these areas.

Table 1: Fos-IR Cell Number at Various Gray Scale Thresholds following the Administration of Vehicle or Dopamine D₁ Agonist (SKF-38393)

<table>
<thead>
<tr>
<th>Gray scale thresholds (0-255)</th>
<th>Total cell #</th>
<th>> 50</th>
<th>> 100</th>
<th>> 150</th>
<th>> 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPA V</td>
<td>104.3±1.51</td>
<td>104.2±1.51</td>
<td>129.3±16.7</td>
<td>25.3±8.7</td>
<td>5.8±2.5</td>
</tr>
<tr>
<td>MPA SKF</td>
<td>142.3±16.5</td>
<td>142.3±16.5</td>
<td>112.3±16.0</td>
<td>43.8±4.1</td>
<td>11.5±2.1</td>
</tr>
<tr>
<td>MPO V</td>
<td>58.8±15.8</td>
<td>58.4±15.8</td>
<td>25.0±4.5</td>
<td>4.5±1.0</td>
<td>1.5±0.6</td>
</tr>
<tr>
<td>MPO SKF</td>
<td>63.3±3.9</td>
<td>63.3±3.9</td>
<td>28.8±5.6</td>
<td>6.8±1.5</td>
<td>0.5±0.3</td>
</tr>
<tr>
<td>rVMHVL-ORA V</td>
<td>57.0±9.2</td>
<td>57.0±9.2</td>
<td>45.8±5.3</td>
<td>22.0±2.1</td>
<td>8.8±2.3</td>
</tr>
<tr>
<td>rVMHVL-ORA SKF</td>
<td>72.3±4.3</td>
<td>72.3±4.3</td>
<td>57.0±4.8</td>
<td>27.3±4.2</td>
<td>12.0±1.6</td>
</tr>
<tr>
<td>rVMHVL V</td>
<td>6.3±0.9</td>
<td>6.3±0.9</td>
<td>2.0±0.8</td>
<td>1.0±0.6</td>
<td>0.5±0.5</td>
</tr>
<tr>
<td>rVMHVL SKF</td>
<td>9.8±1.7</td>
<td>9.8±1.7</td>
<td>3.0±0.6</td>
<td>2.0±0.9</td>
<td>0.5±0.5</td>
</tr>
<tr>
<td>mVMHVL V</td>
<td>8.0±0.9</td>
<td>8.0±0.9</td>
<td>2.3±4.5**</td>
<td>1.6±3.8**</td>
<td>2.3±0.9</td>
</tr>
<tr>
<td>cVMHVL V</td>
<td>14.0±1.9</td>
<td>14.0±1.9</td>
<td>10.0±1.9</td>
<td>2.0±0.9</td>
<td>0.3±0.3</td>
</tr>
<tr>
<td>cVMHVL SKF</td>
<td>23.2±12.0**</td>
<td>23.2±12.0**</td>
<td>15.0±7.0</td>
<td>3.4±1.1</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>Arc V</td>
<td>35.8±4.0</td>
<td>35.8±4.0</td>
<td>33.5±3.9</td>
<td>19.0±3.9</td>
<td>6.0±1.3</td>
</tr>
<tr>
<td>Arc SKF</td>
<td>35.8±5.1</td>
<td>35.8±5.1</td>
<td>35.8±5.1</td>
<td>24.5±2.5</td>
<td>13.3±2.6**</td>
</tr>
<tr>
<td>Me V</td>
<td>106.3±8.6</td>
<td>106.3±8.6</td>
<td>95.8±8.6</td>
<td>51.8±10.0</td>
<td>25.3±8.3</td>
</tr>
<tr>
<td>Me SKF</td>
<td>118.3±9.3</td>
<td>118.3±9.3</td>
<td>100.0±14.6</td>
<td>52.8±14.2</td>
<td>25.8±8.9</td>
</tr>
<tr>
<td>Pa V</td>
<td>263.3±4.9</td>
<td>263.3±4.9</td>
<td>42.5±4.6**</td>
<td>42.5±4.6**</td>
<td>2.5±1.3</td>
</tr>
<tr>
<td>Pa SKF</td>
<td>263.3±4.9</td>
<td>263.3±4.9</td>
<td>42.5±4.6**</td>
<td>42.5±4.6**</td>
<td>2.5±1.3</td>
</tr>
<tr>
<td>DM V</td>
<td>90.0±14.9</td>
<td>90.0±14.9</td>
<td>90.0±14.9</td>
<td>30.5±21.8</td>
<td>12.0±10.7</td>
</tr>
<tr>
<td>DM SKF</td>
<td>109.8±15.6</td>
<td>109.8±15.6</td>
<td>108.3±22.2</td>
<td>33.0±13.0</td>
<td>11.0±5.0</td>
</tr>
<tr>
<td>CPU V</td>
<td>31.8±12.4</td>
<td>31.8±12.4</td>
<td>12.0±9.0</td>
<td>19.0±9.2</td>
<td>10.3±1.8</td>
</tr>
<tr>
<td>CPU SKF</td>
<td>113.5±7.4**</td>
<td>113.5±7.4**</td>
<td>99.3±7.7**</td>
<td>37.5±7.4</td>
<td>7.8±2.4</td>
</tr>
</tbody>
</table>

Data represented as mean ± SEM. *P < 0.05 two-tailed t-test. **P < 0.01 two-tailed t-test. Bold italics are used to more easily identify significant results.
most likely a subset of possibly several progesterin receptor-containing groups of cells that respond to D_1 agonist stimulation. Nevertheless, the increase in Fos expression in progesterin receptor-containing cells in the cVMHVL is consistent with the finding that D_1 activation of sexual behavior appears to act via a progesterin receptor mediated pathway (10, 25).

It is interesting that in both experiment 1 and 2 the rVMHVL-ORA and the MPO did not show any changes in Fos-Ir as these areas contain many PR-Ir cells. However, we expect that only a small portion of PR containing cells contain D_1 receptors and would therefore be responsive to D_1 receptor stimulation. The lack of response in the rVMHVL-ORA and MPO may suggest that the PR containing cells in these areas are not D_1 receptor responsive. Alternatively, the cells in the rVMHVL-ORA and MPO may respond to D_1 receptor stimulation without changes in Fos expression. Finally, in experiment 1, the rVMHVL did show changes in Fos-Ir while the rVMHVL-ORA did not. This is probably due to addition of the larger, non-responsive-ORA to the calculations which would dilute the small effect seen in the more restricted rVMHVL.

The fact that SKF-38393 increased Fos expression in the Arc in experiment 1, but it did not increase Fos expression in progesterin receptor-containing cells (experiment 2), suggests that the increase in Fos expression in the Arc may not occur in progesterin receptor-containing cells. It is possible that changes in Fos expression in the progesterin receptor cells in the Arc were not observed due to the sensitivity differences between the immunofluorescent technique as compared to diaminobenzidine. However, we sought to minimize this by adjusting our immunofluorescent technique so that the number of fluorescently stained Fos-immunoreactive cells was very similar to the number of Fos-immunoreactive cells detected with diaminobenzidine. It is also possible that progesterin receptor-containing cells in the Arc do not respond to stimulation of D_1 receptors by increased Fos expression.

Interestingly, there is evidence that progesterone and SKF-38393 have similar effects on Fos expression in the MPA and the cVMHVL. SKF-38393 and progesterone (26, 27) each increase Fos expression in the MPA. Furthermore, SKF-38393 and progesterone (28) each increase Fos immunoreactivity in progesterin receptor-containing cells in the cVMHVL. These data suggest that progesterone and SKF-38393 may each induce Fos expression in some of the same neurons in the MPA and the cVMHVL.

The induction of Fos by i.e.v. administration of SKF-38393 (experiment 1) is consistent with the distribution of D_1 receptor

with data showing an increase in female sexual behavior following infusions of dopamine or dopamine agonists into the MPA and the VMH area (19, 22). They also suggest a neural substrate for the finding that intracerebral infusion of a D2 agonist facilitates female sexual behavior via a progesterin receptor-mediated event (10, 19, 25).

Materials and methods

Animals

Female CD VAF Sprague Dawley rats (175–200 gm) were obtained from Charles River Breeding Laboratories, Inc (Kingston, NY, USA). Animals were group housed 4 per cage in stainless steel cages. Animals were maintained on a 14:10 light:dark cycle with lights on from 21.00 to 11.00 h and temperature maintained at approximately 22 °C. Food (Lab Diet 5001, Rodent Diet, PMI Feed, Inc., St. Louis, MO, USA) and water were available ad libitum. All animals were maintained under these conditions for 7–10 days before any experimental manipulations took place. Following stereotaxic surgery, all animals were housed singly to prevent damage to cannulas by cage-mates. All other parameters remained constant.

Surgery

Ovariectomy: Seven to 12 days prior to experimentation rats were anesthetized with a combination of pentobarbital (31.0 mg/kg) and chloral hydrate (149.0 mg/kg). They were then ovariectomized to eliminate all endogenous gonadal steroids.

Stereotaxic surgery: Immediately following ovariectomy animals underwent stereotaxic surgery for implantation of the guide cannula. A 28 g guide cannula with a 30 g inner cannula (Plastics One, Roanoke, VA, USA) extending from the tip was placed into the brain using Bregma as a reference: AP = 3.3 mm, ML 0.0 mm, and DV 8.5 mm. All coordinates were based on the rat stereotaxic atlas of Paxinos & Watson (31). These coordinates placed the tip of the guide cannula directly above the third ventricle. The infusion cannula was designed to extend 1 mm beyond the tip of the guide cannula within the third ventricle (Fig. 7). Animals were fitted with a removable dummy inner cannula to prevent contaminants from entering the guide cannula.

Experimental protocol

Following surgery, all animals were handled daily. This included removing and reinserting the dummy cannula to acclimate them to the injection procedure. Seven to ten days following surgery animals were injected subcutaneously with 5 μg estradiol benzoate (EB; 11.30 h). Forty-eight to 50.5 h later (11.30–14.00 h) rats were injected i.c.v. via the guide injection cannula assembly with either 100 ng SKF-38393 in 3 μl sterile saline or the vehicle. Injections lasted 15 s, which included a 60 s injection period followed by a 60 s waiting period to ensure that the entire treatment volume had entered the third ventricle. The injection cannula was then removed and the dummy cannula was replaced. In order to minimize any non-specific Fos induction all injections were done in the animal’s home room and cage under red light. One hour following i.c.v. injections (12.30–15.00) animals were perfused. In experiment one, brain sections were stained for Fos immunoreactivity using diaminobenzidine. In experiment two, adjacent sections from the same animals were stained for both Fos and progesterin receptors using a double label immunofluorescent technique.
Fig. 7. Photomicrograph of cannula tract caused by guide and injection cannula. Magnification bar = 500 μm. See Fig. 1 for nomenclature.

Perfusion

All animals were injected with a lethal combination dose of pentobarbital (8.9 mg) and chloral hydrate (42.5 mg). When animals were deeply anesthetized, the thoracic cavity was exposed, the thoracic aorta and posterior vena cava clamped and 1 ml of saline containing 5,000 IU of heparin was injected into the left ventricle. Incisions were made in the right atrium and the left ventricle followed by insertion of a cannula through the left ventricle into the aorta. Twenty-five ml of physiological saline were flushed through the brain before the flow of 2% acrolein (in 0.1 M NaOH buffer; pH 7.2) began. Perfusion pressure was maintained at approximately 100 mm Hg at a flow rate of 25 ml/min for 14 min. Following removal of the cannula blocked brains were stored overnight at 4°C in 0.1 M phosphate buffer at pH 7.2 containing 20% sucrose. Forty μm sections were cut through the hypothalamus using a freezing rotary microtome and were stored in cryoprotectant at −20°C until preparation for immunocytochemistry.

Diaminobenzidine immunocytochemistry

For each animal, a set of one in four sections was removed from cryoprotectant and rinsed 3 times for 5 min each in 0.5 M Tris-buffered saline (TBS; pH 7.6, 22°C). Sections were then pretreated in 1% hydrogen peroxide for 10 min to remove residual aldehydes. Following pretreatment and three additional rinses in TBS for 5 min each, sections were placed into 1% H2O2, 20% normal goat serum, and 1% bovine serum albumin for 20 min to reduce nonspecific staining and endogenous peroxidase activity. Sections were immersed in a cocktail of: 1) rabbit polyclonal anti-GABA receptor directed against the N-terminal of the GABA receptor (3 μg/ml; SC 52, Santa Cruz Biotechnology, Inc.; Lot# H024, Santa Cruz, CA, USA) and 2) mouse monoclonal GABA receptor antibody directed against the hinge region of both A and B GABA receptor isoforms (5 μg/ml; H208, StressGen, Victoria, BC, Canada) diluted in mTBS (pH 7.6, 4°C) containing 0.1% gelatin, 0.02% sodium azide, 0.5% Triton X-100 and 1% normal goat serum for 3 days at 4°C. Following 3, 5 min rinses with mTBS buffer (pH 7.6, 22°C), tissue sections were incubated in a cocktail of fluorosence-labeled secondary antisera: 1) Texas Red goat anti-rabbit serum (5 μg/ml; Jackson ImmunoResearch, West Grove, PA, USA) for detection of GABA receptor immunoactivity and 2) fluorescein isothiocyanate (FITC) goat anti-mouse serum (5 μg/ml; Jackson ImmunoResearch, Inc.) for detection of GABA receptor immunocytoactivity diluted in mTBS (pH 7.6, 22°C) for 90 min at room temperature. To increase the signal, the fluorescently-labeled secondary antisera was bridged using the following procedure (32). Following 3 rinses, sections were placed in mTBS (pH 7.6, 22°C) containing 1 rabbit (5 μg/ml; Sigma Chemical, St Louis, MO, USA) and 2) mouse (5 μg/ml Sigma Chemical) immunoglobulins for 90 min at room temperature. Sections were then rinsed 3 times for 5 min each in mTBS (pH 7.6, 22°C) and placed back into fluorescently-labeled secondary antisera for 60 min. The bridging sequence was repeated 3 times. After bridging of the fluorescently-labeled secondary antisera, sections were rinsed 3 times for 5 min each in TBS (pH 7.6). Sections were mounted onto glass slides with 0.25 M n-propyl gallate in glycerol to reduce photobleaching (57). GABA immunostaining was eliminated, and GABA receptor immunostaining was unaffected by omission of the primary antibody from the immunocytochemical procedure. GABA receptor immunostaining was eliminated, and GABA immunostaining was unaffected following omission of the primary antibody from the immunocytochemical procedure. All staining was eliminated following the omission of both primary antibodies from the immunocytochemical procedure. Crossreactivity between primary and secondary antisera appeared negligible as no staining occurred when primary antibodies was incubated with secondary antisera and vice versa. Finally, it is clear from our observations that under the colocalization procedures we observed numerous PR-Ir cells which contained no fos-Ir and vice versa (see Fig. 5).

Areas analyzed

Eleven areas throughout the female rat forebrain were examined bilaterally for the induction of fos immunoreactivity by SKF-38393 (Fig. 1). The areas included: the CPu, MPA, MPO, Pa, rVMHVL, rVMHVL-ORA, mVMHVL, cVMHVL, DM, Arc, and the Me. Bilateral measurements consisted of 600 μm × 800 μm areas were analyzed for the CPu, MPO, rVMHVL-ORA, DM, and Me. The MPA areas measured 800 μm × 1,200 μm. The VMHVL areas measured consisted of bilateral 313 μm × 375 μm areas. The shapes of the Pa and the Arc areas that were analyzed were determined separately for each section based on phase contrast microscopy.

Computer assisted image analysis

All computer-assisted image analysis was done using a Leitz DiaLux 20 microscope (Ernst Leitz Wetzger GmbH, Germany) attached to a MTI CCD 72 camera (DAGE MTI, Michigan City, IN, USA) which was in turn connected to a Macintosh Quadra 700 (Apple Computer Cupertino, CA, USA). The Image 1.55 program (W. Rasband, NIH, Bethesda, MD, USA) was used for all image processing and analysis.

Prior to each imaging session the following protocol was used. The microscope was adjusted for Koehler illumination and fitted with a Watanabe gelatin filter (Eastman Kodak Company, Rochester, NY, USA), as this provided the best image transfer from the brown staining of diaminobenzidine to the gray scale used in image analysis. The microscope and camera were focused on a coverslipped slide with a black mark on it. The camera gain and mask levels were adjusted so that the black portion of the dark produced gray levels within the single digits while the black mark produced a gray level of 255. This effectively calibrated the camera to use the full range of gray levels available to the imaging system (0-255, with 0 being white and 255 being black). All images for an area were taken during the same session.

© 1997 Blackwell Science Ltd., Journal of Neuroendocrinology, 9, 385-394
Cell-like objects were excluded from analysis if they were less than 10 pixels or greater than 200 pixels in area at 10× magnification. The mean pixel density and the standard deviation were obtained for the area analyzed within each image. The density threshold for each image was set at 5 SDs above the mean for the area within the image. Total cell number and the average maximal optical density (MOD) for each image were analyzed. MOD was determined by measuring the darkest point of each cell (the lowest gray level) and determining the mean for all cells within a given image. The MOD for each cell was invariably found within the nucleus of the cell. Using this technique, computer-assisted cell counts were indistinguishable from counts done by eye alone.

Data analysis and statistics

Data collected from image analysis were analyzed based on two criteria. The first criterion examined whether PhosIR cell number was affected by treatment. The second criterion examined whether optical density of PhosIR cells was influenced by the treatment. To analyze optical density, the MOD for each cell from an image was recorded. We then created a frequency distribution histogram for each image based on the MOD of each cell. From these histograms, we set various optical density thresholds to analyze the data. These optical density thresholds included all cells with maximum optical densities greater than the gray level of 50, 100, 150, and 200. For the analysis of Phos induction two tailed Student's t-tests were run to compare experimental groups to vehicle groups. One tailed Student's t-tests were used in making comparisons within the non-progestin receptor co-localization experiment. Data were considered statistically different at P<0.05.

Acknowledgements

This research was supported by MH10658 to JMM, MH11392 to APA, NSDA MH08585, NSDA 5R01DA10927, and NS33527 to JDB. We gratefully acknowledge Robin Lempicki for her expert technical assistance.

Accepted 20 January 1997

References

2. Green L, Lutge W, Whalen R. Induction of receptivity in ovariecto-

9. Gonzalez MI, Celis ME, Hole DR, Wilson CA. Interaction of oxytocin, α-melanotrophin and noradrenaline within the ventro-
10. Matas S, Aksoy JMC, Blauhorn JD, Clark JH, Ulmeyer BW. Convergent pathways for steroid hormone and neurotransmitter-
17. Mani SK, Allen JMC, Clark JH, O'Malley BW. Progesterone recep-
21. Foreman MM, Hall JL. Effects of D2-dopaminergic receptor stimula-
22. Foreman MM, Moss RL. Role of hypothalamic dopaminergic recep-
28. Auger AP, Blaustein JD. Progesterone treatment increases Fos-
32. Auger AP, Moffatt CA, Blaustein JD. Reproductively relevant stimuli induce Fos-immunoreactivity within progesterin receptor-
33. Parsons B, Rainbow TC, MacLusky NJ, McEwen BS. Progestin
394 D₁ agonist induces Fos in progesterin receptor-containing areas

30 Olsson D, Blomstedt J. Biochemical and immunocytochemical assessment
of neural progesterin receptors following estradiol treatments that
diminish the sex difference in progesterone-facilitated lordosis

31 Tufts FL, King EF, Toft DO, Turetke J. Immunocytochemical
 localization of estrogen-induced progesterin receptors in guinea pig

32 Maroun A, Meier-Weinruch J, Bunow JR, Civelli O, Akil H,
 Watson SJ. Localization of dopamine D₁ receptor mRNA and D₁
 and D₂ receptor binding in the rat brain and pituitary: an in situ
 hybridization-receptor autoradiographic analysis. J Neurosci 1990;
 10: 2557–2600.

33 Boyson SJ, McConville M, Molinoff PB. Quantitativeautoradiographic localization of D₁ and D₂ subtype of dopamine receptors

34 Levy AI, Hersh SM, Rye DB, Sunahara RK, Niznik H, Kitt CA,
 Price DL, Maggio R, Brain MR, Chaux BJ. Localization of D₁ and
 D₂ dopamine receptors in brain with subtype-specific antibodies.

35 Huang Q, Zhou D, Chase K, Gusella JF, Aronin N, DiFiglia M.
 Immunocytochemical localization of the D₁ dopamine receptor in
 rat brain reveals its axonal transport, pre- and postsynaptic localization,
 and prevalence in the basal ganglia, limbic system, and
thalamic reticular nucleus. Proc Nat Acad Sci, USA 1992; 89:
 11988–11992.

36 Fremaux RTJ, Duncan GE, Forneretto M, Dearnley A, Gingrich JA,
 Moore OF, Caruso MG. Localization of D₂ dopamine receptor
 mRNA in brain supports a role in cognitive, affective, and neuroendo-
crine aspects of dopaminergic transmission. Proc Nat Acad Sci, USA

37 Weiner DM, Levy AI, Sunahara RK, Niznik HB, O'Dowd BF,
 Szafer P, Brain MR, D₁ and D₂ dopamine receptor mRNA in rat

42 Bjorklund A, Lindvall O. Dopamine-containing systems in the CNS.
 In: Bjorklund A, Hokfelt T, eds. Handbook of Chemical
 Neuroanatomical-Neurotransmitters in the CNS. Part I. New York:

43 Arnauld E, Arsa J, Demotes-Mainard J. Functional heterogeneity
 of the caudate-putamen as revealed by s-fos induction in response to

44 Wirths H, Asin MK. Interactive effects of summation of D₁ and
 D₂ dopamine receptors on Fos-like immunoreactivity in the normo-

45 Gerfen CR, Koefe KA, Gauda EB, D₁ and D₂ dopamine receptor
 function in striatum: expression of D₁ and D₂ dopamine receptors on separate populations of neurons results in potentialized
 immediate early gene response in D₂-containing neurons. J Neurosci

46 Koefe KA, Gerfen CR, D₁–D₂ dopamine receptor synergy in striatum:
 effects of intrastratal infusions of dopamine agonists and antagonists

47 Lahosse GI, Yu J, Marshall JS. Striatal Fos expression is indicative
 of dopamine D₁/D₂ synergism and receptor supersensitivity. Proc

48 Hruska RE, Nowak MW. Estrogen treatment increases the density of
 D₁ dopamine receptors in the rat striatum. Brain Res 1988;

49 Bjorklund A, Lindvall O, Nobin A. Evidence of an interhypothal-
amic dopamine neuron system in the rat. Brain Res 1975; 89:
 29–42.

50 Hokfelt T, Johansson O, Fuxe K, Goldstein M, Park D.
 Immunohistochemical studies on the localization and distribution of
dopaminergic neuron systems in the rat brain. I. Tyrosine hydroxylase

51 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd

52 Gilb H, Sedar JW. Fluorescence microscopy: reduced photobleach-
ing of rhodamine and fluorosence protein conjugates by n-propyl