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Introduction

Every statistical method is developed based on assumptions.
The validity of results derived from a given method depends
on how well the model assumptions are met. Many statistical
procedures are “robust”, which means that only extreme
violations from the assumptions impair the ability to draw valid
conclusions. Linear regression falls in the category of robust
statistical methods. However, this does not relieve the
investigator from the burden of verifying that the model
assumptions are met, or at least, not grossly violated. In
addition, it is always important to demonstrate how well the
model fits the observed data, and this is assessed in part
based on the techniques we’ll learn in this lecture.
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Different types of residuals

Recall that the residuals in regression are defined as yi − ŷi,
where yi is the observed response for the ith observation,
and ŷi is the fitted response at xi.

There are other types of residuals that will be useful in our
discussion of regression diagnostics. We define them on the
following slide.

Regression diagnostics – p. 3/48

Different types of residuals (cont.)

Raw residuals: ri = yi − ŷi

Standardized residuals: zi = ri

s
where s is the estimated

error standard deviation (i.e. s = σ̂ =
√

MSE).

Studentized residuals: r∗i = zi√
1−hi

where hi is called the
leverage. (More later about the interpretation of hi.)

Jackknife residuals: r(−i) = r∗i
s

s(−i)
where s(−i) is the

estimated error standard deviation computed with the ith
observation deleted.
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Which residual to use?

The standardized, studentized and jackknife residuals are all
scale independent and are therefore preferred to raw
residuals. Of these, jackknife residuals are most sensitive to
outlier detection and are superior in terms of revealing other
problems with the data. For that reason, most diagnostics rely
upon the use of jackknife residuals. Whenever we have a
choice in the residual analysis, we will select jackknife
residuals.
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Analysis of residuals - Normality

Recall that an assumption of linear regression is that the error
terms are normally distributed. That is ε ∼ Normal(0, σ2). To
assess this assumption, we will use the residuals to look at:

• histograms

• normal quantile-quantile (qq) plots

• Wilk-Shapiro test
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Histogram and QQ plot of residuals in SAS

ods rtf style = Analysis;
ods graphics on;

ods select ResidualHistogram;
ods select QQPlot;

proc reg data = one plots(unpack);
model infrisk = los cult beds;

run;
quit;

ods graphics off;
ods rtf close;
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Histogram of residuals in SAS
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What is a normal QQ plot?

• Let q be a number between 0 and 1. The qth quantile of a
distribution is that point, x, at which q × 100 percent of the
data lie below x and (1 − q) × 100 percent of the data lie
above x. Specially named quantiles include quartiles,
deciles, etc.

• The quantiles of the standard normal distribution are well
known. Here are a few with which you should be familiar.

q Quantile

0.025 -1.96
0.05 -1.645
0.5 0
0.95 1.645
0.975 1.96
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What is a normal QQ plot? (cont.)

• If data come from a normal distribution, then the quantiles
of their standardized values should be approximately
equivalent to the known quantiles of the standard normal
distribution.

• A normal QQ plot graphs the quantiles of the data against
the known quantiles of the standard normal distribution.
Since we expect the quantiles to be roughly equivalent,
then the QQ plot should follow the 45◦ reference line.
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Normal QQ plot of residuals in SAS
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What a normal QQ plot shouldn’t look like ...
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The Wilk-Shapiro test

H0: The data are normally distributed
HA: The data are not normally distributed

proc reg data = one noprint;
model infrisk = los cult beds;
output out = fitdata rstudent = jackknife;

run;
quit;

proc univariate data = fitdata normal;
var jackknife;

run;
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The Wilk-Shapiro test (cont.)

Tests for Normality

Test -Statistic--- -----p Value------

Shapiro-Wilk 0.994445 Pr < W 0.9347

We fail to reject the null hypothesis and conclude that there is
insufficient evidence to conclude that the model errors are not
normally distributed.
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Identifying departures from homoscedasticity

We identify departures from homoscedasticity by plotting the
residuals versus the predicted values.

ods html style = Journal;
ods graphics on;
ods select ResidualByPredicted;

proc reg data = one plots(unpack);
model infrisk = los cult beds;

run;
quit;

ods graphics off;
ods html close;
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Departures from homoscedasticity (cont.)
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The “megaphone” plot ... (i.e. a violation)
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Outliers

Outliers are observations that are extreme in the sense that
they are noticeably different than the other data points. What
causes outliers?

1. Data entry errors (the biggest culprit!)

2. Data do not represent a homogeneous set to which a
single model applies. Rather, the data are a
heterogeneous set of two or more types, of which one is
more frequent than the others.

3. Error distributions that have “thick tails” in which extreme
observations occur with greater frequency. (What does
that mean?)
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Outliers (cont.)
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Outliers (cont.)
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Outliers (cont.)

Although linear regression is robust to departures from
normality, this is not the case when the error distribution has
thick tails. Ironically, sampling distributions that look quite
different from a normal distribution cause little trouble, while
these thick tail distributions flaw the inference based on F
tests.
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Outlier detection - visual means

1. Simple scatterplots of the data (useful primarily for SLR)

2. Plots of the residuals versus the fitted values

3. Plot of the residuals versus each predictor

ods html style = analysis;
ods graphics on;
ods select ResidualByPredicted;
ods select ResidualPanel1;

proc reg data = one plots(unpack);
model infrisk = los cult beds;

run; quit;

ods graphics off;
ods html close;
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Outlier detection - Resid’s vs. predicted values
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Outlier detection - Resid’s vs. predictors
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Outlier detection - numerical means

Some rules of thumb about jackknife residuals

• Jackknife residuals with a magnitude less than 2 (i.e.
between -2 and +2) are not unusual.

• Jackknife residuals with a magnitude greater than 2
deserve a look.

• Jackknife residuals with a magnitude greater than 4 are
highly suspect.
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Outlier detection in SAS

proc reg data = one;
model infrisk = los cult beds;
output out = fitdata rstudent = jackknife;

run;
quit;

proc print data = fitdata;
where abs(jackknife) > 2;

run;
Obs INFRISK LOS CULT BEDS jackknife
8 5.4 11.18 60.5 640 -2.66653
35 6.3 9.74 11.4 221 2.29488
53 7.6 11.41 16.6 535 2.60976
63 5.4 7.93 7.5 68 2.20954
96 2.5 8.54 27.0 98 -2.15224
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Leverage and influence

• The leverage of a data point refers to how extreme it is
relative to x̄. Observations far away from x̄ are said to
have “high leverage”.

• The influence of a data point refers to its impact on the
fitted regression line. If an observation “pulls” the
regression line away from the fitted line that would have
resulted if that point had not been present, then that
observation is deemed “influential”.
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Dotted = with point; Solid = without point
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Measuring leverage

For each data point, there is a corresponding quantity known
as the hat diagonal that measures the standardized distance
of the ith observation to the center of the predictors. In
symbols, the hat diagonal is written hi. (We saw this term in
the definition of studentized residuals.)

As a general rule of thumb, any value of hi greater than
2(k + 1)/n is cause for concern, where k is the number of
predictors in the model and n is the number of data points.
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Leverage and residual plots in SAS

ods html style = analysis;
ods graphics on;
ods select RStudentByLeverage;

proc reg data = one plots(unpack);
model infrisk = los cult beds;

run;
quit;

ods graphics off;
ods html close;
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Leverage and residual plots in SAS
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Measuring influence

For each data point, there is a corresponding quantity known
as Cook’s Di (‘D’ for ‘distance’) that is a standardized distance
measuring how far β̂ moves when the ith observation is
removed. As a general rule of thumb, any observation with a
value of Cook’s Di greater than 4/n, where n is the number of
observations, deserves a closer look.
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Graphing of Cooks D in SAS

ods html style = analysis;
ods graphics on;
ods select CooksD;

proc reg data = one plots(unpack);
model infrisk = los cult beds;

run;
quit;

ods graphics off;
ods html close;
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Graphing of Cooks D in SAS (cont.)
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Leverage/influence - numerical assessment

proc reg data = one;
model infrisk = los cult beds;
output out = fitdata cookd = cooksd h = hat;

run;
quit;

*(2*4)/113 = 0.071;
proc print data = fitdata;

where hat ge (2*4)/113;
run;

*4/113 = 0.035;
proc print data = fitdata;

where cooksd ge 4/113;
run;
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Leverage/influence - numerical assessment

Obs INFRISK LOS CULT BEDS cooksd hat jackknife

8 5.4 11.18 60.5 640 0.45427 0.21252 -2.66653

11 4.9 11.07 28.5 768 0.03058 0.08368 -1.15910

13 7.7 12.78 46.0 322 0.02080 0.09230 0.90371

20 4.1 9.35 15.9 833 0.02697 0.11055 -0.93115

46 4.6 10.16 8.4 831 0.00055 0.10609 -0.13510

47 6.5 19.56 17.2 306 0.01081 0.30916 -0.30957

54 7.8 12.07 52.4 157 0.04106 0.13462 1.02773

78 4.9 10.23 9.9 752 0.00066 0.07977 0.17330

110 5.8 9.50 42.0 98 0.00083 0.08236 0.19197

112 5.9 17.94 26.4 835 0.20239 0.19506 -1.84793

Regression diagnostics – p. 36/48



All the graphics in one panel

ods html style = analysis;
ods graphics on;

proc reg data = one plots;
model infrisk = los cult beds;

run;
quit;

ods graphics off;
ods html close;
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All the graphics in one panel
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Collinearity

Collinearity is a problem that exists when some (or all) of the
independent variables are strongly linearly associated with
one another. If collinearity exists in your data, then the
following problems result.

• The estimated regression coefficients can be highly
inaccurate.

• The standard errors of the coefficients can be highly
inflated.

• The p-values, and all subsequent inference, can be
wrong.
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Symptoms of collinearity

• Large changes in coefficient estimates and/or in their
standard errors when independent variables are
added/deleted.

• Large standard errors.

• Non-significant results for independent variables that
should be significant.

• Wrong signs on slope estimates.

• Overall test significant, but partial tests insignificant.

• Strong correlations between independent variables.

• Large variance inflation factors (VIFs).
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Variance inflation factor

For each independent variable Xj in a model, the variance
inflation factor is calculated as

VIFj =
1

1 − R2

Xj∼all other Xs

where R2

Xj∼all other Xs is the usual R2 obtained by

regressing Xj on all the other Xs, and represents the
proportion of variation in Xj that is explained by the remaining
independent variables. Therefore, 1 − R2

Xj∼all other Xs is a

measure of the variability in Xj that isn’t explained by the
other independent variables.
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Variance inflation factor (cont.)

When there is strong collinearity,

• R2

Xj∼all other Xs will be large

• 1 − R2

Xj∼all other Xs will be small, and so

• VIFj will be large.

As a general rule of thumb, strong collinearity is present when
VIFj > 10.
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Collinearity example

Consider the MLR of INFRISK on LOS, CENSUS and BEDS.
ods html;

ods graphics on;

proc corr data = one plots=matrix;

var los census beds;

run;

ods graphics off;

ods html close;

proc reg data = one;

model infrisk = los/vif;

model infrisk = los census/vif;

model infrisk = los census beds/vif;

run;
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Collinearity: PROC CORR output
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Collinearity: PROC CORR output (cont.)

Pearson Correlation Coefficients, N = 113

Prob > |r| under H0: Rho=0

LOS CENSUS BEDS

LOS 1.00000 0.47389 0.40927

LENGTH OF STAY <.0001 <.0001

CENSUS 0.47389 1.00000 0.98100

AVG DAILY CENSUS <.0001 <.0001

BEDS 0.40927 0.98100 1.00000

NUMBER OF BEDS <.0001 <.0001
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Collinearity: PROC REG output

INFRISK REGRESSED ON LOS

Root MSE 1.13929 R-Square 0.2846

Dependent Mean 4.35487 Adj R-Sq 0.2781

Coeff Var 26.16119

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 0.74430 0.55386 1.34 0.1817 0

LOS 1 0.37422 0.05632 6.64 <.0001 1.00000
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Collinearity: PROC REG output (cont.)

INFRISK REGRESSED ON LOS AND CENSUS

Root MSE 1.12726 R-Square 0.3059

Dependent Mean 4.35487 Adj R-Sq 0.2933

Coeff Var 25.88504

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 0.99950 0.56531 1.77 0.0798 0

LOS 1 0.31908 0.06328 5.04 <.0001 1.28960

CENSUS 1 0.00145 0.00078668 1.84 0.0687 1.28960
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Collinearity: PROC REG output (cont.)

INFRISK REGRESSED ON LOS, CENSUS AND BEDS

Root MSE 1.12953 R-Square 0.3094

Dependent Mean 4.35487 Adj R-Sq 0.2904

Coeff Var 25.93727

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 0.82296 0.61382 1.34 0.1828 0

LOS 1 0.33538 0.06706 5.00 <.0001 1.44245

CENSUS 1 -0.00142 0.00392 -0.36 0.7177 31.90045

BEDS 1 0.00225 0.00302 0.75 0.4569 29.71362
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