Types of Events

- Two events \(A \) and \(B \) are \textit{mutually exclusive} if they cannot happen at the same time\(P(A \cap B) = 0 \)

- Two events \(A \) and \(B \) are \textit{independent} if the probability of the first one happening is the same no matter how the second one turns out

Properties of Independent Events

That \(A \) and \(B \) are independent means:

- \(P(A|B) = P(A) \)

- \(P(B|A) = P(B) \)

- \(P(A \cap B) = P(A) \cdot P(B) \)

Diagnostic Testing

- Experiment: performing a diagnostic test for some disease
- Data: information on a random sample of \(n \) people who were tested and whose disease status is known

<table>
<thead>
<tr>
<th>Test (\pm)</th>
<th>Disease (D+)</th>
<th>No disease (D-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test + (T+)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Test – (T-)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td></td>
<td>(a+c)</td>
<td>(b+d)</td>
</tr>
</tbody>
</table>

- Want to learn: how good the test is
- There are four measures of how good a test is:

1. Sensitivity = \(P(T+|D+) = \frac{a}{a+c} \)
2. Specificity = $P(T^-|D^-) = \frac{d}{b+d}$

3. Predictive value of a positive test = $PV^+ = P(D^+|T^+) = \frac{a}{a+b}$

4. Predictive value of a negative test = $PV^- = P(D^-|T^-) = \frac{d}{c+d}$

Problem for Rare Diseases

- Need very large number of people in the study to have enough people with the disease

- Solution: instead of choosing n people at random choose n people with disease and n people without disease