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Abstract

This paper investigates conditional choice probability estimation of dynamic struc-
tural discrete- and continuous-choice models. I extend theconcept of finite dependence
in a way that accommodates non-stationary, irreducible transition probabilities. I show
that under this new definition of finite dependence, one-period dependence is obtainable
in a larger class of dynamic structural models than previously investigated. This finite-
dependence property also provides a convenient and computationally cheap representa-
tion of the optimality conditions for the continuous-choice variables. I allow for discrete-
valued permanent unobserved heterogeneity in utilities and production functions. The
unobserved heterogeneity may be correlated with the observable state variables. I pro-
pose sufficient conditions for identification of the utilityfunctions and the distribution
of the unobserved heterogeneity. I show the estimator is root-n–asymptotically normal.
I develop a new and computationally cheap algorithm to compute the estimator, and an-
alyze the finite-sample properties of this estimator via Monte Carlo techniques. I apply
the proposed method to estimate a model of education and labor-supply choices to in-
vestigate the effect of race and parent income on the distribution of returns to education,
using data from the National Longitudinal Survey of Youth 1979.
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1 Introduction

In this paper, I investigate conditional choice probability (CCP) estimation of dynamic struc-

tural discrete/continuous-choice models with unobservedindividual heterogeneity. I show

that an extension to the definition of finite dependence proposed in Altug and Miller (1998)

and Arcidiacono and Miller (2011) accommodates general non-stationary and irreducible

transition functions, as well as a general form of correlated, permanent unobserved hetero-

geneity in the utility and production functions. I propose sufficient conditions for identifi-

cation of the period-specific payoff functions and the distribution of the unobserved hetero-

geneity, and I propose a generalized method of moments (GMM)estimator for the structural

parameters of the model and derive their asymptotic distributions. I also propose an algo-

rithm to implement the estimator. I investigate the finite-sample properties of the estimator

by way of Monte Carlo analysis and implement this method to estimate a model of educa-

tion and labor-supply choices to investigate the distribution of returns to education, using

data from the National Longitudinal Survey of Youth 1979 (NLSY79).

Since its introduction by Hotz and Miller (1993), CCP estimation of dynamic structural

models has flourished in empirical labor economics and industrial organization, largely be-

cause of its potential for material reduction in computational costs relative to the more tra-

ditional backward recursive- and contraction mapping-based full maximum likelihood esti-

mation pioneered by Rust (1987), referred to as the nested fixed-point algorithm (NFXP).

The CCP estimator circumvents having to solve the dynamic programming problem for each

trial value of the structural parameters, by making use of a one-to-one mapping between the

normalized value functions and the CCPs established in Hotzand Miller (1993). Therefore,

nonparametric estimates of the CCPs can be inverted to obtain estimates of the normalized

value functions, which can then be used to estimate the structural parameters.

Empirical application of the early formulation of CCP estimation had important limita-

tions relative to the NFXP method. The emerging literature has focused on separate but

related drawbacks. The first is that nonparametric estimation of the CCPs results in less

efficient estimates of the structural parameters, as well asrelatively poor finite-sample per-

formance. The second is the difficulty of accounting for unobserved individual heterogeneity,

mainly due to having to estimate the CCPs by nonparametric methods. A limitation of both

the CCP and NFXP approaches to estimation is that they are largely restricted to discrete-
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choice, discrete-states models.

Aguirregabiria and Mira (2002) propose a solution to the issue of efficiency and finite-

sample performance of the CCP estimator relative to the NFXPestimator. They show that

for a given value of the preference parameters, the fixed-point problem in the value function

space can be transformed into a fixed-point problem in the probability space. The authors

suggest swapping the nesting of the NFXP and show the resulting estimator is asymptotically

equivalent to the NFXP estimator. Furthermore, they show insimulation studies that their

method produces estimates 5 to 15 times faster than NFXP. Themethod they propose is

restricted to discrete-choice models in stationary environments and is not designed to account

for unobserved individual heterogeneity.

Recent developments in accounting for unobserved heterogeneity in CCP estimators in-

clude Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2011). Aguirregabiria

and Mira (2007) allow for permanent unobserved heterogeneity in stationary, dynamic dis-

crete games. Their method requires multiple inversion of potentially large dimensional ma-

trices. Arcidiacono and Miller (2011) propose a more general method for incorporating time-

specific or time-invariant unobserved heterogeneity into CCP estimation of discrete dynamic

models.

Altug and Miller (1998) propose an approach that allows for continuous choices in the

CCP framework. By assuming complete markets, estimates of individual effects and aggre-

gate shocks are obtained, which are then used in the second stage to form (now) observation-

ally equivalent individuals. These observationally equivalent individuals are used to compute

counterfactual continuous choices. Bajari, Benkard, and Levin (2007) modify the methods

of Hotz and Miller (1993) and Hotz, Miller, et al. (1994) to estimate dynamic games. They

consider models of pure discrete choice or pure continuous choice, but not both.

The finite-dependence property – when two different policies associated with different

initial choices lead to the same distribution of states after a few periods – is critical for the

computational feasibility and finite-sample performance of CCP estimators. Finite depen-

dence combined with the invertibility result of Hotz and Miller (1993) results in a significant

reduction in the computational cost of estimating dynamic structural models. Essentially,

the smaller the order of dependence, the faster and more precise the estimator, because fewer

future choice probabilities have to be estimated or updated, depending of the method of es-
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timation. The concept of finite dependence was first introduced by Hotz and Miller (1993),

extended by Altug and Miller (1998), and further by Arcidiacono and Miller (2011). Despite

these generalizations, the concept of finite dependence is largely restricted to discrete-choice

models with stationary transitions and models with the renewal or exchangeability proper-

ties.

This paper makes three separate but closely related contributions to the literature on CCP

estimation of dynamic structural models. I extend the concept of finite dependence to allow

for general non-stationary and irreducible transition probabilities. Although its definition is

precise and well understood, the strategy to construct finite dependence in dynamic structural

models has been largely ad hoc and often achieved by relying on assumptions that are either

theoretically unjustified or by significantly restricting the data. Altug and Miller (1998),

Gayle and Miller (2003), and Gayle (2006) rely on complete markets and degenerate transi-

tion probability assumptions to form counterfactual strategies that obtain finite dependence.

A key insight of Arcidiacono and Miller (2011) is that “the expected value of future utilities

from optimal decision making can always be expressed as functions of the flow payoffs and

CCPs foranysequence of future choices, optimal or not.” This insight isthe basis of our ex-

tension of the finite-dependence property. I show the expected value of future utilities from

optimal decision-making can be expressed asany linear combinationof flow payoffs and

conditional CCPs, as long as the weights sum to one. This insight converts the difficult prob-

lem of finding one pair of sequences of choices that obtains finite dependence to a potential

set of finite dependencies from which to choose.

Given that I am now able to choose from a class of finite-dependence representations,

the question becomes whether a choice of weights exists thatobtains one-period finite de-

pendence. Indeed, one-period finite dependence is achievable regardless of the form of the

transition functions, as long as they are non-degenerate. The resulting form of the conditional

value function provides a simple method for accommodating continuous choices.

The approach taken to model continuous choices may be considered a dynamic version

of the Roy (1951) model, and parallels the method for estimating discrete/continuous static

structural models of Dubin and McFadden (1984) and Hanemann(1984). Particularly, in

each period and for each discrete alternative, the agent observes the period-specific shocks

and solves for the associated conditional continuous choices (henceforth CCCs) that max-

imizes the corresponding alternative-specific value of thediscrete choice. The agent then
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chooses the alternative with the highest (maximized) value. This dynamic selection on unob-

servables implies the distribution of observed CCCs differs from the distribution of optimal

CCCs, rendering first-stage estimation of optimal CCCs biased without additional restric-

tions, such as the Pareto optimality condition imposed by Altug and Miller (1998) and sub-

sequent authors. The alternative sequence of the revelation of the shocks assumed in Blevins

(2014) also circumvents this dynamic selection on unobservables problem, but at the cost of

restricting the sources of selection effects.

Along with individual-time-specific shocks, the model developed in this paper allows for

discrete-valued, permanent unobserved heterogeneity in the utility functions and production

functions. The distribution of these unobserved random variables may be correlated with

observable covariates of the model. I provide sufficient conditions for identification of the

utility functions and the distribution of the unobserved heterogeneity. The identification strat-

egy taken in this paper is closely related to Magnac and Thesmar (2002), Blevins (2014), and

Arcidiacono and Miller (2020).1 Magnac and Thesmar (2002) investigate the potential for

restrictions such as absorbing states, additive separability, and terminal conditions to deliver

identification of the period-specific payoff functions in stationary environments. Blevins

(2014) investigates identification of the parameters of models with discrete and continuous

choices, also in stationary environments. Although the timing restriction of Blevins (2014)

– the discrete-choice shocks are observed before the continuous-choice shocks – is an effec-

tive restriction for identification of the period-specific utilities and continuous-choice shocks,

it restricts the scope of selectivity in dynamic structuralmodels. This paper assumes the

continuous-choice shocks are observed before, or simultaneously with, the discrete-choice

shocks, but also assumes the distribution of the continuous-choice shocks are known.

As discussed by Arcidiacono and Miller (2020), identification becomes more difficult

in nonstationary environments, particularly when the finalperiod of the decision process is

unobservable to the investigator. Arcidiacono and Miller (2020) discuss identification of

models of this type under the assumption that single-actionρ-dependence holds, meaning

the ρ-period-ahead transition probabilities of the observed state variables given any action

in the current period and the normalizing actions (the action for which the period-specific

utilities are known) in allρ periods thereafter coincide. The identification strategy in this

1Blevins (2014) and Arcidiacono and Miller (2020) provide a comprehensive review of the literature on
identification of dynamic structural models.
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paper imposes different restrictions on state transition probabilities of the observed state

variables, which can obtained by index restrictions or exclusion restrictions.

I propose a GMM estimator for these parameters and an iterative algorithm to compute

them. Relative to maximum likelihood-based estimators, the GMM estimator has the ad-

vantage of not requiring specification of the distribution of measurement errors, which is of

particular concern in this framework because continuous outcome variables are often mea-

sured with errors. Also, the GMM estimator is robust to the initial-conditions problem in

that consistent estimation of the parameters does not require observing the initial state vari-

ables or estimating the initial conditions. A consequence of opting for the GMM approach

to estimation is that the method developed in Arcidiacono and Miller (2011) to account for

unobserved heterogeneity is no longer available. I addressthis deficiency by developing an

iterative Bayes method that uses information from the CCPs alone.

I investigate the finite-sample properties of the proposed estimator by way of Monte

Carlo methods. I consider two environments. The first is a discrete-continuous choice

model in which the performance of the proposed estimator is compared with the full-solution

method of obtaining the CCPs and CCCs. The second compares the approach proposed in

this paper with the one proposed in Arcidiacono and Miller (2011) in estimating a model

that exhibits the renewal property. The results show the proposed estimator performs well in

both environments.

I apply the methods developed in this paper to estimate a model of educational attainment

and labor supply to investigate properties of the distribution of the returns to education, using

data from the NLSY79. Key features of the model are as follows: (1) I allow for individuals

to choose to simultaneously participate in the labor marketand enroll in school; (2) I treat

hours worked as a continuous-choice variable and allow for it to affect the probability of

completing the grade level enrolled in; (3) I allow for psychic costs of school attendance and

labor market activities; and (4) returns to education is modeled as a random coefficient with

a finite-mixture distribution and mixing probabilities depending on racial, parental income,

and on Armed Forces Qualification Test score (AFQT) categories. The model estimated in

this paper is closely related to those estimated in Keane andWolpin (1997; 2000; 2001) and

Eckstein and Wolpin (1999). A key distinction between the theoretical model presented in

these cited papers and the one in this paper is this paper specifies unobserved heterogeneity

as a random coefficient on the level of education.
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The results show the distribution of returns to education varies significantly with AFQT,

with the distribution for individuals with AFQT above the median first-order stochastically

dominating the distribution for individuals with AFQT below the median. Racial differences

in the distribution of returns to education are greatly reduced when AFQT is accounted for.

However, parental income remains a significant determinantof the distribution of returns

to education, with the distribution for individuals with high parental income stochastically

dominating the distribution for individuals with low parental income for all AFQT and race

categories, but marginally so for blacks with high AFQT. I also find the black-white gap in

constants of the log wage function is decreasing in higher parental income, suggesting this

gap reflects greater access to higher-paying jobs by individuals with richer parents (higher

permanent income) rather than a skill gap.

The results suggest that, net of differences in scholastic endowments as measured by

AFQT, no economically significant racial variation exists in the barriers to school enrollment,

nor in the likelihood of completing a grade level given enrollment. I also find inclusion of

AFQT significantly reduces the effect of parental income on the barriers to school enrollment

and grade-completion rates. This result is consistent withCameron and Heckman (2001)

and Carneiro and Heckman (2003), who argue the effect of parental income on educational

attainment is primarily a result of it being a proxy for permanent income, which influences

early childhood development of scholastic abilities. An important caveat to these results

pertains to individuals who work while attending school, for whom I find the nonpecuniary

costs of working while enrolled in school is higher for blacks. I also find these costs to be

increasing in parental income, which is consistent with theexistence of borrowing constraints

found in Keane and Wolpin (2001).

I find that nonpecuniary costs of labor force participation are decreasing in parental in-

come and does not vary by race. These results are unchanged with the inclusion of AFQT,

which itself reduces the nonpecuniary costs of employment.These results suggest AFQT

also measures valuable labor market abilities, which are developed during early childhood,

and that individuals with richer parents possess greater access to the labor market.

The rest of the paper proceeds as follows. Section 2 outlinesthe class of dynamic struc-

tural models investigated in this paper and presents the newalternative representation of the

value functions that I use to obtain finite dependence. Section 3 then defines generalized

finite dependence, shows one-period finite dependence can beobtained in my class of mod-
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els, defines first-order optimality conditions for optimal choices, and outlines my approach

to incorporating correlated unobserved heterogeneity in the model. I provide sufficient con-

ditions for identification of the parameters of the model in section 4. Section 5 proposes a

GMM estimator for the parameters. Section 6 outlines the algorithm I propose to compute

the estimator, and section 7 presents the limiting varianceof my estimator. The Monte Carlo

analysis of the finite-sample properties of the proposed estimator is presented in section 8,

and in section 9, I implement my method to estimate a model of educational attainment

and labor supply. Section 10 concludes. The Appendix contains the proofs and the tables

reporting the estimation results from my empirical application in section 9.

2 Model

2.1 General framework

This section outlines the class of dynamic structural discrete/continuous-choice models that I

consider and corresponding alternative representation. This framework only modifies that of

Arcidiacono and Miller (2011) to include the CCCs, and I maintain the notation of notation

of Arcidiacono and Miller (2011) where feasible for consistency. The inclusion of continu-

ous choices follows closely the framework of the static discrete/continuous-choice models

presented in Dubin and McFadden (1984) and Hanemann (1984).

In each period,t, an individual chooses amongJ discrete, mutually exclusive, and ex-

haustive alternatives. Letd jt be 1 if the discrete actionj ∈ {1, · · · ,J} is taken in periodt,

and 0 otherwise, and definedt = (d1t , · · · ,dJt). Associated with each discrete alternative,

j, the individual choosesL j continuous alternatives. Letcl jt ∈ Cl jt ⊆ ℜ+, l j ∈ 1, · · · ,L j ,

be the continuous actions associated with alternativej, with cl j t > 0 if d jt = 1. Define

c jt = (c1t , · · · ,cL jt) ∈ C jt , whereC jt = ×L j
l j=1Cl jt and ct = (c1t , · · · ,c jt ) ∈ Ct , whereCt =

×J
j=1Cl jt ⊆ ℜL

+, andL = ∑J
j=1L j . Also, let( j,c jt ) be the vector of discrete and continuous

actions associated with alternativej. The current-period payoff associated with action( j,c jt )

depends on the observed statext ∈ X ⊆ℜDx, whereDx is the dimension ofxt , the unobserved

(to the investigator) statest ∈ S ⊆ ℜDs, whereDs is the dimension ofst , the unidimensional

discrete-choice–specific shockε jt ∈ ℜ, and theL j -dimensional vector of continuous-choice–

9



specific shocksr jt = (r1t , · · · , rL jt) ∈ ℜL j . Let zt = (xt ,st) ∈ Z ⊆ ℜDx+Ds, ejt = (ε jt , r jt ),

et = (e1t , · · · ,ejt ), andrt = (r1t , · · · , r jt ) ∈ ℜL.

With respect to the empirical application, the individual chooses among four(J = 4)

discrete alternatives, which are, stay home (j = 1), not attend school and work (j = 2),

not work and attend school (j = 3), and work and attend school simultaneously (j = 4). The

CCCs the individual faces is the number of hours to work giventhat he chooses to participate

in the labor market( j = 2,4). The shocks associated with these CCCs are the shocks to the

wage-offer functions, and the unobserved state vector,st is the returns to education. The

distribution of returns to education is assumed to depend onthe race of the individual, the

individual’s parental income, and the AFQT of the individual.

Define y jt = (d jt ,c jt ) and letu jt (zt ,c jt ,ejt ) be the individual’s period-specific payoff.

The individual chooses the vectoryt = (y1t , · · · ,yJt) to sequentially maximize the expected

discounted sum of payoffs:

E

{

T

∑
t=1

J

∑
j=1

βt−1d jt [u jt (zt,c jt ,ejt )]

}

, (2.1)

whereβ ∈ (0,1) is the discount factor. In each period,t, the expectation is taken with respect

to the joint distribution ofzt+1, · · · ,zT andet+1, · · · ,eT . Let f jt (xt+1,et+1|zt ,c jt ,et) be the

probability function of(xt+1,et+1) given (zt,et) and action( j,c jt ) taken in periodt. The

following restrictions are placed on the period-specific utility and probability functions.

Assumption 2.1.For j = 1, · · · ,J,

1. the period-specific utility function, ujt (zt ,c jt ,ejt ) = u jt (zt,c jt , r jt )+ ε jt , and

2. the transition function, fjt (zt+1,et+1|zt,c jt ,et) = f jt (zt+1|zt ,c jt )gε(εt+1)gr(rt+1).

3. The individual observes(zt ,et) at the beginning of period t.

Assumption 2.1.1 is the standard additive separability restriction of the period-specific

utility function in the discrete-alternative-specific shocks. Note that, similar to Blevins

(2014), the continuous-choice-specific shocks may enter the period-specific utility functions

nonlinearly, which is necessary to avoid statistical degeneracy during estimation by maxi-

mum likelihood. Assumption 2.1.2 is the standard conditional independence assumption,

with the additional restrictions that the discrete-alternative-specific shocks and the CCC-

specific shocks are statistically independent. This assumption is stronger than the condi-
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tional independence assumption imposed in Blevins (2014),who assumes these two shocks

are independent given the discrete choice and the observable state variables in periodt. As-

sumption 2.1.2 can be extended to allow for the distributionof the CCC-specific shocks to be

non-stationary and dependent onxt , but at the cost of increased complexity in the exposition

of the key results.

The key transition probability in the empirical application is the probability of completing

a grade level given the individual enrolls in school( j = 3,4). The probability of completing

a grade level depends on the hours worked by the individual ifhe decides to both attend

school and work( j = 4).

Given Assumption 2.1.3, the individual computes the optimal continuous choice for each

discrete alternative and then chooses the optimal discretechoice, given the optimal contin-

uous choices. Assumption 2.1 implies the alternative-specific continuous choices are not

functions of the discrete-choice-specific shocks,εt . Blevins (2014) considers the case in

whichεt is first observed by the individual andrt is observed only after the discrete action is

taken.

Let the optimal decision rule at periodt be given byy0
t = {(d0

jt (zt ,et),c0
jt (zt, r jt )), j =

1, · · · ,J}, and defineu0
jt (zt, rt) = u jt (zt ,c0

jt (zt , r jt ), r jt ). Let the ex-ante value function in

period t, Vt(zt), be the discounted sum of expected future payoffs, prior to observinget ,

given the individual follows the optimal decision rule:

Vt(zt) = E

{

T

∑
τ=t

J

∑
j=1

βτ−td0
jτ(zτ,eτ)[u

0
jτ(zτ, r jτ), r jτ)+ ε jτ]

}

.

The expected value function in periodt +1, givenzt , the discrete choice,j, and correspond-

ing CCC’s,c jt , is

V̄jt+1(zt,c jt ) = β
∫

Vt+1(zt+1) f jt (zt+1|zt,c jt )dzt+1. (2.2)

Let V̄0
jt+1(zt , r jt ) := V̄jt+1(zt ,c0

jt (zt, r jt )). The ex-ante value function can be then written
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recursively:

Vt(zt) = E

{

J

∑
j=1

d0
jt (zt ,et)

[

u0
jt (zt , r jt )+ ε jt +V̄0

jt+1(zt, r jt )
]

}

=
∫ ∫ J

∑
j=1

d0
jt (zt,et)

[

u0
jt (zt, r jt )+ ε jt +V̄0

jt+1(zt, r jt )
]

gr(rt)drtgε(εt)dεt ,

=
∫ ∫ J

∑
j=1

d0
jt (zt,et)

[

v0
jt (zt, r jt )+ ε jt

]

gr(rt)drtgε(εt)dεt

wherev0
jt (zt, r jt ) := u0

jt (zt, r jt )+V̄0
jt+1(zt, r jt ). Define

v jt (zt,c jt , r jt ) = u jt (zt,c jt , r jt )+V̄jt+1(zt,c jt ), (2.3)

to be the choice-specific conditional value function giveny jt , excludingε jt , so thatv0
jt (zt, r jt )=

v jt (zt ,c0
jt (zt, r jt ), r jt ). Then, under Assumption 2.1, the optimal CCCs associated with the

discrete alternativej in periodt, satisfy

∂
∂cl j t

v jt (zt,c
0
jt (zt , r jt ), r jt ) = 0, (2.4)

for l j = 1, · · · ,L j , and the optimal discrete choice of alternativej is

d0
jt (zt,et) =

{

1 if v0
jt (zt , r jt )+ ε jt > v0

kt(zt , rtk)+ εkt ∀k 6= j

0 otherwise.
(2.5)

Finally, the optimal CCC,c∗jt (zt , r jt ), is given by

c∗jt (zt,ejt ) = d0
jt (zt ,et)c

0
jt (zt, r jt ). (2.6)
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2.2 CCP formulation

The probability of choosing alternativej at timet, conditional onzt , rt , and the vector of

choice-specific optimal CCCs,c0
t (zt , rt), is given by

p0
jt (zt, rt) = E[d0

jt (zt,et)|zt , rt], (2.7)

so that, for all(zt, rt), ∑J
j=1 p0

jt (zt , rt) = 1, and p0
jt (zt , rt) > 0 for all j. Let p0

t (zt , rt) =

(p0
1t(zt, rt), · · · , p0

Jt(zt, rt))
′ be the vector of CCPs. Lemma 1 of Arcidiacono and Miller

(2011) shows a functionψ : [0,1]J 7→ ℜ exists such that fork= 1, · · · ,J,

ψk(p
0
t (zt, rt))≡Vt(zt , rt)−v0

tk(zt, rkt). (2.8)

Equation (2.8) is simply equation (3.5) of Arcidiacono and Miller (2011), modified so the

choice probabilities and value functions are also conditional on the i.i.d. shocks associated

with the CCCs.

The key insight is that if (2.8) holds fork = 1, · · · ,J, then for anyJ-dimensional vector

of real numbersa= (a1, · · · ,aJ) with ∑J
k=1ak = 1,

Vt(zt , rt) =
J

∑
k=1

ak[v
0
kt(zt , rkt)+ψk(p

0
t (zt , rt))]. (2.9)

Let a jt+1(zt+1, rt+1) = (a1 jt+1(zt+1, r1t+1), · · · ,aJ jt+1(zt+1, rJt+1)), be the weights asso-

ciated with the initial discrete choice,j, in periodt. Substituting equation (2.9) into equation

(2.3) gives

v jt (zt ,c jt , r jt ) = u jt (zt ,c jt , r jt )

+β
J

∑
k=1

∫ ∫
[v0

k,t+1(zt+1, rkt+1)+ψk(p
0
t+1(zt+1, rt+1))]

×ak jt+1(zt+1, rkt+1)gr(rt+1)drt+1 f jt (zt+1|zt ,c jt )dzt+1. (2.10)
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2.2.1 Clarifying example

To clarify the alternative representation, I provide a “stripped down” example of the model

formation for whichJ = 2. In this example, I assume the individual-time–specific discrete-

choice shock,εi jt , is distributed i.i.d., type 1 extreme value. The expected value function in

equation (2.2) becomes.

V̄jt+1(zt,c jt ) = β
∫ ∫

ln
2

∑
k=1

ev0
kt+1(zt+1,rkt+1)gr(rt+1)drt+1 f jt (zt+1|zt ,c jt )dzt+1+βγ, (2.11)

andγ is the Euler constant. Also, the periodt+1 conditional choice probability of alternative

j = 1,2 is given by

p0
jt+1(zt+1, rt+1) =

ev0
jt+1(zt+1,r jt+1)

∑2
k=1ev0

kt+1(zt+1,rkt+1)
. (2.12)

From equation (2.12), the following equality holds forj = 1,2:

ln
2

∑
k=1

ev0
kt+1(zt+1,rkt+1) = v0

jt+1(zt+1, r jt+1)− ln p0
jt+1(zt+1, rt+1). (2.13)

Notice equation (2.13) is simply equation (2.8) under the assumptions of this example and

evaluated at periodt + 1. Also, note the (LHS) of equation (2.13) is a term inside thein-

tegral on the (RHS) of equation (2.11). For alternativej = 1,2, let ak jt+1(zt+1, rt+1) be

weights associated with alternativej in period t and alternativek in period t + 1, with

a1 jt+1(zt+1, rt+1)+a2 jt+1(zt+1, rt+1) = 1, j = 1,2. Then, from equation (2.13),

ln
2

∑
k=1

ev0
kt+1(zt+1,rkt+1)

=
2

∑
k=1

ak jt+1(zt+1, rt+1)[v
0
kt+1(zt+1, rkt+1)− ln p0

kt+1(zt+1, rt+1)]. (2.14)
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Substituting equation (2.14) into equation (2.11) obtains

V̄jt+1(zt ,c jt )

= β
∫ ∫ 2

∑
k=1

ak jt+1(zt+1, rt+1)[v
0
kt+1(zt+1, rkt+1)− ln p0

kt+1(zt+1, rt+1)]

×gr(rt+1)drt+1 f jt (zt+1|zt ,c jt )dzt+1+βγ. (2.15)

Now, substitutingV̄jt+1 from equation (2.15) into equation (2.3), obtains

v jt (zt ,c jt , r jt ) = u jt (zt ,c jt , r jt )

+β
∫ ∫ 2

∑
k=1

ak jt+1(zt+1, rt+1)[v
0
kt+1(zt+1, rkt+1)− ln p0

kt+1(zt+1, rt+1)]

×gr(rt+1)drt+1 f jt (zt+1|zt,c jt )dzt+1+βγ, (2.16)

which is equation (2.10) under the assumptions of this clarifying example.

Equation (2.10) shows the value function conditional on(zt , rt) can be written as the flow

payoff of the choice plus any weighted sum of a function of theone-period-ahead CCPs plus

the one-period-ahead conditional value functions, where the weights sum to 1. This exten-

sion of the results of Arcidiacono and Miller (2011) provides a powerful tool for obtaining

finite dependence in a larger class of models than previouslyinvestigated.

3 Generalized finite dependence

This section shows that for any periodt < T − ρ, the conditional value function can be

expressed as a linear combination ofρ-periods-ahead period-specific utility functions and

CCPs, and thet + ρ + 1 expected value functions. To that end, definef 0
jt (zt+1|zt , r jt ) =

f jt (zt+1|zt ,c0
jt (zt , r jt )). For any initial choice( j,c jt ), define the sequence

{ak jτ(zτ, rτ|zt,c jt ),τ = t +1, · · · , t +ρ,k= 1, · · · ,J} (3.1)
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with ∑J
k=1 ak jτ(zτ, rτ|zt ,c jt ) = 1, and corresponding state transition functions,

κ jτ(zτ+1, |zt,c jt ) =










f jt (zt+1|zt ,c jt ) for τ = t

∑J
k=1

∫ ∫
f 0
kτ(zτ+1|zτ, rkτ)ak jτ(zτ, rτ|zt,c jt )gr(rkτ)drkτκτ−1, j(zτ|zt,c jt )dzτ

for τ = t +1, · · · , t+ρ.
(3.2)

Theorem 3.1. Suppose Assumption 2.1 holds. For initial period t< T −ρ and subsequent

periodsτ = {t + 1, · · · , t + ρ}, the alternative-specific conditional value function can be

expressed as a linear combination ofρ-periods-ahead period-specific utility functions and

CCPs, with weights defined in (3.1), and theρ+1-periods-ahead continuation value, where

the utility functions and CCPs are evaluated at the optimal CCCs.

The proof of Theorem 3.1 can be found in Appendix A.1.

Definition 3.2. For initial periodt < T − ρ, a pair of initial choices,( j,c jt ) and ( j ′,c j ′t),

exhibits generalizedρ-period dependence if the difference in their alternative-specific con-

ditional value functions can be expressed a linear combination of ρ-periods-ahead period-

specific utility functions and CCPs, where the utility functions and CCPs are evaluated at the

optimal CCCs.

The following theorem provides sufficient conditions on theweights defined in equation

(3.1) to achieveρ-period finite dependence. Its proof can be found in AppendixA.2.

Theorem 3.3. Suppose Assumption 2.1 holds. For initial period t< T −ρ, a pair of initial

choices,( j,c jt ) and ( j ′,c j ′t), exhibits generalizedρ-period dependence if corresponding

sequences,

{(ak jτ(zτ, rτ|zt ,ct),ak j′τ(zτ, rτ|zt,ct)),τ = t +1, · · · , t+ρ, k= 1, · · · ,J} exist for which

κ jt+ρ(zt+ρ+1|zt,c jt ) = κ j ′t+ρ(zt+ρ+1|zt,c j ′t)

almost everywhere with∑J
k=1akk′τ(zτ, rkτ|zt ,ct) = 1, k′ = j, j ′.

If the conditions imposed on the weights in Theorem 3.3 hold,then the difference in the
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conditional value functions is given by

v jt (zt ,c jt , r jt )−v j ′t(zt ,c j ′t , r j ′t) = u jt (zt ,c jt , r jt )−u j ′t(zt,c j ′t , r j ′t)

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫ ∫
βτ−t [u0

kτ(zτ, rkτ)+ψk[p
0
τ(zτ, rτ)]]

× [ak jτ(zτ, rkτ|zt,ct)κ jτ−1(zτ|zt ,c jt )−ak j′τ(zτ, rkτ|zt,ct)κ j ′τ−1(zτ|zt ,c j ′t)]gr(rτ)drτdzτ,

(3.3)

which is the central result of this section. Notice the removal of the first subscript on CCC

in the definition of the weights, because the discrete-choice–specific weights defined in The-

orem 3.3 may depend on the CCCs associated with the competingdiscrete alternative.

3.1 One-period finite dependence

The advantage of CCP estimation of dynamic structural models relative to the full-solution

method is its numerical advantage in terms of computation time, and this numerical advan-

tage depends on the order of finite dependence,ρ. Smallerρ generally results in faster

computation time, and more precise estimates of the structural parameters if the CCPs are

estimated in a first stage as in Hotz, Miller, et al. (1994), Altug and Miller (1998), and Gayle

and Miller (2003). In the context of this paper, the computational advantage of the CCP

estimator also depends on whether the transition probabilities, and hence the weights that

achieve finite dependence in Theorem 3.3, can be estimated outside the model. This section

provides sufficient conditions for which one-period finite dependence in models where the

transition functions are such that the weights can be computed outside the model. I consider

two cases. In the first case, the transition function does notdepend on the continuous choices,

nor the unobserved effects, in which case, the CCCs and unobserved effects only enter the

period-specific payoff functions. In the second case, the transition functions depend on the

continuous choices, but not the unobserved effects, in which case, the unobserved effects

enter the transition functions only through the optimal CCCs. In both cases, I assume the

unobserved effect is permanent to the individual.

Assumption 3.4.The unobserved effect, st = s for all t.
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3.1.1 Case 1

The first restriction on the transition functions considered is as follows.

Assumption 3.5.The transition probability, fjt (zt+1|zt,c jt ) = f jt (xt+1|xt).

Assumption 3.5 restricts the transition probability of theobserved states variables to not

be a function of the continuous choices and the unobserved effect. This restriction holds in

the empirical application forj = 3, the choice of enrolling in school and not work.

Theorem 3.3 implies one-period finite-dependence holds forinitial choices( j, j ′) if

∫ J

∑
k=1

fkt+1(xt+2|xt+1)
[

ak j(xt+1|xt) f jt (xt+1|xt)−ak j′(xt+1|xt) f j ′t(xt+1|xt)
]

dxt+1 = 0,

(3.4)
J

∑
k=1

akk′(xt+1|xt) = 1, k′ = j, j ′ (3.5)

almost everywhere, where the time subscript on the weights are dropped for convenience, in

which case, equation (3.3) becomes

v jt (zt,c jt , r jt )−v j ′t(zt,c j ′t , r j ′t) = u jt (zt,c jt , r jt )−u j ′t(zt ,c j ′t , r j ′t)

+β
J

∑
k=1

∫ ∫
[u0

kt+1(zt+1, rkt+1)+ψk(p
0
t+1(zt+1, rt+1))]gr(rt+1)drt+1

×
[

ak j(xt+1|xt) f jt (xt+1|xt)−ak j′(xt+1|xt) f j ′t(xt+1|xt)
]

dxt+1. (3.6)

In general, one would have to solve equations (3.4)-(3.5) toobtain weights that achieve

finite dependence. However, special cases exist in the literature for which the weights that

solve this system of equations are closed-form. Although these cases satisfy one-period finite

dependence defined in Arcidiacono and Miller (2011), showing how they can be considered

special cases of one-period finite stated defined in Definition 3.2 is instructive. It is suffi-

cient to consider models whereJ = 2, because the weights that achieve one-period finite

dependence can be computed pairwise.

Let xt = (x1t ,x2t), wherex1t is a vector of strictly exogenous variables. I discuss three
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such cases in the following under the framework of the clarifying example whereJ = 2.

Simple Transition A simple transition function is defined by the restriction that the

periodt +1 conditional distribution of the endogenous state variables is independent of the

periodt endogenous state variables given the joint distribution ofthe periodt andt+1 strictly

exogenous state variables. In particular, the transition function takes the form

f jt (xt+1|xt) = f jt (x2t+1|x1t+1,x1t) ft(x1t+1|x1t), (3.7)

in which the LHS of equation (3.4) is given by

∫ 2

∑
k=1

fkt+1(x2t+2|x1t+2,x1t+1) ft+1(x1t+2|x1t+1)

×
∫

[ak2(xt+1|xt) f2t(x2t+1|x1t+1,x1t)−ak1(xt+1|xt) f1t(x2t+1|x1t+1,x1t)]dx2t+1

× ft(x1t+1|x1t)dx1t+1. (3.8)

Therefore, settinga11(xt+1|xt) = a12(xt+1|xt) = γ (and hence,a21(xt+1|xt) = a22(xt+1|xt) =

1− γ), for anyγ ∈ ℜ satisfies equation (3.4).

Renewal.A model with the renewal property is one for which an action, say, alternative

one, can be taken in periodt+1 so the conditional distribution of the periodt+2 endogenous

state variables does not depend on the action taken in periodt, given the joint distribution

of the periods(t, · · · , t +2) exogenous state variables. In other words, equation (3.8) holds

for only j = 1. Then, one-period finite dependence is obtained by settinga11(xt+1|xt) =

a12(xt+1|xt) = 1 in equation (3.8). The bus-engine-replacement model of Rust (1987) is the

central example of a model with the renewal property, where the state variable of interest is

mileage of the bus, and the renewal action of replacing the bus engine (alternative 1 in our

example) in periodt +1 resets mileage to zero, thus making the distribution of mileage in

periodt +2 independent of the decision of whether to replace the bus engine in periodt.

Exchangeability. A model with the exchangeability property is one for which taking

“opposing” discrete actions in periodst andt +1 results in the same distribution of the two-
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period-ahead state variables, that is,

∫
f1t+1(xt+2|xt+1) f2t(xt+1|xt)dxt+1 =

∫
f2t+1(xt+2|xt+1) f1t(xt+1|xt)dxt+1 (3.9)

Then, equation (3.4) is satisfied by settinga12(xt+1|xt) = a21(xt+1|xt) = 1. The exchange-

ability restriction holds in the typical labor-supply model in which, say, alternative 2 is the

decision to work and the endogenous state variable is years of experience,∑t−1
τ=1d2τ, which

enters the classical Mincerian wage-offer function. Indeed, I implement these weights in the

empirical application to obtain finite dependence of the difference between the conditional

value of working and not attending school( j = 2), and the conditional value of staying home

( j = 1).

Additional model frameworks may exist for which closed-form weights that satisfy the

system of equations (3.4) - (3.5). However, this system of equations has to be solved nu-

merically to obtain the weights that obtain finite dependence in more general frameworks.

The following are two examples with no constants for which one-period finite dependence is

satisfied, in which case, one-period finite dependence as defined in Arcidiacono and Miller

(2011) is not achievable.

Education attainment. At any age,t, the individual chooses to enroll in school or stay

home. The endogenous state variable is the completed grade level at aget, xt . If an individ-

ual at aget with grade levelxt enrolls in school, she advances the grade level(xt+1 = xt +1)

with probability πt(xt). It is straightforward to check that ifπt(xt) 6= πt+1(xt), no two se-

quences of choices are equivalent the resulting periodt + 2 distributions of education, in

which case, equations (3.4) - (3.5) must be solved numerically. Indeed,ρ-period dependence

is not achievable for anyρ ≥ 1, due to the dependence of the probability of completing a

grade level on age. With respect to the empirical application, these weights are computed us-

ing equation (3.11) below to achieve one-period finite dependence of the difference between

the conditional value of enrolling in school and not work( j = 3) and the conditional value

of staying home( j = 1).

Fertility choice. In each period, a household decides whether to try to have a child, and

the endogenous variable is a live-birth outcome, whose probability depends on the house-

hold’s history of birth outcomes. Letbt be equal to a if the household successfully gives

birth, and 0 otherwise. Letxt = ∑t−1
τ=1θτbτ be the household’s history of live-birth outcomes.
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The live-birth transition function is given byf jt (bt+1|xt). Because the probability of a live-

birth depends on the pattern of previous live births, no two sequences of choices exist for

which finite dependence as defined in Arcidiacono and Miller (2011) is achieved. One re-

striction to the model that achieves finite dependence is to assume the probability of a live

birth depends on the history of live births only through the number of lives births (the num-

ber of kids), in which case the exchangeability condition holds. The results of Gayle and

Miller (2003) show this restriction is substantial, especially in models of fertility choice and

labor supply in which the spacing of births substantially affects the labor market success of

females.

To provide sufficient conditions for one-period dependencein the general case, I assume

the state variables are discrete.

Assumption 3.6.The observed state variable, xt , is discrete with cardinality|x|.

Under these restrictions, the model exhibits one-period finite dependence if

2

∑
k=1

|x|
∑
i=1

[ fkt+1(xt+2|xi)ak2t+1(xi |xt) f2t(xi |xt)− fkt+1(xt+2|xi)ak1t+1(xi |xt) f1t(xi |xt)] = 0

(3.10)

for xt+2 = x1, · · · ,x|x|, with a1 jt+1(x|xt)+a2 jt+1(x|xt) = 1, j = 1,2. Denote the probability

of reaching statext+2 andxt+1 from statext and actionsj in periodt andk in periodt+1 by

fk j(xt+2,xt+1|xt) = fkt+1(xt+2|xt+1) f jt (xt+1|xt).

Further define

fk j(x|xt) =
(

fk j(x,x1|xt), · · · , fk j(x,x|x||xt)
)

, fk j(xt) =
(

fk j(x1|xt)
′, · · · , fk j(x|x||xt)

′)′ , and

ak j(xt) =
(

ak jt+1(x1|xt), · · · ,ak jt+1(x|x||xt)
)′
.

Equation (3.10) implies the|x| system of equations∑2
k=1[ fk2(xt)ak2(xt)− fk1(xt)ak1(xt)] = 0.
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Imposing the conditiona1 j(xt) = ι|x|−a2 j(xt), j = 1,2 obtains

( f12(xt)− f22(xt))a12(xt)+( f21(xt)− f11(xt))a11(xt) = ( f21(xt)− f22(xt))ι|x|,⇔ (3.11)

F1(xt)a(xt) = F2(xt)ι|x|, (3.12)

whereF1(xt)= [( f12(xt)− f22(xt)),( f21(xt)− f11(xt))], is a 2|x|×|x| matrix,F2(xt)= f21(xt)−
f22(xt) is an|x|× |x| matrix, a= (a12(xt)

′,a11(xt)
′)′ is an|x|-dimensional vector, andι|x| is

the|x|-dimensional vector of ones. In general, equation (3.11) constitutes|x| equations with

at most 2|x| unknowns, making it a consistent and underdetermined system with an infini-

tude of solutions. A column ofF1(xt) takes the form( fkt+1(x′|x)− f jt+1(x′|x)) f jt (x|xt),

x′ = 1, · · · , |x|, which is nonzero iff jt (x|xt) 6= 0 and fkt+1(x′|x) 6= f jt+1(x′|x) for at least one

x′ ∈ {x1, · · · ,x|x|}. In other words, this column is nonzero if statex can be reached in period

t +1 from xt , given actionj, and least one state in periodt +2 exists for which the action

taken in periodt+1 is consequential for its occurrence. Therefore, a necessary condition for

at least one solution to the system of equations (3.12) is that at least|x| columns inF1 satisfy

these conditions. Theorem 3.7 states the corresponding sufficient conditions.

Theorem 3.7. Suppose Assumptions 2.1,3.4, 3.5, and 3.6 hold. Then one-period finite de-

pendence holds if Pr(rank(F1(xt))) = |x|) = 1.

Proof. A solution to system (3.12) is given by

a= F+
1 (xt)F2(xt)ι|x|, (3.13)

where+ denotes a generalized inverse. These weights in turn satisfy equations (3.4) - (3.5).

Implementation of one-period finite dependence in practicerequires estimation off jt (x|xt).

This quantity can be obtained by nonparametric methods as follows:

f̂ jt (x|xt) =
∑n

i 1{xit+1 = x}d jit 1{xit = xt}
∑n

i d jit 1{xit = xt}
.

Notice these quantities can be computed once before estimation of the period-specific utility

functions, which reduces the computational burden. To instead estimatef jt (x|xt) by para-
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metric methods, which is preferred when the dimension ofx is large is not uncommon.

3.1.2 Case 2

The second specification of the transition probabilities considered assumes the transition

probability of the observed state variables depends on the continuous choices.

Assumption 3.8.The transition probability, fjt (zt+1|zt,c jt ) = f jt (xt+1|xt ,c jt ).

An implication of Assumption 3.8 is the unobserved state variables affect the observed

state variables only though the dependence of the optimal CCCs on the unobserved state

variables. To simplify notation,c jt is treated as unidimensional in what follows.

Suppose Assumption 3.6 holds. Settingρ = 1 in equation (3.2) obtains

κ2t+1(xt+2, |zt,c2t)−κ1t+1(xt+2, |zt ,c1t) =

∫ 2

∑
k=1

|x|
∑
i=1

[

f 0
kt+1(xt+2|zi , rkt+1)ak2t+1(xi , rt+1|zt,ct) f2t(xi |xt ,c2t)

− f 0
kt+1(xt+2|zi, rkt+1)ak1t+1(xi , rt+1|zt,ct) f1t(xi |xt,c1t)

]

gr(rt+1)drt+1, (3.14)

wherezi = (xi,s) and f 0
kt+1(xt+2|zi, rt+1) = fkt+1(xt+2|xi,c0

kt+1(zi , rkt+1)). One-period finite

dependence may be obtained pointwise overrt+1. Specifically, define

κ jt+1(xt+2, |rt+1,zt ,c jt ) =
2

∑
k=1

|x|
∑
i=1

f 0
kt+1(xt+2|zi, rkt+1)ak jt+1(xi , rt+1|zt,ct) f jt (xi |xt ,c jt ),

(3.15)

so thatκ jt+1(xt+2, |zt ,c jt ) =
∫

κ jt+1(xt+2, |rt+1,zt,c jt )gr(rt+1)drt+1. As in the previous sec-

tion, let

fk j(xt+2,xt+1|rt+1,zt ,c jt ) = f 0
kt+1(xt+2|zt+1, rkt+1) f jt (xt+1|xt ,c j)

be the probability of: (i) reaching statext+2 in period t + 2, given states(xt+1, rt+1) are

realized and action(k,c0
kt+1(zt+1, rkt+1)) is taken in periodt+1, and (ii) statext+1 is reached
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from statext , given action( j,c jt ) is taken in periodt. Define

fk j(x|r,zt,c jt ) =
(

fk j(x,x1|r,zt,c jt ), · · · , fk j(x,x|x||r,zt,c jt )
)

,

fk j(r,zt,ct j) =
(

fk j(x1|r,zt,c jt )
′, · · · , fk j(x|x||r,zt,c jt )

′)′ ,

ak j(r,zt,ct) =
(

ak jt+1(x1, |r,zt,ct), · · · ,ak jt+1(x|x||r,zt ,ct)
)′
,

F1(r,zt,ct) = (( f12(r,zt,c2t)− f22(r,zt,c2t)),( f21(r,zt,c1t)− f11(r,zt,c1t))) ,

F2(r,zt,ct) = f21(r,zt ,c1t)− f22(r,zt,c2t), and

a(r,zt,ct) = (a12(r,zt,ct)
′,a11(r,zt,ct)

′)′.

Theorem 3.9. Suppose Assumptions 2.1,3.4, 3.8, and 3.6 hold. Then, one-period finite de-

pendence holds if Pr(rank(F1(r,zt,ct))) = |x|) = 1 for almost every r, zt , and ct .

Proof. Under the conditions of the theorem and imposing the condition a1 j(r,zt,ct) = ι|x|−
a2 j(r,zt,ct), j = 1,2, the solutiona(r,zt,ct) = F+

1 (r,zt,ct)F2(r,zt,ct)ι|x| satisfies

κ2t+1(x, |r,zt,c2t)−κ1t+1(x, |r,zt,c1t) = 0

for all x∈ {x1, · · · ,x|x|} with probability one and almost every(r,zt,ct), implying

κ2t+1(x, |zt,c2t)−κ1t+1(x, |zt ,c1t) =
∫

[κ2t+1(x, |r,zt,c2t)−κ1t+1(x, |r,zt,c1t)]gr(r)dr = 0

(3.16)

with probability one.

3.1.3 Approximating one-period finite dependence.

Implementation of the one-period finite dependence in Case 2is more involved than Case

1. The first consideration is that direct implementation of Theorem 3.9 requires inversion of

F1(r) for each trial values of the deep parameters of the model. Oneapproach to circumvent-

ing this complication is to compute the weightsat+1 on a fine grid of the continuous choice.

To do so, let

fk j(xt+2,xt+1|ckt+1,xt ,c jt ) = fkt+1(xt+2|xt+1,ckt+1) f jt (xt+1|xt ,c jt )
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be the probability of: (i) reaching statext+2 in periodt +2, given statesxt+1 is realized and

action(k,ckt+1) is taken in periodt +1, and (ii) statext+1 is reached from statext , given

action ( j,c jt ) are taken in periodt. Assumec jt is bounded above with known bound in

addition to the continuous choice being strictly positive;that is,c jt ∈ Ct j := (0, c̄ jt ], where

c̄ jt < ∞ is known. Consider a fine grid̃C jt = {0 < c̃1 < c̃2, · · · ,< c̃m = c̄ jt} of m points,

wherem can potentially depend onj andt, and definẽCt = C̃1t × C̃2t . Define

fk j(x|xt ,c jt ) =
(

fk j(x,x1|c̃1,xt ,c jt ), fk j(x,x1|c̃2,xt ,c jt ), · · · , fk j(x,x|x||c̃m,xt ,c jt )
)

,

fk j(xt ,c jt ) =
(

fk j(x1|xt ,c jt ))
′, · · · , fk j(x|x||xt ,c jt ))

′)′ ,

ak j(xt ,ct) =
(

ak jt+1(x1, c̃1|xt ,ct),ak jt+1(x1, c̃2|xt ,ct), · · · ,ak jt+1(x|x|, c̃m|xt ,ct)
)′
,

F1(xt ,ct) = (( f12(xt ,c2t)− f22(xt ,c2t)),( f21(xt ,c1t)− f11(xt ,c1t))) ,

F2(xt ,ct) = f21(xt ,c1t)− f22(xt ,c2t), and

a(xt ,ct) = (a12(xt ,ct)
′,a11(xt ,ct)

′)′.

Then,a(xt ,ct) = F+
1 (xt ,ct)F2(xt ,ct)ι|x| obtains

κ̃2t+1(xt+2, |zt,c2t)− κ̃1t+1(xt+2, |zt,c1t) =

∫ 2

∑
k=1

|x|
∑
i=1

[

f̃kt+1(xt+2|zi, rkt+1)ãk2t+1(xi , rt+1|zt,ct) f2t(xi|xt ,c2t)

− f̃kt+1(xt+2|zi, rkt+1)ãk1t+1(xi , rt+1|zt ,ct) f1t(xi |xt ,c1t)
]

gr(rt+1)drt+1 ≈ 0, (3.17)

where

f̃kt+1(xt+2|zi , rkt+1) = fkt+1(xt+2|xi , c̃kt+1(zi, rkt+1)),

ãk jt+1(xi, rt+1|zt ,ct) = ak jt+1(xi , c̃kt+1(zi, rt+1)|zt,ct), andc̃kt+1(zi, rkt+1) is the nearest ˜c to

c0
kt+1(zi , rt+1). One can then computea(xt ,ct) for ct on the gridC̃t to obtain weights out-

side of the main estimation. How wellκ̃ jt+1(xt+2, |xt,c jt ) approximatesκ jt+1(xt+2, |xt,c jt )

depends onm, which I explored in section 8.

As in the previous section, estimates off jt (xt+1|xt ,c jt ) are required to compute the

weights that satisfy one-period dependence. This can be done by parametric or nonpara-
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metric methods, where in the latter case, a candidate estimator is given by

f̂ jt (x|xt ,c jt ) =
∑n

i 1{xit+1 = x}d jit 1{xit = xt}Kσ(c jit −c jt )

∑n
i d jit 1{xit = xt}Kσ(c jit −c jt )

,

whereKσ is a kernel andσ is a bandwidth.

The second concern is existence of measurement errors in observed continuous choice,

which would lead to inconsistent estimates off jt (xt+1|xt ,c jt ). However, consistent estimates

of these transition probabilities can be obtained by the instrumental variables estimation

methods such as in Newey and Powell (2003), where lagged values of the continuous choice

may serve as the instruments under the conditions set out in Newey and Powell (2003).

3.1.4 Optimal continuous choice

This section presents sufficient conditions for uniquenessof the optimal CCCs, and discuss

how they may be computed in the framework set out in the previous sections. The sufficient

conditions for uniqueness of the optimal CCCs are outlined in the following assumption.

Assumption 3.10.For j = 1, · · · ,J, l j = 1, · · · ,L j , and(zt , r jt ),

(1) the period-specific utility function, ujt (zt,c jt , r jt ), is strictly increasing, strictly concave,

and twice continuously differentiable in cl j t on int(C jt ) with limcl j t→0∂u jt (zt ,c jt , r jt )/∂cl jt =

∞, and

(2) for all (xt ,xt+1), supc jt∈C jt

∣

∣

∣
∂k f jt (xt+1|xt ,c jt )/∂ck

l j t

∣

∣

∣
≤ γ < ∞, k= 0,1.

Under Assumption 3.10,c0
jt (zt , r jt ) uniquely maximizesv jt (zt,c jt , r jt ) over C jt , for j =

1, · · · ,J and all(zt, r jt ).

Under certain conditions, one-period finite dependence provides a simple and convenient

representation of the condition for optimal CCCs. Specifically, let alternative j = 1 be the

normalizing alternative and letc1t be either 0 or known. In the empirical application of this

paper, the alternativej = 1 is to stay home, for which no continuous choice is associated.
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Then, under Assumption 3.10,c0
jt (zt , r jt ) uniquely solves

0=
∂

∂c jt

(

v jt (zt ,c jt , r jt )−v1t(zt,c1t , r1t)
)

=
∂

∂c jt
u jt (zt,c jt , r jt )

+β
J

∑
k=1

∫ |x|
∑
i=1

[u0
k(zi , rkt+1)+ψk[p

0
t+1(zi , rt+1)]]

× ∂
∂c jt

[ak jt+1(xi , rt+1|zt,ct) f jt (xi |xt ,c jt )−ak1t+1(xi , rt+1|zt,ct) f1t(xi |xt ,c1t)]gr(rt+1)drt+1

(3.18)

for j = 2, · · · ,J. This first-order condition becomes more complicated in theobvious way if

the period-specific utilities are functions of lagged continuous choices.

4 Identification

This section discusses identification of the parameters of the model presented in section 2.1.

The negative result of Rust (1994) and Magnac and Thesmar (2002) – that models of the

form presented in 2.1 are generically non-identified – showsadditional restrictions must be

imposed on the structure of the model to identify the period-specific payoff functions. The

class of models considered by Rust (1994) and Magnac and Thesmar (2002) are stationary

and do not include continuous choices. Blevins (2014) provides sufficient conditions for

identification of the period-specific payoff functions in stationary models with continuous

choices and appropriate continuous state variables.

As discussed in Arcidiacono and Miller (2020), identification becomes more problem-

atic in non-stationary environments. The model presented in section 2.1 is not only non-

stationary, but also includes CCCs and permanent unobserved heterogeneity. Appendix A.3

provides sufficient conditions for nonparametric identification of the period-specific utility

functions and the distribution of the permanent unobservedheterogeneity under the assump-

tion the distribution takes a correlated finite-mixture form. The approach to identifying the

parameters of interest taken in this paper imposes the restriction that level sets can be con-

structed from the difference between the transition function of a particular choice,j∗ and

the others. In practice, such level sets can be achieved by index restrictions on the transition
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probabilities, or exclusion restrictions. The application in the paper imposes both restrictions

where: j∗ = 3 (enroll in school and not work), the probability of completing a grade level

given enrollment is specified as a linear index probit, and this probability depends on labor

market experience interacted with age and AFQT, which are excluded from period-specific

utilities. Full development of the nonparemetric identification of the period-specific utility

functions and the distribution of the permanent unobservedeffects can be found in Appendix

A.3.

5 Estimator

In this section, I propose a GMM estimator for the period-specific utility functions, as well

as the distribution of the unobserved effects. I choose to propose a GMM estimator instead

of the ML estimator for two reasons. First, the definition of the GMM estimator does not

require specifying the distribution of measurement errors, which is of particular concern in

discrete- and continuous-choice models, because observedcontinuous-choice variables are

often measured with errors. Second, the GMM estimator is robust to the initial-conditions

problem: consistent estimation of the parameters does not require observing the initialization

of xt givens or for it to be specified.

How to account for and estimate finite-mixture distributions in the GMM framework is

unclear. Indeed, accounting for finite-mixture distributions typically requires the likelihood

function to be fully specified, such as in Eckstein and Wolpin(1999), Keane and Wolpin

(2000a), Keane and Wolpin (2001), and Arcidiacono and Miller (2011). The estimator in

this section is designed to account for and estimate the finite-mixture distribution, and allow

the distribution to be dependent on observed permanent characteristics of the individual. I

assume consistent estimates of the state transition probabilities are obtainable in a first-stage

estimation, as discussed in section 3.1.

The estimator proposed in this section assumes the period-specific utility functions, and

the distribution of the shocks are known up to a finite-dimensional set of parameters. Specifi-

cally,u jt (zt ,s,c jt , r jt )=u jt (zt ,s,c jt , r jt ;B1,), j =2, · · · ,J are known up toB1∈ℜDB1 , u jt (zt,s,c jt , r jt )

is known, andgr(rt) = gr(rt;B2) is known up toB2 ∈ ℜDB2 . DefineB = (B1,B2) ∈ B ⊆
ℜDB1+DB2 . Identification of the model outlined in section A.3 of the appendix imposes a
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finite-mixture specification of the distribution of the permanent unobserved effects. This

assumption is reproduced below for completeness.

Assumption 5.1.1. For all xt ∈ X and w∈ W , the conditional density ft(xt |w)> 0.

2. The permanent unobserved heterogeneity has finite support with probability mass function

π(s|xt) = π(s|w), s∈ S(w), and cardinality Q(w), possibly depending on w.

The estimator imposes the following additional restrictions on the conditional distribu-

tion of the mixing distribution andw.

Assumption 5.2.1. w is discrete valued with cardinality|w|.
2. The number of types and the support of the mixing distribution are not a function of w:

Q(w) = Q; sq(w) = sq, q= 1, · · · ,Q.

3. The investigator has prior knowledge of the number of types, Q.

Defineπ(wk) = (π1(wk), · · · ,πQ(wk))
′, π = (π(wk),k= 1, · · · , |w|), θq = (B,sq) ∈ Θq :=

B ×S , andθ = (B,{s1, · · · ,sQ}) ∈ Θ := B ×S Q. For eachi, and fort = 1, · · · ,T, define

p̃0
t (xit ;θq) = (p0

2t(xit ;θq), · · · , p0
Jt(xit ;θq))

′,

c̃0
t (xit ;θq) = (d1it c

0
1t(xit ;θq)

′, · · · ,dJitc
0
Jt(xit ;θq)

′)′,

ht(xit ;θq) = (p̃0
t (xit ;θq)

′, c̃0
t (xit ;θq)

′)′,

h(xi;θq) = (h1(xi1;θq)
′,hT−1(xiT−ρ;θq)

′)′,

h(xi;θq) = (h(xi;θ1), · · · ,h(xi;θQ)),

ρ(yi ,xi ;θ,π) = yi −h(xi ;θ)π(wi), (5.1)

where the vectoryi is defined analogously.

The vectorρ(yi,xi ;θ,π) is of (L+ J−1)(T − ρ) dimension. LetXit be a vector of in-

struments with dimensionNXt ≥ L+J−1, and defineXi = diag{Xit , t = 1, · · · ,T −1}. Pre-

multiplying equation (5.1) byXi obtains the followingNX := ∑T−1
t=1 NXt -dimensional vector:

mi(θ,π) = Xiρ(yi,xi ;θ,π). (5.2)
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The GMM objective function is given by

Ŝ(θ;π) = m̂(θ;π)′Ω̂m̂(θ;π), where (5.3)

m̂(θ;π) =
1
n

n

∑
i=1

mi(θ;π), (5.4)

andΩ̂ is consistent estimator for anNX ×NX positive-definite weighting matrix,Ω.

Although the objective function (5.3) is standard, additional restrictions need to be im-

posed to jointly estimate the type probabilities. Forw = wk, the likelihood ofdit given

(xit ,θq) implied by the model be given by

f (dit |xit ,θq) =
J

∏
j=1

p jit (xit ,θq)
d jit . (5.5)

For wit = wk, for any value ofθ, and given type probabilities,π(wk), Bayes’s rule implies

the following vector of posterior type probabilities,

πq(dit ,xit ;θ,π(wk)) =
f (dit |xit ,θq)πq(wk)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

, q= 1, · · · ,Q. (5.6)

The validity of the estimator is based on the following theorem, whose proof is provided in

section A.7.

Theorem 5.3.Suppose(θ,π) is identified; that is, the assumptions in Section A.3 hold. Then,

E[πq(dit ,xit ;θ,π(wk))|xit ,wk] = πq(wk) for q = 1, · · · ,Q, k= 1, · · · , |w|, and almost every

xit ∈ X if, and only if(θ,π) = (θ0,π0).

Fork= 1, · · · , |w|, define

fff it (θ,π(wk)) = diag

{

f (dit |xit ,θq)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

,q= 1, · · · ,Q
}

, (5.7)

mπ
kit(θ,π(wk)) = π(wk)− fff it (θ,π(wk))π(wk),

m̂π
k(θ,π(wk)) =

1
nk

n

∑
i=1

1
T

T

∑
t=1

mπ
kit(θ,π(wk))Ii(wk), (5.8)
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whereIi(w) is the indicator variable equal to 1 ifwi =w, and 0 otherwise, andnk=∑n
i=1 Ii(wk).

For fixed θ ∈ Θ, let π̂(wk;θ) be the solution to ˆmπ
k(θ, π̂(wk;θ)) = 0, and defineπ̂(θ) =

(π̂(wk;θ),k= 1, · · · , |w|). The estimator forθ0 is therefore defined as

θ̂ =argmin
θ∈Θ

Ŝ(θ; π̂(θ)), (5.9)

and the estimator forπ0 is given byπ̂(θ̂).

6 Computing the estimator

In this section, I present a method for computing the estimator proposed in the previous

section. I describe updating the parameters of the model forindividual i in periodt at the

o+ 1 iteration with
(

θ[o],π[o],c[o],p[o]
)

in hand. In the development of the algorithm, I

suppress dependence on
(

θ[o],π[o],c[o],p[o]
)

and(i, t), and I set the first alternative to be the

normalizing alternative. Therefore, we have the notation

v jq(x,c, r) = v jit (xit ,cit , r it ;θ[o]q ,π[o],c[o],p[o]).

Updating the CCCs

The continuous choices,c[o+1]
jq (x, r j) andc[o+1]

jq (x), are updated by solving equation (3.11) as

follows:

∂
∂c j

∣

∣

∣

∣

c=c[o+1]
q (xt ,r)

v j1q(x,c, r) = 0, (6.1)

c[o+1]
jq (x) =

∫
c[o+1]

jq (x, r j)gr(r j)dr j . (6.2)

Conditions for uniqueness of the solution to equation (6.1)are given in Assumption 3.10,

and the integration in equation (6.2) is taken numerically.

Updating the CCPs

Let

v(x,c[o+1]
q (x, r), r) =

(

v1q(x,c
[o+1]
1q (x, r1), r), · · · ,vJq(x,c

[o+1]
Jq (x, rJ), r)

)′
.
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For eachj ∈ {1, · · · ,J}, the CCPs are updated as follows:

p[o+1]
jq (x,c[o+1]

q (x, r), r) = Ψ j

(

v(x,c[o+1]
q (x, r), r)

)

, (6.3)

p[o+1]
jq (x) =

∫
p[o+1]

jq (x,c[o+1]
q (x, r), r)gr(r)dr, (6.4)

where the functional form ofΨ j is determined by the distribution of the alternative-specific

shocks,ε. For example, ifε is distributed i.i.d. type one extreme value,

p[o+1]
jq (x,c[o+1]

q (x, r), r) =
ev jq(x,c

[o+1]
jq (x,r j ),r)

∑J
k=1evkq(x,c

[o+1]
kq (x,rk),r)

.

Updating π
Fork= 1, · · · , |w|, equation (5.8) may be solved recursively by iterating

π[o′+1]
k =

1
nk

n

∑
i=1

1
T

T

∑
t=1

fff [o+1]
it (θ[o],π[o′]

k )π[o′]
k Ii(wk). (6.5)

in o′ until convergence, whereπ[o](wk) is taken as the initial prior (see Richardson (1972)

for an analysis of Bayesian-based iterative algorithms). The updated type probabilities

π[o+1](wk) are these convergent values.

6.1 Updatingθ

Let m̂[o+1](θ[o],π[o+1](θ[o])) be the moment function defined in equation (5.4) evaluated at
(

θ[o],π[o+1],c[o+1],p[o+1]
)

. Let M̂[o+1](θ[o],π[o+1](θ[o])) andϕ[o+1](θ[o],π[o+1](θ[o])) be

M̂(θ,π(θ)) :=
∂

∂θ
m̂(θ,π(θ)), and

ϕ(θ,π(θ)) :=−
[

M̂(θ,π(θ))′Ω̂M̂(θ,π(θ))
]−1

M̂(θ,π(θ))′Ω̂m̂(θ,π(θ))

also evaluated at
(

θ[o],π[o+1],c[o+1],p[o+1]
)

. The updated values ofθ, θ[o+1] are given by

θ[o+1] = θ[o]+ϕ[o+1](θ[o],π[o+1](θ[o])). (6.6)

32



The full algorithm for computing the estimates of the model is as follows.

Algorithm

1 - Initialize
(

θ[0],π[0],c[0],p[0]
)

.

2 - Foro≥ 0,

2.1 - Computec[o+1] by solving equation (6.2)

2.2 - Computep[o+1] using equation (6.4)

2.3 - Computeπ[o+1] using equations (6.5)

2.4 - Computeθ[o+1] using equations (6.6)

until convergence inθ.

Convergence of the Gauss-Newton algorithm is not guaranteed for a variety of reasons,

and if it does converge, it may be slow (see Dennis Jr. and Shanbel (1996) for discussion).

Methods to improve the success and rate of convergence of theGauss-Newton algorithm

have been proposed in recent years (see Fan and Yuan (2005), Zhou and Chen (2010), and

Ferreira, Goncalves, and Oliviera (2011)). Although I adopt components of these proposed

algorithms in the simulation exercise and empirical application, a detailed discussion of these

modifications is beyond the scope of the current paper.

What we do know, however, is that good initialization of the parameters of the model

does improve the likelihood that the algorithm converges, and it reduces the number of it-

erations required to achieve convergence. Good initial values for the above algorithm may

be obtained by first obtaining initial values ofθ, and type-invariant estimates of the CCCs

and CCPs. These quantities can then be used to execute steps 2.1 - 2.4 of the algorithm to

obtain initial type-specific CCCs and CCPs. With these initial values, the above algorithm

iterates on the quantities in a way similar to Aguirregabiria and Mira (2002) and Arcidiacono

and Miller (2011). Therefore, no loss of precision results from multistage estimation of the

parameters of the model such as in Hotz and Miller (1993), Altug and Miller (1998), Bajari,

Benkard, and Levin (2007) and other papers that apply such methods.

7 Limiting variance of the estimator

The estimator proposed in section 5 is
√

n− consistent and asymptotically normal under

standard conditions such as those in Newey and McFadden (1994). However, the form of the
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limiting variance is somewhat nonstandard because of the method for jointly estimating the

type probabilities. This section provides the form of the limiting variance, whose derivation

can be found in section A.8.

Define

mπ
it (θ,π) = π− fff it (θ,π)π, mπ

i (θ,π) =
1
T

T

∑
t=1

mπ
it (θ,π), and

mπ
0(w;θ,π) = E [mπ

i (θ,π)|w] ,

where fff it (θ,π) is defined in equation (5.7). LetI andι be theq− dimensional identity matrix

and iota vector, respectively. Define alsoπππ = diag{π1, · · · ,πQ}, and let

Mπ
it (θ,π) = I − fff it (θ,π)+πππ fff it (θ,π)ιι

′ fff it (θ,π), Mπ
i (θ,π) =

1
T

T

∑
t=1

Mπ
it (θ,π), and

Mπ
0(w;θ,π) = E [Mπ

i (θ,π)|w] .

Finally, let mi = mi(θ0,π0), Mi(θ,π) = ∂mi(θ,π)/∂θ, andM0 = E[Mi(θ0,π0)], Mπi(θ) =
Xih(xi ,θ), Mπ0(w) = E[Mπi(θ0)|w], mπ

0(w) = mπ
0(w;θ0,π0) andMπ

0(w) = Mπ
0(w;θ0,π0). The

limiting variance of the estimator,θ̂, is

V = (M′
0ΩM0)

−1(M′
0ΩΣΩM0)(M

′
0ΩM0)

−1, where

Σ = E
[

(

mi +Mπ0(wi)M
π
0(wi)

−1mπ
i

)′ (
mi +Mπ0(wi)M

π
0(wi)

−1mπ
i

)

]

. (7.1)

In practice, a consistent estimator for the asymptotic varianceV is required. One can

be obtained via the plug-in approach, where the parameters in V are replaced with their

respective estimators, and the expectations are replaced with sample averages. The proof

for consistency of this plug-in estimator is standard and can also be found in Newey and

McFadden (1994).
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8 Monte Carlo evidence

In this section, I present the results of two sets of Monte Carlo exercises to illustrate the

finite-sample performance of the proposed estimator. Details of these exercises can be found

in section A.11.

The first set of exercises investigate the performance of theapproximation to finite de-

pendence presented in section 3.1.3 under the restrictionson the transition probabilities im-

posed in Assumption 3.8. The performance of the estimator iscompared with the estimator

for which the CCPS and CCCs are obtained from the full solution and one for which the true

CCPs and CCCs are known, in order to isolate the source of approximation error. The results

show the proposed estimator performs well in finite samples with some loss of precision rel-

ative to the estimator based on solving the model. However, the results also show significant

computational gains from the proposed estimator relative to the full-solution approach, with

average computation time of the proposed estimator being four and a half times faster than

the full-solution approach.

The second set of exercises investigate the performance of the estimator relative to the

one based on the EM algorithm developed in Arcidiacono and Miller (2011) for models that

satisfy the renewal property discussed in section 3.1. The proposed estimator performs sig-

nificantly better in recovering the parameters of the model.However, the Arcidiacono Miller

approach is significantly faster – being almost 19 times faster than the proposed method.

These gains are largely due to the difference in the approaches to updating the type probabil-

ities, and the proposed estimator is based on two-stage GMM.

9 Education and labor market choices and the heteroge-

nous returns to education

This section implements the method developed in the previous sections to investigate life-

cycle educational and labor market choices, using a sample of young men from the 1979

cohort of the NLSY. The primary objective is to estimate the long-run ex-ante distribution of

returns to education. The model developed in this section isclosely related to those devel-
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oped in Keane and Wolpin (1997; 2000; 2001), and Eckstein andWolpin (1999) in a variety

of ways. Specifically, the model incorporates psychic costsof schooling and working, as

well as direct and indirect benefits from working. The directbenefit from working is current

income earned, and the indirect benefit is future potential income earned from the additional

years of experience gained. To allow for simultaneity in these choices, I adopt the specifica-

tion of Eckstein and Wolpin (1999) and Keane and Wolpin (2001), which includes the option

to simultaneously work and attend school in the individual’s choice set, for the number of

hours worked while attending school to influence the chance the individual will advance the

grade level, and incorporate psychic costs of working whilein school. Additionally, similar

to these papers, I allow for permanent unobserved heterogeneity and individual-time–specific

shocks in the wage-offer function. A key point of departure is the permanent unobserved het-

erogeneity is specified as a random coefficient on the level ofeducation, whose distribution

is allowed to vary by race, parental income, and AFQT categories.

The inadequacy of the classical Mincer equation to obtain policy-relevant estimates of

the returns to education has been well documented over the last two decades (see Heckman,

Lochner, and Todd (2006) for a review of the relevant literature). Heckman, Lochner, and

Todd (2008) cite notable extensions to the classical Mincerwage equation that are likely to

reduce the biases in estimates of returns to education. These extensions include direct and

psychic costs of schooling, nonseparability between experience and schooling, heterogeneity

in returns to education, and disentangling marginal and average returns to schooling. Indeed,

the authors show that if psychic costs of schooling are significant and ignored, the Mincer

coefficient is expected to be larger than the internal rate ofreturn. Other important factors

that may affect estimates of the returns to education include the endogeneity of schooling

and work-experience choices and uncertainty about the completed level of education. The

structural model in this section is designed to incorporatethese extensions.

The model allows for race, parental income, and AFQT to affect the grade transition prob-

ability, the utilities of leisure, the psychic costs of school enrollment and employment, and

the wage-offer function. In investigating the determinants of education attainment, Cameron

and Heckman (1998), Cameron and Heckman (2001), and Carneiro and Heckman (2003)

argue the effect of parental income on educational attainment is primarily a result of it be-

ing a proxy for permanent income, which influences early childhood development, and less

that it captures short-term credit constraints. Richer parents have more resources to invest
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in the environment that fosters early childhood development of cognitive abilities and social

skill, which rewarded in terms of academic achievement. They argue a significant propor-

tion of the racial disparity in academic achievement can largely be traced to differences in

schooling abilities developed during early childhood. An implication of these arguments is

that controlling for family income and AFQT should mitigatethe effect of race in the struc-

tural model, and controlling for AFQT should mitigate the effect of parental income on the

barriers to school enrollment, as well as the likelihood that a student will advance a grade

level given enrollment. Interpretation of any residual effect of parental income on academic

achievement, net of AFQT, becomes more convoluted. One source of any such an effect

may be a result of permanent income on scholastic aptitude developed during early child-

hood in dimensions not captured in AFQT. Another channel could be that parental income,

as a measure of permanent income, may be capturing access to better schools and academic

assistance outside of normal school hours. These potentialsources of the effect of parental

income cannot be investigated with the data implemented in this paper but remain within the

research agenda.

Performing the same analysis as done in Heckman, Lochner, and Todd (2008), where

the psychic cost of working is included, shows this cost alsodrives a wedge between the

Mincer coefficient and the internal rate of return to education. Although the resulting size

of the Mincer coefficient relative to the internal rate of return is ambiguous, accounting for

the existence of psychic costs of working is still necessaryin order to obtain policy-relevant

estimates of the returns to education using the Mincer specification of log-wages. Another

important layer of complication comes from the psychic costof working while attending

school, because working while in school breaks the sequential framework of school to work

assumed in the model analyzed by Heckman, Lochner, and Todd (2008).

The joint effect of race and AFQT on labor market success has been an extensively inves-

tigated phenomenon, with notable studies including Neal and Johnson (1996) and Keane and

Wolpin (2000a). These authors find that accounting for AFQT substantially reduces, and in

some cases eliminates, the racial gap in wages, a phenomenonthat has become the general

consensus in the literature. Models that find this result do not account for racial disparities

in wage offers that may be education-specific. The model presented in this section incorpo-

rates both the direct and indirect effects of race on wages, where the direct effect is modelled

as an indicator for whether the individual is black, and the indirect effect is modelled as
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black-white variation in the distribution of returns to education.

A variety of interpretations of the effects of parental income on labor market outcomes,

if they exist, are plausible. One potential explanation of these effects is consistent with Heck-

man, Lochner, and Todd (2006), in that parental income is a proxy for permanent income,

which influences early childhood development resulting in not only higher schooling abil-

ities, but also higher market abilities. Another explanation is that individuals from richer

families have greater access to the labor market in terms of employment opportunities and

higher-paying job offers. The model developed in this section has the potential to shed

some light on the more plausible interpretation of the two. Assuming AFQT also measures

individual market ability, if the effect of parental incomeon the psychic costs labor force

participation and wage offers diminishes substantially with the inclusion AFQT, parental in-

come is more likely predominantly be a measure of market ability. On the other hand, if the

size of this effect remains relatively unchanged with the inclusion of AFQT, parental income

is more likely to capture the greater access to employment opportunities and high-paying

jobs for individuals with rich parents.

9.1 The theoretical model

In each period,t, the individual is endowed with a fixed amount of time, which is normalized

to 1. He faces four mutually exclusive and collectively exhaustive alternatives,j: to stay

home (j = 1); to not attend school and work (j = 2); to not work and attend school (j = 3);

and to both work and attend school (j = 4). Let d jt be equal to 1 if the individual chooses

alternativej in periodt, and 0 otherwise. If the individual chooses to work in periodt, he

must decide how to allocate his time endowment between leisure, lt , and labor supply,ht , so

that lt +ht = 1. Definedh
t to be equal to 1 if the individual chooses to work in periodt, and

0 otherwise.

If the individual decides to work in periodt, he gains an additional year of experience.

If he decides to enroll in school, he advances the grade levelwith probabilityFt(ht ,xa
t ;θa),

where the variables composingxa
t include parental income (Par Inc) as at 1979 in $10,000

1983 dollars, hours worked in the academic year (Hrs Worked), level of completed educa-

tion (Edu), the indicator for whether the individual is a high school graduate (HS Grad),

the indicator for whether he obtained some college education (Some Col); the indicator for
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whether he is a college graduate (Col Grad), and years of labor market experience (Exper).

This specification is a key (though not only) source of uncertainty affecting completed level

of education. The individual compares the benefits from working while in school, which in-

clude income generated and the level of labor market experience earned, to the costs, which

include loss of leisure time and the potentially negative impact of working while in school

on the likelihood that he will complete the grade level.

In each period, the individual receives a wage offer,wageot , which is parameterized as

follows:

ln(wage0t ) = xw
t θw+sEDUt + rt ,

whereEDUt is his level of education ast, s is returns to his level of education, andrt is the

period-specific shock to his wage offer, which is assumed to be distributed i.i.d.N(0,σr).

The explanatory variable,xw
t , contains years of experience and its squared value, a dummy

variable for the individual being black, parental income and its interaction with the black

dummy variable, and AFQT.

I assume returns to education,s, are discretely distributed withQ = 3 support points,

s∈ {s1, · · · ,sQ} and corresponding PMFsπ(w) = (π1(w), · · · ,πQ(w)), wherew represents

the eight categories of race (black and white), parental income (above and below median

income), and AFQT (above and below median AFQT). I allow for the log of the wage offer

to be measured with additive error, which is assumed to have zero mean with distribution

independent of all the covariates in the model.

The contemporaneous utility function is given by

ut(zt) = dh
t θu

1wageot ln(wageot ht)+exp(xtθu
2) ln(lt)

+dh
t xtθu

3+dE
t xtθu

4+dh
t dE

t xtθu
5+d′

tεt , (9.1)

wheredE
t is equal to 1 if the individual enrolls in school in periodt, and 0 otherwise,xt is a

vector of observed demographic characteristics,dt = (d1t , · · · ,dJt)
′, andεt = (ε1t , · · · ,εJt)

′,

whereε jt is the alternative-j-specific shock to utility, which is distributed i.i.d., type 1 ex-

treme value. This specification of the contemporaneous utility imposes some desired re-

strictions on the preference for consumption, and leisure,as well as optimal hours worked.
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Specifically, forθu
1 > 0, the contemporaneous utility is increasing and concave inboth con-

sumption and leisure, and optimal hours are restricted to lie strictly between 0 and 1. I

impose these restrictions by settingθu
1 = 0.1.

The utility-of-leisure taste shifter includes the black dummy variable, parental income

and its interaction with the black dummy variable, AFQT, age, and age squared. The school-

ing and employment taste shifters include the black dummy variable, parental income and its

interaction with the black dummy variable, and AFQT, education, years of experience, and

age. Unlike Keane and Wolpin (1997), Eckstein and Wolpin (1999), and Keane and Wolpin

(2000a), I do no allow for permanent unobserved heterogeneity in the utility taste shifters,

because how the monotonicity restriction required for identification in section A.3 would be

maintained in the current framework is unclear. By allowingfor permanent unobserved het-

erogeneity in the psychic cost of schooling and the constantin the log wage-offer function,

Keane and Wolpin (2000a) remain agnostic about the source ofheterogeneity in endowments,

instead of prior commitment on the source of potential endowment effects as in the current

model. The schooling and employment taste shifters also include lagged values of school

enrollment and employment to capture intertemporal nonseparabilities in preferences.

9.2 Data

The data are taken from the NLSY79, a comprehensive panel data set that follows individuals

who were 14 to 21 years of age as of January 1, 1979. The data setinitially consisted

of 12,686 individuals: a representative sample of 6,111 individuals, a supplemental sample

of 5,295 Hispanics, non-Hispanic blacks, and economicallydisadvantaged, non-black, non-

Hispanics, and a supplemental sample of 1,280 military youth. Interviews were conducted on

an annual basis through 1994, after which the survey adopteda biennial interview schedule.

This study makes use of the individuals observed for the first28 years of interviews, from

1979 to 2006. The data are restricted to include non-Hispanic males and respondents with

missing observations on the highest grade level completed that cannot be recovered with high

confidence from other data information. The details on the sample restrictions are provided

in Appendix A of Gayle (2006). I further restrict the data to individuals who were at most 16

years of age when they were first interviewed in 1979. With these restrictions, the data used

in this application consist of 1,443 individuals in 1979.
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9.3 Estimation

This section discusses calculation of the weights used to achieved one-period finite depen-

dence for estimation of the model, which are outlined in section 3.1.

I seta12(xt+1) = a21(xt+1) = 1 when evaluating the difference of the values of working

and not enrolling in school (j = 2) and staying home (j = 1), because the theoretical model

satisfies the exchangeability condition. A key restrictionimposed on the theoretical model

for exchangeability to be satisfied is that the wage-offer function depends on years of expe-

rience, and not on accumulated hours worked as in Eckstein and Wolpin (1999). If the wage

offer is specified to depend on accumulated hours, exchangeability can be achieved if it was

assumed to depend discretely on accumulated hours.

The probability of advancing by a grade level given enrollment in school,Ft(ht ,xa
t ;θa),

is specified to depend on the distribution of returns to education only through optimal hours

worked, and I assume observed hours worked is not measured with error, so this probability

can therefore be estimated by standard means. I assume the probability of advancing a grade

level takes the logit form. I compute the weights that achieve one-period finite dependence

when evaluating the difference in the values of enrolling inschool and working (j = 3, ht =

0), and staying home (j = 1, ht = 0) using equation (3.11). To compute the weights that

achieve one-period finite dependence when evaluating the difference in the values of working

while attending school (j = 4, ht > 0) and staying home (j = 1, ht = 0), I implement the

approximation approach developed in section 3.1. Specifically, I approximated the weights

on a grid of 20 equally spaced grid points of hours worked ranging from 0 to 0.7. This range

includes the maximum hours worked while enrolled in school by individuals in the sample

of 0.53.

9.4 Results

9.4.1 Grade-promotion probability

Table 1 presents the results from estimation of the probability of completing a grade level

given enrollment, which is assumed to take the logit form. Column (1) contains estimates

of this transition probability without controlling for AFQT, and column (2) includes AFQT
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and its interaction with labor market experience. The results show that when AFQT is not

accounted for, the coefficient on black is negative and significant, and the coefficient on

parental income is positive and significant. Accounting forAFQT eliminates the effect of

black on the grade-promotion probability and reduces the marginal effect of parental income

by 58%, which becomes imprecisely estimated.

The results indicate that, given employment, additional hours worked reduces the proba-

bility of advancing to the next grade level, providing evidence for the crowding-out hypothe-

sis, which is consistent with D’Amico (1984), Ehrenberg andSherman (1987), and Eckstein

and Wolpin (1999). Although the coefficient on labor force participationdh
t , which captures

the extensive margin of employment, is positive across specifications, it becomes imprecisely

estimated after controlling for AFQT. This finding suggestsa significant proportion of what

is considered evidence for the congruence hypothesis can beexplained by individuals with

high scholastic ability taking advantage of their greater chance of advancing a grade level, re-

gardless of whether they work while attending school, to earn income and gain labor market

experience.

Table 1: Probability of Grade Promotion

Specification I II
Variable Estimate Std. Err. Estimate Std. Err.
Constant 4.1345 0.7981 4.7323 0.8220
Black -0.4012 0.1214 0.0271 0.1242
Par Inc 0.1224 0.0282 0.0516 0.0291
Black× Par Inc -0.0506 0.0551 -0.0320 0.0555
Hrs Worked -3.4947 0.7517 -3.1941 0.7612
Employment 0.2124 0.1035 0.1679 0.1049
Edu 0.9162 0.1418 0.4704 0.1466
Edu Squared -0.0273 0.0058 -0.0144 0.0061
HS Grad - Some Col -0.3658 0.1481 -0.7687 0.1539
Col Grad -0.6090 0.3155 -0.9662 0.3192
Exper -0.4730 0.1198 -0.3150 0.1205
Age -0.5038 0.0439 -0.4099 0.0440
Age× Exper 0.0250 0.0048 0.0228 0.0049
AFQT —— —— 0.0326 0.0026
AFQT × Exper —— —— -0.0030 0.0005
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9.4.2 Period-specific utility

Utility of leisure. The first panel of Table 2 presents the estimates of the parameters govern-

ing the period-specific utility of leisure. The results indicate the utility of leisure is increasing

in both parental income and AFQT, and the effect of parental income on the utility of leisure

is lower for blacks. I find no evidence of a direct effect beingblack on the utility of leisure.

These results remain unchanged when AFQT is included in the utility-of-leisure taste shifter.

The results also show that utility of leisure is decreasing and convex in age.

Psychic value of labor force participation. The results presented in the second panel of

Table 2 imply significant psychic costs of working. The coefficient on black is statistically

insignificant across both specifications, and the coefficient on the interaction of black and

parental income becomes statistically insignificant when AFQT is included, suggesting racial

variation in the barriers to employment can largely be explained by variation in market ability

measured by AFQT. The coefficient on parental income is positive and significant across

specifications, and the inclusion of AFQT does not reduce itsmagnitude, which supports

the hypothesis that individuals from richer families have greater access to the labor market

in terms of employment opportunities. The coefficient on AFQT is positive and significant,

implying AFQT also measures market ability developed in early childhood. The results also

imply significant nonpecuniary benefits to continuous employment.

Psychic value of school enrollment.The results in the third panel of Table 2 provide evi-

dence of the preference for continuous schooling, and the psychic cost of school attendance

is increasing in labor market experience and age. These results are consistent with those of

Eckstein and Wolpin (1999), who provide a detailed discussion of the economic interpreta-

tion of these coefficients.

The results imply psychic costs of school attendance are decreasing in parental income

and AFQT. I find no evidence from either specification that psychic costs of school enroll-

ment vary by race. Furthermore, including AFQT reduces the magnitude of the (positive)

effect of family income by 59%. The conclusion implied from these results and those from

the estimated grade transition probability function, which is consistent with Cameron and

Heckman (2001) and Carneiro and Heckman (2003) is that, given AFQT, educational attain-

ment varies by parental income but not by race, and individuals with higher parental income

are more likely to attain higher education. These conclusions come with an important caveat,
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which is discussed in the following.

Psychic value of working while attending school.The conclusions drawn so far from the

results pertain only to individuals who exclusively enrollin school or exclusively participate

in the labor market, and not for individuals who work while enrolled in school. The fourth

panel of Table 2 provides the estimates of the psychic value of working while attending

school. They show significant psychic costs of working whileenrolled in school for blacks.

The results also suggest white individuals with high parental income are less likely to work

while enrolled in school, a result that is consistent with the existence of borrowing constraints

found in Keane and Wolpin (2001). These results hold for bothspecifications and are not di-

minished by the inclusion of AFQT, which itself increases the psychic cost of working while

in school. These results suggest significant differences inthe demographic characteristics of

individuals who work while in school relative to individuals who do not, and not accounting

for these differences is likely to bias estimates of the distribution of returns to education.
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Table 2: Period-specific Utility

Specification 1 2
Variable Estimate Std. Err. Estimate Std. Err.
Utility of leisure exp(θu

2xt) ln(1−ht)
Constant 1.3964 0.1070 2.7533 0.0934
Black -0.0476 0.0358 0.0609 0.0284
Par Inc 0.0525 0.0059 0.0424 0.0038
Black× Par Inc -0.0250 0.0161 -0.0203 0.0135
AFQT —— —— 0.0038 0.0002
Age -0.0511 0.0076 -0.1379 0.0067
Age Squared 0.0010 0.0001 0.0023 0.0001

Psychic value of labor force participationdh
t xtθu

3
Constant 0.1695 0.3980 0.3937 0.7350
Black -0.1141 0.3674 0.3608 0.5101
Par Inc 0.3936 0.0825 0.4348 0.0895
Black× Par Inc -0.3510 0.1681 -0.2863 0.2253
AFQT —— —— 0.0581 0.0061
Lagged Enrollment 0.5903 0.0235 1.2012 0.0511
Edu 0.1720 0.0316 0.1324 0.0799
Exper 0.1664 0.0177 0.1816 0.0298
Age 0.0428 0.0176 0.0433 0.0308

Psychic value of school enrollmentdE
t xtθu

4
Constant 0.4910 1.1258 1.6259 1.2196
Black -0.7636 0.5692 -0.2700 0.6620
Par Inc 0.7629 0.0843 0.3094 0.0907
Black× Par Inc -0.1243 0.2262 0.0717 0.2563
AFQT —— —— 0.0951 0.0057
Lagged Enrollment 4.6888 0.2632 5.8061 0.3596
Edu 0.1603 0.0549 0.0981 0.0914
Exper -0.1216 0.0749 -0.3431 0.0790
Age -0.1458 0.0685 -0.2764 0.0728

Psychic value of working while attending schooldh
t dE

t xtθu
5

Constant -2.3564 0.2820 -2.8900 0.3025
Black -1.5807 0.5531 -1.9543 0.6532
Par Inc -0.5808 0.0986 -0.5667 0.1014
Black× Par Inc 0.5440 0.2190 0.5082 0.2725
AFQT —— —— -0.0632 0.0060
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9.5 Wage-offer equation

Table 3 presents the results from estimation of the wage-offer function. AFQT is included

in both specifications in order to be consistent with the existing literature. I allow for the

wage-offer function to be directly dependent on race and parental income, and for the distri-

bution of returns to eduction to vary by racial and parental-income categories. In addition to

racial and parental-income categories, Specification 2 allows for the distribution of returns

to education to vary with AFQT categories.

The results from both specifications suggest the existence of a black-white gap in the

level of log wages. The results also indicate wages are increasing in parental income, with

higher increases for blacks. Therefore, the black-white gap in the level of log wages narrows

as parental income increases, and is eliminated or reversedfor parental income 37% above

the median income in specification 1 and 65% above the median income in specification 2.

Allowing for the distribution of returns to education to depend on AFQT results in a negative

and statistically significant coefficient on AFQT in the wage-offer equation, indicating an

overcorrection of the direct effect of AFQT on wage offers. These results suggest parental

income, and not AFQT, explains the male black-white wage gap, which supports the hypoth-

esis that individuals with richer parents have greater access to higher-paying jobs. These

results are not immediately comparable to those of Neal and Johnson (1996) and Keane and

Wolpin (2000a), who find the inclusion of AFQT in the wage-offer equation significantly

reduces the black-white racial wage gap, because of the inclusion of parental income in the

log-wage equation, as well as the correlated random-effects specification of the returns to

education.

The ranges of the supports of returns to education are estimated to be from 0.062 to 0.10

when AFQT is not included and from 0.060 to 0.09 when AFQT is included, and the Wald

test rejects the null of equality in support points at the 5% level of significance in both cases.

These ranges of returns to education lie within the range of the estimates from other studies

that implement OLS and IV methods and data from similar time periods (see Card, 1999, for

a review of these studies). It includes the estimates of returns to education for white-collar

workers in Keane and Wolpin (2000a), but lies at the lower endof estimates produced in

Heckman, Lochner, and Todd (2008).
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Table 3: Wage-Offer Equation

Specification 1 2
Variable Estimate Std. Err. Estimate Std. Err.
Constant 0.2888 0.0433 0.3143 0.0373
t/T -0.9442 0.2677 -0.8529 0.2209
(t/T)2 -1.0522 0.3483 -1.5486 0.3044
(t/T)3 1.6782 0.1947 2.0535 0.1822
Exper 0.1203 0.0078 0.1281 0.0022
Exper Squared -0.0031 0.0001 -0.0031 0.0001
Black -0.1665 0.0280 -0.1464 0.0277
Par Inc 0.0096 0.0040 0.0226 0.0037
Black× Par Inc 0.0678 0.0105 0.0325 0.0106
AFQT 0.0004 0.0003 -0.0013 0.0003
Wage Shock Std. Dev. 0.6880 0.0192 0.9874 0.0238
s1 0.0622 0.0059 0.0602 0.0053
s2 0.0851 0.0061 0.0735 0.0054
s3 0.1000 0.0057 0.0906 0.0047

9.5.1 Returns to education

Table 4 reports the estimates of the distribution of the returns to education by racial, parental-

income, and ability groups. The first panel reports the distribution when AFQT is not ac-

counted for, and the second panel reports the distribution when it is allowed to vary with

AFQT.

When AFQT is not accounted for, the distribution of returns to education for whites first-

order stochastically dominates the distribution for blacks across income categories, and the

distribution for high-parental-income individuals dominates the distribution for low-parental-

income individuals across race. The probability that a white individual with high parental

income receives high returns to education is 0.57, which is 21 percentage points higher than

the probability that a white individual with low parental income receives high returns to

education. The probability that a white individual with lowparental income receives high

returns to education is 5 percentage points higher than the probability that a black individual

with high parental income receives high returns to education, which is in turn 7 percentage

points higher than the probability that a black individual with low parental income receives
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high returns to education.

When AFQT is accounted for, the distribution of returns to education for individuals

with high AFQT strongly first-order stochastically dominates the distribution for individu-

als with low AFQT within all race and parental-income categories. Also, when AFQT is

accounted for, the racial difference in the distribution ofreturns to education reduces signifi-

cantly within AFQT categories. Interestingly, this difference reverses in sign for individuals

of low AFQT with high parental income; that is, the probability that a black individual

with low AFQT and high parental income receives high returnsto education is 4 percentage

points higher than a white individual from the same AFQT and parental-income category.

These results support the hypothesis that racial differences in returns to education are largely

explained by differences in skill endowments developed during early childhood. The conclu-

sion drawn from these and the above results is that, net of differences in skill endowments

as measured by AFQT, no economically significant racial variation exists in the barriers to

school enrollment, the likelihood of completing a grade level given enrollment, nor in the

distribution of returns to education. However, a significant gap in wage offers exist, which

narrows as parental income increases.

The results show parental income remains a significant determinant of the distribution of

returns to education when AFQT is accounted for. The distribution of returns to education

for individuals with high parental income stochastically dominates the distribution for indi-

viduals with low parental income for all AFQT and race categories, though marginally so for

blacks with high AFQT. However, AFQT accounts for approximately 31% of the parental-

income gap in the probability that a white male receives highreturns to education, and the

residual gap is approximately the same across AFQT categories. On the other hand, black

males with low AFQT account for almost all of the parental-income–gap in the probability

that a black male receives high returns to education, which supports the hypothesis that indi-

viduals with rich parents have a significant advantage in thelabor market with respect to the

returns they receive from an additional year of schooling. Combined with the above results,

the conclusion drawn is that individuals with rich parents possess significant advantages in

the labor market in terms of lower barriers to employment, higher wage offers independent

of level of education, and higher returns to education. These labor market advantages of

individuals from rich parents are independent of the skill endowments developed by during

early childhood, except for the returns to education for blacks, for whom the gap in returns
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to education exists for the low-AFQT subgroup. An importantcaveat to these conclusions

concerns the group of individuals who work while attending school, for whom the results

indicate the psychic cost of working while in school is higher for blacks, individuals with

high parental income, and individuals with high AFQT.
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Table 4: Distribution of Returns to Education

Specification 1

Support 0.0622 0.0851 0.1000 Mean Std. Dev.

White
Low Parental Income 0.4555 0.1881 0.3564 0.0800 0.0171
High Parental Income 0.3071 0.1276 0.5653 0.0865 0.0169

Black
Low Parental Income 0.5547 0.2117 0.2336 0.0759 0.0161
High Parental Income 0.5146 0.1797 0.3058 0.0778 0.0169

Specification 2

Support 0.0602 0.0735 0.0906 Mean Std. Dev.

Low AFQT
White
Low Parental Income 0.4687 0.2808 0.2505 0.0716 0.0123
High Parental Income 0.4468 0.2325 0.3206 0.0731 0.0131

Black
Low Parental Income 0.4925 0.2435 0.2639 0.0715 0.0127
High Parental Income 0.4319 0.2061 0.3620 0.0740 0.0135

High AFQT
White
Low Parental Income 0.1841 0.0865 0.7294 0.0836 0.0121
High Parental Income 0.1421 0.0662 0.7917 0.0852 0.0110

Black
Low Parental Income 0.1815 0.0573 0.7612 0.0841 0.0119
High Parental Income 0.1705 0.0508 0.7787 0.0846 0.0117
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10 Conclusion

CCP estimation of dynamic structural models has flourished over the last two decades,

largely because of the potential for a quantifiable reduction in computational costs relative

to the full-solution approach. Building on Hotz and Miller (1993), Arcidiacono and Miller

(2011) show the expected value of future utilities from optimal decision-making can be ex-

pressed as functions of the flow payoffs and CCPs for any sequence of future choices. Any

future choice sequence chosen for a given initial choice generates a corresponding sequence

of distributions of states. The termρ-period finite dependence is obtained if two distinct

initial choices with two corresponding future choice sequences can be constructed so that

their respective distributions of states are the same afterρ-periods in the future. The compu-

tational advantage of the CCP approach depends significantly on ρ, particulary if the CCPs

are updated as recommended by Aguirregabiria and Mira (2002). Specifically, the computa-

tional cost reduces, and in many cases, the accuracy of the estimator improves with smaller

ρ. Although Arcidiacono and Miller (2011) represents a significant advancement relative to

Hotz and Miller (1993), application of the CCP method often still requires strong assump-

tions about the choice sequence or the state transition probabilities or both. The general-

ization of the concept ofρ-period finite dependence proposed is the paper overcomes these

issues. Specifically, this extension obtains one-period dependence (ρ = 1) in a large class of

dynamic structural models, which includes most models thathave been estimated using the

CCP method, and it imposes minimal restrictions on the statetransition probabilities, which

widens the scope of models for which the CCP method is computationally beneficial.

The class of models I consider includes continuous choices that are associated with the

discrete choices, where the shocks associated with the continuous choices are observed by

the agent simultaneously with or before the discrete-choice-specific shocks. This specifi-

cation allows for selection on unobservables, which is in contrast to the results of Blevins

(2014). With respect to identification of the parameters of the model, however, allowing for

this form of selection on unobservables comes at the cost of restricting the distribution of the

continuous-choices–specific shocks to being known up to a finite-dimensional set of param-

eters, a restriction that is unnecessary in Blevins (2014).The identification strategy of this

model imposes three key restrictions. I assume the state variables can be varied in a way that

changes the difference in the period-specific utility functions, but leaves the difference in the

51



transition probabilities unchanged. This restriction canbe attained by index restrictions on

the transition probabilities or by the existence of state variables that drives the difference in

the transition probabilities to 1, 0, or -1. The second restriction is that the differences in the

period-specific utility functions is strictly monotonic inthe permanent unobserved hetero-

geneity. The third is the support of the state variables is wide enough that any two distinct

period-specific utility functions evaluated at any two distinct values of the unobserved effect

cross each other. The Monte Carlo exercise performed in thispaper shows the proposed es-

timator performs well in recovering the period-specific utility functions and the distribution

of the permanent unobservables.

I apply the methods developed in this paper to estimate a model of educational attainment

and labor supply to investigate properties of the distribution of the returns to education, us-

ing data from the NLSY79. The main lesson learnt from this application is AFQT accounts

for all of the racial disparity and significant portion of theparental-income disparity in aca-

demic achievement: the likelihood of enrolling in school and the likelihood of completing a

grade level given enrollment. This result is consistent with Cameron and Heckman (2001)

and Carneiro and Heckman (2003), who argue most of the racialand parental income gap

in academic achievement can be explained by differences in early childhood development

of scholastic ability as measured by AFQT. An important caveat pertains to individuals who

work while attending school, for whom I find the nonpecuniarycosts of working while en-

rolled in school are higher for blacks and individuals with high parental income, and these

costs are not diminished with the inclusion of AFQT.

On the other hand, although AFQT accounts for the racial disparities in the barriers to

labor market participation and the distribution of returnsto education, it does not account for

the parental-income disparities in these economic quantities. Furthermore, I find family in-

come, and not AFQT, has a mitigating effect on racial disparity in wage offers. The primary

conclusion of Carneiro and Heckman (2003) is that, because education is a key determi-

nant of earnings, public investment designed to eliminate the racial and parental-income gap

in earnings should be more targeted toward enhancing the scholastic ability of the young,

and less on policy interventions such as tuition subsidies designed to enhance the education

level of older individuals with low skills. The results of this paper suggest public invest-

ment should also target enhancing employment opportunities and earnings, independent of

education, of older individuals from poorer families. If the ultimate goal is to address the
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socio-economic disparity in labor market success, the results of this paper provide a refine-

ment of how a dollar of public spending should be allocated between enhancing skills of the

young on one hand, and improving employment opportunities and wages of older individuals

entering the labor market on the other. Further analysis of the allocation of public spending

on the young versus the old would involve counterfactual policy analysis similar to Keane

and Wolpin (2000b) and Cameron and Heckman (2001), which is beyond the scope of the

current paper but belongs to the research agenda.
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A LEMMA AND THEOREMS

A.1 Proof of Theorem 3.1

Proof. For any initial choice( j,c jt ), evaluating equation (2.3) at periodt +1 andc jt+1 =

c0
jt+1(zt, r jt ), and substituting into equation (2.10) obtains

v jt (zt,c jt , r jt ) = u jt (zt,c jt , r jt )

+β
J

∑
k=1

∫ ∫
[u0

kt+1(zt+1, rkt+1)+ψk(p
0
t+1(zt+1, rt+1))

+β
∫ ∫

Vt+2(zt+2, rt+2)gr(rt+2)drt+2 f 0
kt(zt+2|zt+1, rkt+1)dzt+2]

×ak jt+1(zt+1, rkt+1)gr(rt+1)drt+1 f jt (zt+1|zt,c jt )dzt+1, (A.1)

so that

v jt (zt,c jt , r jt ) = u jt (zt,c jt , r jt )

+β
J

∑
k=1

∫ ∫
[u0

kt+1(zt+1, rkt+1)+ψk(p
0
t+1(zt+1, rt+1))]

×ak jt+1(zt+1, rkt+1)gr(rt+1)drt+1 f jt (zt+1|zt,c jt )dzt+1

+β2
∫ ∫

Vt+2(zt+2, rt+2)gr(rt+2)drt+2κ jt+1(zt+2|zt,c jt )dzt+2. (A.2)

By forward substitution, equations (2.10) and (A.1) obtain

v jt (zt ,c jt , r jt ) = u jt (zt ,c jt , r jt )

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫ ∫
βτ−t [u0

kτ(zτ, rkτ)+ψk[p
0
τ(zτ, rτ)]]

×ak jτ(zτ, rkτ)gr(rτ)κτ−1, j(zτ|zt,c jt )drτdzτ

+βt+ρ+1
∫ ∫

Vt+ρ+1(zt+ρ+1, rt+ρ+1)

×gr(rt+ρ+1)drt+ρ+1κ jt+ρ+1(zt+ρ+1|zt ,c jt )dzt+ρ+1. (A.3)
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A.2 Proof of Theorem 3.3

Proof. Using equation (A.3), the difference in the conditional value functions associated

with two alternative initial choices,( j,c jt ) and( j ′,c j ′t), becomes

v jt (zt ,c jt , r jt )−v j ′t(zt ,c j ′t , r j ′t) = u jt (zt ,c jt , r jt )−u j ′t(zt,c j ′t , r j ′t)

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫ ∫
βτ−t [u0

kτ(zτ, rkτ)+ψk[p
0
τ(zτ, rτ)]]

× [ak jτ(zτ, rkτ|zt,c jt )κ jτ−1(zτ|zt ,c jt )−ak j′τ(zτ, rkτ|zt,c j ′t)κ j ′τ−1(zτ|zt ,c j ′t)]gr(rτ)drτdzτ

+βt+ρ+1
∫ ∫

Vt+ρ+1(zt+ρ+1, rt+ρ+1)gr(rt+ρ+1)drt+ρ+1

× [κ jt+ρ(zt+ρ+1|zt ,c jt )−κ j ′t+ρ(zt+ρ+1|zt ,c j ′t)]dzt+ρ+1. (A.4)

If

κ jt+ρ(zt+ρ+1|zt,c jt ) = κ j ′t+ρ(zt+ρ+1|zt,c j ′t)

almost everywhere with∑J
k=1akk′τ(zτ, rkτ) = 1, k′ = j, j ′, the last term on the RHS of equa-

tion (A.4) is eliminated to obtain

v jt (zt ,c jt , r jt )−v j ′t(zt ,c j ′t , r j ′t) = u jt (zt ,c jt , r jt )−u j ′t(zt,c j ′t , r j ′t)

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫ ∫
βτ−t [u0

kτ(zτ, rkτ)+ψk[p
0
τ(zτ, rτ)]]

× [ak jτ(zτ, rkτ|zt,ct)κ jτ−1(zτ|zt ,c jt )−ak j′τ(zτ, rkτ|zt,ct)κ j ′τ−1(zτ|zt ,c j ′t)]gr(rτ)drτdzτ.

A.3 Identification

Defineu jkt(xt ,s,ct, rt)=u jt (xt ,s,c jt , r jt )−ukt(xt ,s,ckt, rkt). Definev jkt(xt ,s,ct , rt) and f jkt(xt+1|xt ,ct)

analogously. In what follows, I assumef jt (xt+1|xt ,c jt ), j = 1, · · · ,J are identified in the pop-

ulation from the observables(xt+1,xt ,c jt ). For a given alternativej∗ and anyct ∈ Ct , for any
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measurable functionΓ : X → X and constants,γ = {γ j , j ∈ J \ j∗}, define the set

Xt(Γ,γ,ct) =

{

xt ∈ X :
∫

Γ(xt+1) f j j ∗t(xt+1|xt ,ct) = γ j , j ∈ J \ j∗
}

. (A.5)

The following assumption provides sufficient conditions for the uniqueness of the map-

ping between the differences between the conditional valuefunctions and the period-specific

payoff functions.

Assumption A.1. 1. The discount factorβ ∈ (0,1] is known.

2. The distribution of the alternative-specific shocks, gε, is known and twice continuously

differentiable and log-concave with supportℜJ.

3. The distribution of the shocks associated with the continuous choices, gr , is known and

continuous.

4. u1t(xt ,s,c1t , r1t) is known for all(xt ,s,c1t , r1t).

5. For each j∈ J , x̄t exists for which ujt (x̄t ,s,c jt , r jt ) is known for all(s,c1t , r1t).

6. ForΓ = βVt+1(·,s), the setX1t :=
{

Xt(Γ,γ,ct) : γ ∈ ℜJ−1,ct ∈ Ct
}

is such that P(X1t)> 0.

Parts 1 and 2 of Assumption A.1 are standard in these models. Magnac and Thesmar

(2002) show the discount factor can be identified from exclusion restrictions. I conjecture

such exclusion restrictions can deliver identification of the discount factor in the model pre-

sented in section 2.1, but such explorations are beyond the scope of this paper. Blevins (2014)

proposes sufficient conditions for identification of the shocks associated with the continuous

choices under the assumption that these shocks are revealedbefore the shocks associated

with the discrete choices. Part 4 of Assumption A.1 states the period-specific payoff asso-

ciated with one alternative is fully known. This assumptionis weaker than assuming the

utility of the outside alternative is identically zero, andis an emerging standard in the litera-

ture of identification of these models (see Blevins, 2014, Arcidiacono and Miller, 2020, for

examples). Part 5 of Assumption A.1 is a location normalization, without which the period-

specific payoff functions would be identified only up to a function of the continuous choices.

Location restrictions of this type are developed and discussed extensively in Matzkin (2003),

Chesher (2003) and Matzkin (2007), for examples. Blevins (2014) implement similar loca-

tion restrictions, the difference being the author imposesthe restriction based on a value of

the continuous choice. Location restrictions are replacedwith traditional rank restrictions if
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the period-specific payoff functions are parametrically specified.

DefineU =
{

u jt (xt ,s,c jt , r jt ), for all (xt ,s,c jt , r jt ), j = 1, · · · ,J, t = 1, · · · ,T
}

. The fol-

lowing lemma is proved in section A.4

Lemma A.2. Suppose Assumptions 2.1, 3.10, A.1 hold. LetŨ and U generatẽv jt (xt ,s,ct , rt)

and vjt (xt ,s,ct, rt) according to the Bellman equation (2.3). Thenṽ j j ∗t(xt ,s,ct , rt)= v j j ∗t(xt ,s,ct , rt),

for all j ∈ J\ j∗ impliesũ jt (xt ,s,c jt , r jt ) = u jt (xt ,s,c jt , r jt ), j = 1, · · · ,J onX1t .

The next assumption imposes restrictions on the period-specific functions that are suffi-

cient for the difference in the conditional value of an alternative and the others,v jkt to be

strictly monotonic in the permanent unobserved heterogeneity, which is assumed to be unidi-

mensional. In the empirical application, this alternativeis j = 2, the choice of working and

not enrolling in school.

Assumption A.3. For some j∈ J , for all k ∈ J \ j and all (ct , rt), t = 1, · · · ,T, the following

hold.

1. For Γ = β [Vt+1(·, s̃)−Vt+1(·,s)], xt and corresponding constants{γk,k = 1, · · · ,J} exist

for which xt ∈ Xt(Γ,γ,ct) and ujkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct , rt) > γk− γ j for s̃> s. Define

X2t =
{

Xt(Γ,γ) : γ ∈ ℜJ−1,ct ∈ Ct
}

.

2. For anyŨ 6=U ands̃ 6= s, and forΓ = β
[

Ṽt+1(·, s̃)−Vt+1(·,s)
]

, xt and corresponding con-

stants{γk,k=1, · · · ,J} exist for which xt ∈Xt(Γ,γ,ct) andũ jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct , rt)>

γk− γ j . DefineX3t =
{

Xt(Γ,γ) : γ ∈ ℜJ−1,ct ∈ Ct
}

.

3. P
(

X̃t
)

> 0, whereX̃t := {X1t
⋂

X2t
⋂

X3t}.

Part 1 of Assumption A.3 provides conditions for which the difference in conditional

value functions are strictly increasing in the unobserved state variable on a set of the ob-

served state vectors for all values of the CCCs and their associated shocks. The identification

results to follow also hold under sufficient conditions thatrestricts the difference in condi-

tional value functions to be decreasing in the unobserved state variable. However, one of

these monotonicity restrictions must be imposed, and we assume the investigator has prior

knowledge of the direction. For example, the unobserved heterogeneity in the empirical ap-

plication is the returns to education, in which case, the wage-offer function is strictly increas-

ing in returns to education, and the period-specific utilityof working is strictly increasing in

the wage offer. Part 2 of Assumption A.3 is a crossing restriction, which states that for two
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distinct differences in period-specific payoff functions and values of the permanent hetero-

geneity, a value of the observed state variable exists for which the two payoffs are sufficiently

separated.

Lemma A.4. Suppose the conditions of Lemma A.1 and Assumption A.3 hold.Then, for

some j∈ J , for all k ∈ J \ j, and rt , the following hold:

1. v0
jkt(xt ,s, rt) is strictly increasing in s for all xt ∈ X̃t .

2. For anys̃ 6= s, xt ∈ X̃t exists for which̃v0
jkt(xt , s̃, rt)> v0

jkt(xt ,s, rt).

The following assumption imposes restrictions on the distribution of the permanent unob-

served heterogeneity. In particular, I assume the distribution is finitely supported and depen-

dent on a time-invariant subset ofxt , w∈ W ⊆ ℜDw. Magnac and Thesmar (2002) presents

sufficient conditions for identification of the period-specific utility function in two-period

binary-choice models, where they impose restrictions directly on the CCPs conditioned on

the permanent heterogeneity relative to their corresponding unconditional CCPs.

Assumption A.5. 1. For all xt ∈ X and w∈ W , the conditional density ft(xt |w)> 0.

2. The permanent unobserved heterogeneity has finite support with probability mass function

π(s|xt) = π(s|w), s∈ S(w) and cardinality Q(w), possibly depending on w.

Let π(sq(w)|w) = πq(w), π(w) = (π1(w), · · · ,πQ(w)(w))
′, Π(w) = ({s1(w), · · · ,sQ(w)(w)},

π(w)′,Q(w)), andΠ = {Π(w),w∈ W }. Equation (2.7) obtains

p0
jt (xt ,s;U) =

∫
p0

jt (xt ,s, r;U)gr(r)dr, and

p0
jt (xt ;U,Π(w)) =

Q(w)

∑
q=1

p0
jt (xt ,sq(w);U)πq(w). (A.6)

DefineP(x;U,Π) = (p0
jt (xt ;U,Π(w)), j = 1, · · · ,J, t = 1, · · · ,T) and, analogously define

P0(x) = (p0 jt (xt), j = 1, · · · ,J, t = 1, · · · ,T,), wherep0 jt (xt) is the true CCP, which is ob-

servable in the population. Let(U0,Π0) be the true parameter vector; that is, the prob-

abilities generated from the model at(U0,Π0) coincide with the population probabilities:

P(x;U0,Π0) = P0(x). DefineX̃ =
⋃T

t=1 X̃t . Note that, although the identification theorem
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is stated for allt, it also holds for cases in which neither the initial nor finalperiod of the

agent’s decision process is observed, in which case, the period-specific payoffs are identified

for only the observable periods. The identification theoremis stated as follows.

Theorem A.6. Suppose the conditions of Lemma A.2 and Assumption A.5 hold.Then(U0,Π0),

is identified onX̃ in the sense that any(Ũ ,Π̃) satisfyingP(x;Ũ ,Π̃) =P0(x) implies(Ũ ,Π̃) =

(U0,Π0) on X̃ with probability one.

The proof of Theorem A.6 is provided in Appendix A.6.

RemarkA.7. The estimator developed in the paper assumes the period-specific utility func-

tions are known up to a finite-dimensional set of parameters,which are not functions of

the state variables. I assume this restriction extends the set upon whichU0 is identified in

Theorem A.6 fromX̃ to X . I also assume the distribution of the shocks associated with the

continuous choices,r, can also be parametrically specified, given the parametricrestrictions

on the period-specific utility function.

A.4 Proof of Lemma A.2

Proof. Recall that for eachj = 1, · · · ,J, and under Assumption 2.1, the conditional value

function in equation (2.3) is given by

v jt (xt ,s,c jt , r jt ) = u jt (xt ,s,c jt , r jt )+β
∫

Vt+1(xt ,s) f jt (xt+1|xt ,c)dxt+1.

This representation of the conditional value function is unique for givenU under Assumption

3.10 and parts 1-3 of Assumption A.1, by the uniqueness of theback induction, and so is

v j j ∗t(xt ,s,c jt , r jt ) = u j j ∗t(xt ,s,c jt , r jt )+β
∫

Vt+1(xt ,s) f j j ∗t(xt+1|xt ,c jt )dxt+1. (A.7)

Likewise, the alternative set of utilities,Ũ , uniquely generate

ṽ j j ∗t(xt ,s,c jt , r jt ) = ũ j j ∗t(xt ,s,c jt , r jt )+β
∫

Ṽt+1(xt ,s) f j j ∗t(xt+1|xt ,c jt )dxt+1. (A.8)
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Then,ṽ j j ∗t(xt ,s,c jt , r jt ) = v j j ∗t(xt ,s,c jt , r jt ) obtains

ũ j j ∗t(xt ,s,c jt , r jt )−u j j ∗t(xt ,s,c jt , r jt ) = β
∫
[

Vt+1(xt ,s)−Ṽt+1(xt ,s)
]

f j j ∗t(xt+1|xt ,c)dxt+1.

(A.9)

Under part 6 of Assumption A.1, for any(s, rt) and fixedct , by varyingxt on Xt(Γ,γ,ct)

whereΓ = βVt+1(·,s), equation (A.9) obtains

ũ j j ∗t(xt ,s,c jt , r jt )−u j j ∗t(xt ,s,c jt , r jt ) = γ j (A.10)

onΓ = βVt+1(·,s), which holds for allj 6= j∗, including j = 1. By part 4 of Assumption A.1

and equation (A.10),

ũ j∗t(xt ,s,c jt , r jt )−u j∗t(xt ,s,c jt , r jt ) = γ1. (A.11)

Part 5 of Assumption A.1 and equation (A.11) implyγ1 = 0, so that

ũ j∗t(xt ,s,c jt , r jt ) = u j∗t(xt ,s,c jt , r jt ),

which case, part 5 of Assumption A.1 and equation (A.10) imply

ũ jt (xt ,s,c jt , r jt ) = u jt (xt ,s,c jt , r jt ), j = 1, · · · ,J

onXt(Γ,γ,ct). Noting these results hold for allγ andct for whichXt(Γ,γ,ct)⊂X1t completes

the proof.
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A.5 Proof of Lemma A.4

For j defined in Assumption A.3, andxt ∈ X2t defined Assumption A.3.1, ˜s> s implies

v jkt(xt , s̃,ct , rt)−v jkt(xt ,s,ct, rt) = u jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct, rt)

+β
∫

[Vt+1(xt+1, s̃)−Vt+1(xt+1,s)] f jkt(xt+1|xt ,ct)

= u jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct, rt)

+β
∫

[Vt+1(xt+1, s̃)−Vt+1(xt+1,s)] f j j ∗t(xt+1|xt ,ct)

−β
∫

[Vt+1(xt+1, s̃)−Vt+1(xt+1,s)] fk j∗t(xt+1|xt ,ct)

= u jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct, rt)+ γ j − γk > 0 (A.12)

for anyrt and anyct , includingc0
t (xt ,s, rt). This completes part 1 of the theorem.

For any(xt ,ct , rt) ands̃ 6= s,

ṽ jkt(xt , s̃,ct , rt)−v jkt(xt ,s,ct, rt) = ũ jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct, rt)

+β
∫
[

Ṽt+1(xt+1, s̃)−Vt+1(xt+1,s)
]

f j j ∗t(xt+1|xt ,ct)dxt+1

−β
∫
[

Ṽt+1(xt+1, s̃)−Vt+1(xt+1,s)
]

fk j∗t(xt+1|xt ,ct)dxt+1. (A.13)

Therefore, forxt ∈ X3t defined in Assumption A.3.2, equation (A.13) obtains

ṽ jkt(xt , s̃,ct , rt)−v jkt(xt ,s,ct, rt) = ũ jkt(xt , s̃,ct , rt)−u jkt(xt ,s,ct , rt)+ γ j − γk > 0. (A.14)

Now, for anyrt ands̃ 6= s,

ṽ0
jkt(xt , s̃, rt)−v0

jkt(xt ,s, rt)

= ṽ jkt(xt , s̃, c̃
0
t (xt , s̃, rt), rt)−v jkt(xt ,s,c

0
t (xt ,s, rt), rt)

=
[

ṽ jkt(xt , s̃, c̃
0
t (xt , s̃, rt), rt)− ṽ jkt(xt , s̃,c

0
t (xt ,s, rt), rt)

]

+
[

ṽ jkt(xt , s̃,c
0
t (xt ,s, rt), rt)−v jkt(xt ,s,c

0
t (xt ,s, rt), rt)

]

. (A.15)

By uniqueness of the optimal CCC, the first term in brackets onthe RHS of equation (A.15)
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is positive, and equation (A.14) implies the second is positive onX3t . This completes part 2

of the theorem.

A.6 Proof of Theorem A.6

Proof. Consider choicej satisfying Assumption A.3. Under the conditions of the theorem,

Lemmas A.2 and A.4 imply the following are true:

1. For alls, Ũ 6=U on X̃ implies p0
jt (xt ,s;Ũ) 6= p0

jt (xt ,s;U).

2. p0
jt (xt ,s;U) is strictly increasing ins for all xt ∈ X̃t .

3. For anyŨ 6=U ands̃ 6= s, xt ∈ X̃t exist for whichp0
jt (xt , s̃;Ũ)> p0

jt (xt ,s;U).

Define

P1(U) =
{

p0
jt (xt ,sq;U) : xt ∈ Xt ,sq ∈ S ,q≥ 1,2, · · ·

}

, (A.16)

P2(w,U) =

{

p0
jt (xt ;U,Π(w)) : p0

jt (xt ;U,Π(w)) =
Q(w)

∑
q=1

p0
jt (xt ,sq(w);U)πq(w),πq(w)> 0,

Q(w)

∑
q=1

πq(w) = 1, p0
jt (xt ,sq(w);U) ∈ P1(w,U),Q(w)≥ 1,2, · · ·

}

. (A.17)

By parts 2 and 3 of Assumption A.1,P1(U) is a linearly independent set for any fixedU with

probability 1. Therefore, result 1 above impliesp0
jt (xt ;U,Π(w)) ∈ P2(w,U) has a unique

representation as a linear combination of finitely many elements ofP1(U) (see Kreyszig,

1989); that is, anyU induces a unique corresponding finite-mixing distributionΠ(w;U) =

({s1(w;U), · · · ,sQ(w;U)}, π(w;U),Q(w;U)). By hypothesis,

p0 jt (xt) = p0
jt (xt ;U0,Π(w;U0)) =

Q(w;U0)

∑
q=1

p0
jt (xt ,sq(w;U0);U0)πq(w;U0).
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SupposeŨ 6=U0 exist for whichp0 jt (xt) = p0
jt (xt ;Ũ ,Π(w;Ũ)) so that

Q(w;Ũ)

∑
q=1

p0
jt (xt ,sq(w;Ũ);Ũ)πq(w;Ũ) =

Q(w;U0)

∑
q=1

p0
jt (xt ,sq(w;U0);U0)πq(w;U0). (A.18)

Because the weights sum to 1, equation (A.18) can be written as follows:

p0
jt (xt ,s1(w;Ũ);Ũ)− p0

jt (xt ,s1(w;U0);U0) =

Q(w;U0)

∑
q=2

(p0
jt (xt ,sq(w;U0);U0)− p0

jt (xt ,s1(w;U0));U0)πq(w;U0)

−
Q(w;Ũ)

∑
q=2

(p0
jt (xt ,sq(w;Ũ);Ũ)− p0

jt (xt ,s1(w;Ũ));Ũ)πq(w;Ũ). (A.19)

Relabel the abscissa if necessary so thats1(w;U0)> sq(w;U0),q=2, · · · ,Q(w;U0) ands1(w;Ũ)<

sq(w;Ũ),q= 2, · · · ,Q(w;Ũ). By result 2 above, the RHS of equation (A.19) is negative for

all xt ∈ X̃ (w). However, by result 3 above,xt ∈ X̃ (w) exists for which the LHS of equation

(A.19) is positive, contradicting the claim in equation (A.18) and therefore implying̃U =U0

on X̃ (w), which in turn impliesΠ(w;Ũ) = Π(w;U0) = Π0(w). Noting these results hold for

anyw∈ W completes the proof.

A.7 Proof of Theorem 5.3

Proof. Forq= 1, · · · ,Q, k= 1, · · · , |w|, equation (5.6) obtains

E[πq(dit ,xit ;θ,π(wk))|xit ,wk] = E

[

f (dit |xit ,θq)πq(wk)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

∣

∣

∣

∣

∣

xit ,wk

]

=
∫

f (dit |xit ,θq)πq(wk)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

f0(dit |xit ,wk)ddit

= πq(wk)

∫ ∑Q
q′=1 f (dit |xit ,θ0q′)π0q′(wk)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

f (dit |xit ,θq)ddit (A.20)
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for almost everyxit ∈ X , where f0(dit |xit ,wk) and is the population-conditional density of

dit given (xit ,wk). The last equality is a result of identification of the parameters of the

model, which implies the unique representation:f0(dit |xit ,wk) = ∑Q
q=1 f (dit |xit ,θ0q)π0q(wk).

Suppose(θ,π) = (θ0,π0). Then equation (A.20) obtainsE[πq(dit ,xit ;θ,π0(wk))|xit ,wk] =

π0q(wk). Conversely, supposeE[πq(dit ,xit ;θ,π(wk))|xit ,wk] = πq(wk) for almost everyxit ∈
X . Then, equation (A.20) implies

∫ ∑Q
q′=1 f (dit |xit ,θ0q′)π0q′(wk)

∑Q
q′=1 f (dit |xit ,θq′)πq′(wk)

f (dit |xit ,θq)ddit = 1, (A.21)

because the RHS of equation (A.20) varies withxit otherwise. By identification of the model,

equation (A.21) implies(θ,π) = (θ0,π0).

A.8 Asymptotic properties of the estimator

I use the following notations in all assumptions, theorems,and proofs: supθ = supθ∈Θ,

supπ = supπ∈∆Q−1, supθ,π = supθ∈Θ supπ∈∆Q−1, and∑k = ∑|w|
k=1. The first assumption imposes

the typical random-sampling restriction of the sampling process.

Assumption A.8. As sample of n independent realizations is drawn from F(d,c,x). For each

i = 1, · · · ,n, (dit ,cit ,xit , t = 1, · · · ,T) is observed.

The next assumption imposes restrictions on the parameter space and the admissible

functional forms of the period-specific utility functions.

Assumption A.9. 1. The setsX andΘ are compact; 2.θ0 ∈ int(Θ) and for j=0,1,2, and k=

1, · · · , |w|, ‖∂ jπ0(wk;θ)/∂θ j‖ exists at eachθ∈ int(Θ); 3. E[‖c‖2]<∞ and E[‖h(xi,θ0)‖2]<

∞ ; 4. h(x;θ) is twice continuously differentiable at eachθ ∈ int(Θ), with‖∂ jh(x;θ)/∂θ j‖ ≤
h̃ j(x), j = 0,1,2 for all θ ∈ Θ and somẽh j(x) satisfying E[h̃ j(x)]< ∞ for j = 0,1,2; and 5.

For k= 1, · · · , |w|, nk/n→ ck > 0.

Assumption A.10. Ω̂ is symmetric and positive definite with‖Ω̂−Ω‖= op(1).
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Some additional definitions and notations are required to proceed. Define

mπ
it (θ,π) = π− fff it (θ,π)π, mπ

i (θ,π) =
1
T

T

∑
t=1

mπ
it (θ,π),

mπ
0(w;θ,π) = E [mπ

i (θ,π)|w] , m̂π(wk;θ,π) =
1
nk

n

∑
i=1

mπ
i (θ,π)Ii(wk).

Let I andι be theq− dimensional identity matrix and iota vector, respectively. Define also

πππ = diag{π1, · · · ,πQ}, and let

Mπ
it (θ,π) = I − fff it (θ,π)+πππ fff it (θ,π)ιι

′ fff it (θ,π), Mπ
i (θ,π) =

1
T

T

∑
t=1

Mπ
it (θ,π),

Mπ
0(w;θ,π) = E [Mπ

i (θ,π)|w] , M̂π(wk;θ,π) =
1
nk

n

∑
i=1

Mπ
i (θ,π)Ii(wk).

The proof of the following consistency theorem is in Appendix A.9.

Theorem A.11. Suppose (i) Assumption A.3 holds, (ii) Assumption 5.2 holds, and (iii) As-

sumptions A.8, A.9, and A.10 hold. Then,θ̂ p−→ θ0, and for k∈ {1, · · · , |w|},

∥

∥

∥

∥

∂ j

∂θ j π̂(wk; θ̂)− ∂ j

∂θ j π0(wk;θ0)

∥

∥

∥

∥

p−→ 0, j = 0,1.

Letmi =mi(θ0,π0), Mi(θ,π)= ∂mi(θ,π)/∂θ, andM0=E[Mi(θ0,π0)], Mπi(θ)=Xih(xi,θ),
Mπ0(w) = E[Mπi(θ0)|w], mπ

0(w) = mπ
0(w;θ0,π0) andMπ

0(w) = Mπ
0(w;θ0,π0).

Theorem A.12. Suppose the conditions of theorem A.11 hold, andθ0 is in the interior ofΘ.

Then, √
n(θ̂−θ0)

p−→ N(0,V),

where V= (M′
0ΩM0)

−1(M′
0ΩΣΩM0)(M′

0ΩM0)
−1, and

Σ = E
[

(

mi +Mπ0(wi)M
π
0(wi)

−1mπ
i

)′ (
mi +Mπ0(wi)M

π
0(wi)

−1mπ
i

)

]

.

The proof of Theorem A.12 is in Appendix A.10.
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A.9 Proof of Theorem A.11

Proof. Fork=1, · · · , |w|, defineĥ(wk,θ)=∑n
i=1h(xi ,θ)Ii(wk)/nk andh0(wkθ)=E[h(xi,θ)|wi =

wk]. Under Assumptions A.8, A.9.1, A.9.3, and A.9.5, Lemma 2.4 of Newey and McFadden

(1994) implies

sup
θ

∥

∥

∥

∥

∂ j

∂θ j ĥ(wk,θ)−
∂ j

∂θ j h0(wk,θ)
∥

∥

∥

∥

p−→ 0, j = 0,1,2. (A.22)

I suppress the dependence of the type probabilities and empirical and theoretical expectations

and onw. Note the denominator term infff it (θ,π) satisfies 0< ∑q f (dit |xit ,θq)πq < 1 uni-

formly overθ ∈ Θ andπ ∈△Q−1. Then, by definingfff i(θ,π) = ∑T
i=1 fff it (θ,π)/T, f̂ff (θ,π) =

∑n
i=1 fff i(θ,π)/n and fff 0(θ,π) = E[ fff i(θ,π)], equation (A.22) implies

sup
θ,π

∥

∥

∥

∥

∂ j+l

∂θ jπl f̂ff (θ,π)− ∂ j+l

∂θ jπl fff 0(θ,π)
∥

∥

∥

∥

p→ 0, j, l = 0,1,2. (A.23)

Consistent with equation (A.20), ˆmπ
q(θ, π̂(θ)) = 0 for anyθ ∈ Θ. The mean-value expansion

aroundπ0(θ) obtains

0= m̂π
q(θ,π0(θ))

+
1

nT ∑
i,t

[(

1− f (dit |xit ,θq)

∑Q
q′=1 f (dit |xit ,θq′)π̄q′(θ)

)

(

π̂q(θ)−π0q(θ)
)

+
f (dit |xit ,θq)π̄q

∑Q
q′=1 f (dit |xit ,θq′(θ))π̄q′(θ)

× ∑
q′ 6=q

f (dit |xit ,θq′)

∑Q
q′′=1

f (dit |xit ,θq′′ )π̄q′′ (θ)

(

π̂q′(θ)−π0q′(θ)
)



 (A.24)

identically overθ overΘ, whereπ̄(θ) are mean values. Stacking equation (A.24) inq obtains

0= m̂π(θ,π0(θ))+ M̂π(θ, π̄(θ))(π̂(θ)−π0(θ)) . (A.25)
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Note each̄πq(θ) is strictly positive, soMπ
it (θ, π̄(θ)) can be written as follows:

Mπ
it (θ, π̄(θ)) = π̄ππ(θ)

[

π̄ππ(θ)−1(I − fff it (θ, π̄))+ fff it (θ.π̄)ιι
′ fff it (θ, π̄)

]

.

Note also that̄πππ(θ)−1(I − fff it (θ, π̄))+ fff it (θ.π̄)ιι′ fff it (θ, π̄) is symmetric with strictly positive

elements, and

det
[

π̄ππ(θ)−1(I − fff it (θ, π̄))+ fff it (θ.π̄)ιι
′ fff it (θ, π̄)

]

=
[

1+ ι′ fff it (θ, π̄)(I − fff it (θ, π̄))
−1 π̄ππ(θ) fff it (θ.π̄)ι

]

det
[

π̄ππ(θ)−1(I − fff it (θ, π̄))
]

> 0, (A.26)

so thatπ̄ππ(θ)−1(I − fff it (θ, π̄))+ fff it (θ.π̄)ιι′ fff it (θ, π̄) is symmetric and positive definite, which

in turn implies 1
nT ∑i,t π̄ππ(θ)−1(I − fff it (θ, π̄))+ fff it (θ.π̄)ιι′ fff it (θ, π̄) is symmetric and positive

definite. The diagonal matrixπππ(θ) is also symmetric and positive definite. From these results,

conclude thatM̂π(θ, π̄(θ)) is invertible so that equation (A.25) obtains

π̂(θ)−π0(θ) =−M̂π(θ, π̄(θ))−1m̂π(θ,π0(θ)) (A.27)

identically inθ overΘ. Dy definition,

π̂(θ) = f̂ff (θ, π̂(θ))π̂(θ) and (A.28)

π0(θ) = fff 0(θ,π0(θ))π0(θ) (A.29)

hold identically inθ over Θ, and equation (A.29) implies ˆmπ
it (θ,π0(θ)) can be written as

follows:

mπ
i (θ,π0(θ)) = fff 0(θ,π0(θ))π0(θ)− fff i(θ,π0(θ))π0(θ). (A.30)

Equations (A.23) and (A.30), along with Assumption A.9.3, imply

sup
θ

∥

∥

∥

∥

∂ j

∂θ j m̂
π(θ,π0(θ))

∥

∥

∥

∥

p→ 0 j = 0,1,2. (A.31)
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Becausefff it (θ,π) is a diagonal matrix with probabilities that sum to 1, supθ,π ‖ fff it (θ,π)‖= 1.

Therefore,

‖Mπ
it (θ,π)‖ ≤ ‖Q+1+‖πππ‖‖ fff it (θ,π)ιι

′ fff it (θ,π)‖ ≤ T1 < ∞
∥

∥

∥

∥

∂
∂π

Mπ
it (θ,π)

∥

∥

∥

∥

=

∥

∥

∥

∥

(2πππ fff it (θ,π)ιι
′− I)

∂
∂π

fff it (θ,π)+ fff it (θ,π)ιι
′ fff it (θ,π)

∥

∥

∥

∥

≤ T2+T3

∥

∥

∥

∥

∂
∂π

fff it (θ,π)
∥

∥

∥

∥

,

whereT2 andT3 are positive and finite constants. These results and equation (A.23) imply

sup
θ,π

∥

∥

∥

∥

∂ j

∂π j M̂
π(θ,π)− ∂ j

∂π j M
π
0(θ,π)

∥

∥

∥

∥

p→ 0, j = 0,1. (A.32)

Equations (A.27), (A.31), and (A.32) obtain

sup
θ

‖π̂(θ)−π0(θ)‖
p−→ 0. (A.33)

The mean-value theorem, equations (A.23), (A.32) and (A.33), and Assumption A.9.2 imply

sup
θ

∥

∥M̂π(θ, π̂(θ))−Mπ
0(θ,π0(θ))

∥

∥

= sup
θ

∥

∥

∥

∥

M̂π(θ, π̂(θ))−Mπ
0(θ, π̂(θ))+

∂
∂π

Mπ
0(θ, π̄(θ))(π̂(θ)−π0(θ))

∥

∥

∥

∥

≤ sup
θ,π

∥

∥M̂π(θ,π)−Mπ
0(θ,π)

∥

∥+sup
θ,π

∥

∥

∥

∥

∂
∂π

Mπ
0(θ,π)

∥

∥

∥

∥

sup
θ

‖π̂(θ)−π0(θ)‖

= op(1). (A.34)

sup
θ

∥

∥

∥

∥

∂
∂θ

f̂ff (θ, π̂(θ))− ∂
∂θ

fff 0(θ,π0(θ))
∥

∥

∥

∥

= sup
θ

∥

∥

∥

∥

∂
∂θ

f̂ff (θ, π̂(θ))− ∂
∂θ

fff 0(θ, π̂(θ))+
∂2

∂θ∂π
fff 0(θ, π̄(θ))(π̂(θ)−π0(θ))

∥

∥

∥

∥

≤ sup
θ,π

∥

∥

∥

∥

∂
∂θ

f̂ff (θ,π)− ∂
∂θ

fff 0(θ,π)
∥

∥

∥

∥

+sup
θ,π

∥

∥

∥

∥

∂2

∂θ∂π
fff 0(θ,π)

∥

∥

∥

∥

sup
θ,π

‖π̂(θ)−π0(θ)‖

= op(1). (A.35)
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Because equations (A.28) and (A.29) hold identically inθ over Θ, the envelope condition

implies

M̂π(θ, π̂(θ))
∂

∂θ
π̂(θ)+ π̂(θ)′⊗ I

∂
∂θ

vec
(

f̂ff (θ, π̂(θ))
)

= 0, and (A.36)

Mπ
0(θ,π0(θ))

∂
∂θ

π0(θ)+π0(θ)′⊗ I
∂

∂θ
vec( fff 0(θ,π0(θ))) = 0 (A.37)

hold identically inθ over int(Θ), where⊗ is the Kronecker product operator andvecis the

vectorization operator. By noting the equality ˆab̂−ab= (â−a)(b̂−b)+a(b̂−b)+(â−a)b,

the difference between equations (A.37) and (A.36) gives

M̂π(θ, π̂(θ))
(

∂
∂θ

π̂(θ)− ∂
∂θ

π0(θ)
)

=−
(

M̂π(θ, π̂(θ))−Mπ
0(θ,π0(θ))

) ∂
∂θ

π0(θ)

+(π̂(θ)−π0(θ))′⊗ I

(

∂
∂θ

vec
(

f̂ff (θ, π̂(θ))
)

− ∂
∂θ

vec( fff 0(θ,π0(θ)))
)

+π0(θ)′⊗ I

(

∂
∂θ

vec
(

f̂ff (θ, π̂(θ))
)

− ∂
∂θ

vec( fff 0(θ,π0(θ)))
)

+(π̂(θ)−π0(θ))′⊗ I
∂

∂θ
vec( fff 0(θ,π0(θ))) . (A.38)

Equations (A.33) - (A.38) and Assumption A.9.2 imply

sup
θ

∥

∥

∥

∥

∂
∂θ

π̂(θ)− ∂
∂θ

π0(θ)
∥

∥

∥

∥

p−→ 0. (A.39)

Now, under Assumptions A.8, A.9.1, and A.9.4,

‖mi(θ,π0(θ))‖ ≤ ‖Xi‖(‖yi‖+‖h(xi ,θ)‖‖π0(θ)‖)≤ T1‖yi‖+T2h̃0(xi)

for positive and finite constantsT1 and T2, so that Assumption A.9.3 and Lemma 2.4 of

Newey and McFadden (1994) imply

sup
θ
‖m̂(θ,π0(θ))−m0(θ,π0(θ))‖

p−→ 0. (A.40)
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Therefore, equations (A.46), (A.33), and (A.40) imply

‖m̂(θ, π̂(θ))−m0(θ,π0(θ))‖ ≤ ‖m̂(θ, π̂(θ))−m0(θ, π̂(θ))‖
+‖E[Xih(xi,θ)]‖‖π̂(θ)−π0(θ)‖
+
∥

∥M̂π(θ)−Mπ0(θ)
∥

∥‖π̂(θ)−π0(θ)‖
p−→ 0, (A.41)

which, along with Assumption A.10, obtainsθ̂ p−→ θ0. Finally, this result, Assumption A.9.2,

and equations (A.33), (A.39), and (A.40) imply

‖π̂(θ̂)−π0(θ0)‖=
∥

∥

∥

∥

π̂(θ̂)−π0(θ̂)+
∂π0(θ̄)

∂θ
(θ̂−θ0)

∥

∥

∥

∥

≤ sup
θ
‖π̂(θ)−π0(θ)‖+sup

θ

∥

∥

∥

∥

∂π0(θ)
∂θ

∥

∥

∥

∥

‖θ̂−θ0‖
p−→ 0, (A.42)

and

∥

∥

∥

∥

∂
∂θ

π̂(θ̂)− ∂
∂θ

π0(θ0)

∥

∥

∥

∥

=

∥

∥

∥

∥

∂
∂θ

π̂(θ̂)− ∂
∂θ

π0(θ̂)+
∂2π0(θ̄)

∂θ2 (θ̂−θ0)

∥

∥

∥

∥

≤ sup
θ
‖π̂(θ)−π0(θ)‖+sup

θ

∥

∥

∥

∥

∂2π0(θ)
∂θ2

∥

∥

∥

∥

‖θ̂−θ0‖
p−→ 0. (A.43)

The reintroduction of the type probabilities depending onw only involves performing the

above analysis with all theoretical and empirical expectations replaced with their correspond-

ing conditional expectations, conditioned on the event{wi = wk},k= 1, · · · , |w| and noting

thatn/nk → ck < ∞ for k= 1, · · · , |w|. With these modifications, conclude that

max
k

∥

∥

∥

∥

∂ j

∂θ j π̂(wk; θ̂)− ∂ j

∂θ j π0(wk;θ0)

∥

∥

∥

∥

p−→ 0, j = 0,1.
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A.10 Proof of Theorem A.12

Proof. By recalling thatfff i(θ,π) is a diagonal matrix with probabilities that sum to 1,

E[‖π0(wk;θ)′ fff i(θ,π0(wk;θ))′ fff i(θ,π0(wk;θ))π0(wk;θ)‖|wk]< ∞

for k = 1, · · · , |w|. This result implies that for anyθ ∈ Θ, mπ
i (θ,π0(wk;θ)) defined in equa-

tion (A.30) satisfiesE[
∣

∣mπ
i (θ,π0(wk;θ))′mπ

i (θ,π0(wk;θ))
∣

∣ |wk] < ∞. Therefore, under As-

sumptions A.8 and A.9, and by notingnk/n → ck > 0,k = 1, · · · , |w| and equation (A.34),

application of the Lindeberg-Levy CLT to equation (A.27) gives‖m̂π(wk;θ,π0(wk;θ))‖ =

Op(1/
√

n), k= 1, · · · , |w|. This convergence result, and equations (A.27) and (A.32) imply

π̂(wk;θ)−π0(wk;θ) =−Mπ
0(wk;θ,π0(wk;θ))−1 1

nk

n

∑
i=1

mπ
i (wk;θ,π0(wk;θ))Ii(wk)+op(1/

√
n)

for anyθ ∈ Θ and fork= 1, · · · , |w|. Also, under Assumptions A.8 and A.9,E[‖m′
imi‖]< ∞

so that, by the Lindegerg-Levi CLT,

‖m̂‖= Op(1/
√

n). (A.44)
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DefineM̂π(wk;θ)=∑n
i=1Mπi(θ)Ii(wk)/nk, for k=1, · · · , |w| and letM̂(θ,π)=∑n

i=1Mi(θ,π)/n.

The mean-value expansion obtains

m̂(θ̂, π̂(θ̂)) =

m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)−
1
n

n

∑
i=1

Xih(xi ,θ0)(π̂(wi ;θ0)−π0(wi ;θ0))

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)−
1
n

n

∑
i=1

Xih(xi,θ0)∑
k

Ii(wk)(π̂(wk;θ0)−π0(wk;θ0))

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)−∑
k

[

1
nk

n

∑
i=1

Xih(xi,θ0)Ii(wk)

]

nk

n
(π̂(wk;θ0)−π0(wk;θ0))

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)−∑
k

M̂π(wk;θ0)
nk

n
(π̂(wk;θ0)−π0(wk;θ0))

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)+∑
k

Mπ0(wk)M
π
0(wk)

−11
n

n

∑
i=1

mπ
i (wk;θ0,π0(θ0))Ii(wk)+op(1/

√
n)

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)+
1
n

n

∑
i=1

∑
k

Mπ0(wk)M
π
0(wk)

−1mπ
i (wk)Ii(wk)+op(1/

√
n)

= m̂+
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)+
1
n

n

∑
i=1

Mπ0(wi)M
π
0(wi)

−1mπ
i +op(1/

√
n)

=
[

M̂(θ̄, π̂(θ̄))
]

(θ̂−θ0)+
1
n

n

∑
i=1

[

mi +Mπ0(wi)M
π
0(wi)

−1mπ
i

]

+op(1/
√

n), (A.45)

whereθ̄ andπ̄ are mean values. Next, under the same conditions that obtains equation (A.22),

sup
θ

∥

∥

∥

∥

∂ j

∂θ j M̂π(wk,θ)−
∂ j

∂θ j Mπ0(wk,θ)
∥

∥

∥

∥

p−→ 0, j = 0,1,2. (A.46)

M̂(θ,π(θ)) = ∑
k

M̂π(wk;θ)
∂

∂θ
π(wk;θ)+∑

k

π(wk;θ)′⊗ INX

∂
∂θ

vec
(

M̂π(wk;θ)
)

,

75



so that

∥

∥M̂(θ̂, π̂(θ̂))−M0(θ0,π0(θ0))
∥

∥

≤ ∑
k

∥

∥

∥

∥

M̂π(wk; θ̂)
∂

∂θ
π̂(wk; θ̂)−Mπ0(wk;θ0)

∂
∂

π0(θ0)

∥

∥

∥

∥

+∑
k

∥

∥

∥

∥

π̂(wk; θ̂)′⊗ INX

∂
∂θ

vec
(

M̂π(wk; θ̂)
)

−π0(wk;θ0)
′⊗ INX

∂
∂θ

vec(Mπ0(wk;θ0))

∥

∥

∥

∥

= op(1), (A.47)

where the last equality is obtained using Assumptions A.8 and A.9, the consistency results

of Theorem A.11, equation (A.46), and calculations similarto equation (A.38). This result

also holds when̂θ is replaced with the mean valuesθ̄.

The first-order conditionM̂(θ̂, π̂(θ̂))′Ω̂m̂(θ̂, π̂(θ̂)) = 0, equations (A.45) and (A.47), and

Assumption A.10 obtain

√
n(θ̂−θ0) =−(M′

0ΩM0)
−1M′

0Ω
1√
n

n

∑
i=1

[

mi +Mπ0(wi)M
π
0(wi)

−1mπ
i

]

+op(1).

Application of the Lindeberg-Levi CLT completes the proof.

A.11 Monte-Carlo Exercise

This appendix presents the results of two sets of Monte Carloexercises to illustrate the

finite-sample performance of the proposed estimator. The first set of exercises investigate

the performance of the approximation to finite dependence presented in section 3.1 under

the restrictions on the transition probabilities imposed in Assumption 3.8. The second set of

exercises investigate the performance of the estimator relative to the one based on the EM

algorithm developed in Arcidiacono and Miller (2011) for models that satisfy the renewal

property discussed in section 3.1. The discount factor is set to be 0.95 in all cases.

For the first exercise, the number of discrete alternatives isJ = 2, and the period-specific
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utility function is specified as follows:

ut(zt,ct , rt ,εt) = d2t [ln(1+ctφ1(zt, rt ;θ))+φ2(xt) ln(1−ct)+ ε2t ]+d1tε1t , (A.48)

φ1(zt, rt ;θ) = exp(θ1+θ2x1t +sx2t + rt),

φ2(xt) = exp(0.05x3).

The observed state variable,x1t = ∑t−1
τ=1d2τ/10 andf jt (x2t+1|xt ,ct), is distributed discretized

normalN(µjt (xt ,c jt ),1) with |x2|= 7 support points, where

µjt (xt ,c jt ) = 2.5+d2t(0.4−0.8ct)+0.05φ3(t)+0.01d2t−1−0.005x1t , and (A.49)

φ3(t) = 0.067t−0.001t2. (A.50)

The time-invariant observed stated variable,x3, is distributed discrete-uniform on the interval

[0,10]with |x3|= 100 support points, and the shock associated with the CCC,rt is distributed

discretized normalN(0,0.1) with |r| = 3 support points. I set the number of types in the

population to two withs∈ {0.1,0.5} and corresponding probabilities(0.6,0.4), and the

shocks,ε jt , j = 1,2, to be distributed i.i.d., type 1 extreme value. I estimateθ2,θ4, and the

distribution ofs in each design.

The preference parameters areθ1 = 1, θ2 = 0.2. The simulated data are generated by

solving the dynamic programming for 40 periods and simulating 100 replications of 1,000

individuals. Estimation is based on the last 20 periods, andI contaminate the log CCCs with

additive measurement errors, which are distributed i.i.d.normal with zero mean and variance

equal to 10% of the variance in the simulated CCCs.

The parameters are estimated by two-stage GMM, and the counterfactual CCPs and

CCCs are updated by regressing the type-specific log-odds ratio and the type-specific CCSs

implied from the model on a third-order polynomial of the state variables in each period. The

weights that achieve approximate one-period finite dependence are computed on 15 equidis-

tant grid points between 0.1 and 0.5. Table 1 presents the results of simulation exercise for

this first model design.

77



Table A1: Finite-Sample Properties of the Estimator for Design 1

θ1 θ2 s1 s2 π1

True Value 1.00 0.20 0.10 0.50 0.60
Full Solution. Time:a 12.42 (7.30) mins.

MB 0.0249 -0.0046 -0.0031 -0.0134 0.0105
MAB 0.0253 0.0046 0.0039 0.0192 0.0224
RMSE 0.0305 0.0061 0.0046 0.0235 0.0301

Known CCP and CCC. Time: 2.39 (1.60) mins.

MB 0.0313 -0.0084 -0.0044 -0.0147 -0.0154
MAB 0.0314 0.0084 0.0050 0.0214 0.0240
RMSE 0.0367 0.0108 0.0063 0.0241 0.0313

Proposed Estimator. Time: 2.73 (2.01) mins.

MB 0.0291 -0.0073 -0.0043 -0.0149 -0.0162
MAB 0.0294 0.0074 0.0049 0.0212 0.0245
RMSE 0.0350 0.0099 0.0063 0.0241 0.0319

a Standard deviations in parentheses.

The second simulation exercise investigates the performance of the proposed estimator

in an environment where the model satisfies the renewal property, in which case, the weights

that achieve one-period finite dependence are closed form. The estimator is compared with

EM algorithm approach of Arcidiacono and Miller (2011). Again, the model is one of two

discrete alternatives, and the period-specific utility function is given by

ut(zt ,εt) = d2t [s+θ1x1+θ2 ln(1+x2t/10)+ ε1t ]+d1tε1t . (A.51)

The time-invariant observed state variable,x2, is distributed discrete-uniform on[0,1] with

|x1|= 200 support points. The endogenous state variablex2t evolves as follows:x2t+1 = 0 if
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d1t = 1, andx2t+1 = x2t + rt+1 if d2t = 1, wherert ∈ {1,2,3} and

Pr(rt+1 = r|xt) =
erφt(xt)

∑3
k=1erkφt(xt)

, where (A.52)

φt(xt) = 0.5−0.01t+0.5x1−0.001x2t .

The number of unobserved types is set to two withs∈ 1,3 with corresponding probabilites

(0.6,0.4). In the context of the optimal replace-of-bus-engines framework of Rust (1987),

t is the age of the bus,x1 is the brand of the bus, andx2t is accumulated mileage. Action

j = 1 is replacing the bus, in which case, the accumulated mileage of the bus is zero in the

next period. If Harold Zurcher chooses not to replace the busengine, accumulated mileage

increases byrt+1. Equation (A.52) implies the probability of high usage of the bus decreases

with age and accumulated mileage of the bus.

I setθ1 = 1, θ2 =−0.5. As in the previous Monte-Carlo exercise, the simulated data are

generated by solving the dynamic programming problem for 60periods and simulating 100

replications of 1,000 individuals with the initial condition x21 = 0. Estimation is based on

the last 20 periods. To construct the likelihood for the EM algorithm, the initial distribution

of the endogenous state variable conditioned on the unobserved state variable is computed

under the assumption that the unobserved state variable is observed. Table A2 presents the

results of a simulation exercise for the second model design.
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Table A2: Finite-Sample Properties of the Estimator for Design 2

θ1 θ2 s1 s2 π1

True Value 1.0 -0.5 1.0 3.0 0.6
Proposed Estimator. Time:a 0.28 (0.13) mins.

MB 0.0260 0.0015 0.0012 -0.0006 -0.0044
MAB 0.0278 0.0083 0.0086 0.0078 0.0172
RMSE 0.0457 0.0131 0.0134 0.0124 0.0216

EM Algorithm. Time: 0.015 (0.003) mins.

MB -0.0197 -0.0151 -0.0240 -0.0108 0.0105
MAB 0.0312 0.0323 0.0391 0.0216 0.0224
RMSE 0.0397 0.0403 0.0522 0.0276 0.0301

a Standard deviations in parentheses.
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