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Abstract

This paper investigates conditional choice probabilitynestion of dynamic struc-
tural discrete- and continuous-choice models. | extenadmeept of finite dependence
in a way that accommodates non-stationary, irreduciblesitian probabilities. | show
that under this new definition of finite dependence, oneepledlependence is obtainable
in a larger class of dynamic structural models than preljomsestigated. This finite-
dependence property also provides a convenient and cotigmatily cheap representa-
tion of the optimality conditions for the continuous-chmieariables. | allow for discrete-
valued permanent unobserved heterogeneity in utilitiespaoduction functions. The
unobserved heterogeneity may be correlated with the ofislerstate variables. | pro-
pose sufficient conditions for identification of the utilfiynctions and the distribution
of the unobserved heterogeneity. | show the estimator ismeasymptotically normal.
| develop a new and computationally cheap algorithm to cdmghe estimator, and an-
alyze the finite-sample properties of this estimator via ddbarlo techniques. | apply
the proposed method to estimate a model of education and-saipply choices to in-
vestigate the effect of race and parent income on the disitoib of returns to education,
using data from the National Longitudinal Survey of Youtty @9
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1 Introduction

In this paper, | investigate conditional choice probapli€CP) estimation of dynamic struc-
tural discrete/continuous-choice models with unobsemeddidual heterogeneity. | show
that an extension to the definition of finite dependence megan Altug and Miller((1998)
and Arcidiacono and Miller (2011) accommodates generalstationary and irreducible
transition functions, as well as a general form of correlapeermanent unobserved hetero-
geneity in the utility and production functions. | propos#fisient conditions for identifi-
cation of the period-specific payoff functions and the distion of the unobserved hetero-
geneity, and | propose a generalized method of moments (Géatithator for the structural
parameters of the model and derive their asymptotic digiohs. | also propose an algo-
rithm to implement the estimator. | investigate the finit@aple properties of the estimator
by way of Monte Carlo analysis and implement this method torege a model of educa-
tion and labor-supply choices to investigate the distidsubf returns to education, using
data from the National Longitudinal Survey of Youth 1979 G\.79).

Since its introduction by Hotz and Miller (1993), CCP estiioa of dynamic structural
models has flourished in empirical labor economics and imdli®rganization, largely be-
cause of its potential for material reduction in computadiocosts relative to the more tra-
ditional backward recursive- and contraction mappingeddsil maximum likelihood esti-
mation pioneered by Rust (1987), referred to as the nested-finint algorithm (NFXP).
The CCP estimator circumvents having to solve the dynanoigramming problem for each
trial value of the structural parameters, by making use afe&to-one mapping between the
normalized value functions and the CCPs established in &ludzZMiller (1993). Therefore,
nonparametric estimates of the CCPs can be inverted toroéstimates of the normalized
value functions, which can then be used to estimate thetatalparameters.

Empirical application of the early formulation of CCP estition had important limita-
tions relative to the NFXP method. The emerging literatums focused on separate but
related drawbacks. The first is that nonparametric estonaif the CCPs results in less
efficient estimates of the structural parameters, as waklasively poor finite-sample per-
formance. The second is the difficulty of accounting for isefed individual heterogeneity,
mainly due to having to estimate the CCPs by nonparametribauds. A limitation of both
the CCP and NFXP approaches to estimation is that they agelyarestricted to discrete-



choice, discrete-states models.

Aguirregabiria and Mira (2002) propose a solution to theiéssf efficiency and finite-
sample performance of the CCP estimator relative to the N&3Pnator. They show that
for a given value of the preference parameters, the fixedtpooblem in the value function
space can be transformed into a fixed-point problem in thbaiitity space. The authors
suggest swapping the nesting of the NFXP and show the negelstimator is asymptotically
equivalent to the NFXP estimator. Furthermore, they shosinmulation studies that their
method produces estimates 5 to 15 times faster than NFXPmEtkod they propose is
restricted to discrete-choice models in stationary emvitents and is not designed to account
for unobserved individual heterogeneity.

Recent developments in accounting for unobserved heteeitygn CCP estimators in-
clude Aguirregabiria and Mira (2007) and Arcidiacono andl®i(2011). Aguirregabiria
and Mira (2007) allow for permanent unobserved heterogemnestationary, dynamic dis-
crete games. Their method requires multiple inversion eémially large dimensional ma-
trices. Arcidiacono and Miller (2011) propose a more gelmargthod for incorporating time-
specific or time-invariant unobserved heterogeneity inid@stimation of discrete dynamic
models.

Altug and Miller (1998) propose an approach that allows fmnt;uous choices in the
CCP framework. By assuming complete markets, estimatesdofidual effects and aggre-
gate shocks are obtained, which are then used in the seageltstform (now) observation-
ally equivalent individuals. These observationally eqlewt individuals are used to compute
counterfactual continuous choices. Bajari, Benkard, aenri(2007) modify the methods
of Hotz and Miller (1993) and Hotz, Miller, et al. (1994) totesate dynamic games. They
consider models of pure discrete choice or pure continubaige, but not both.

The finite-dependence property — when two different padi@ssociated with different
initial choices lead to the same distribution of statesradtéew periods — is critical for the
computational feasibility and finite-sample performant€GP estimators. Finite depen-
dence combined with the invertibility result of Hotz and Mil(1993) results in a significant
reduction in the computational cost of estimating dynantiactural models. Essentially,
the smaller the order of dependence, the faster and mons@tée estimator, because fewer
future choice probabilities have to be estimated or updatedending of the method of es-



timation. The concept of finite dependence was first intreduzy Hotz and Miller/(1993),
extended by Altug and Miller (1998), and further by Arcidoao and Miller((2011). Despite
these generalizations, the concept of finite dependenaegisly restricted to discrete-choice
models with stationary transitions and models with the wehi@r exchangeability proper-
ties.

This paper makes three separate but closely related cotbriis to the literature on CCP
estimation of dynamic structural models. | extend the cphoéfinite dependence to allow
for general non-stationary and irreducible transitiongadailities. Although its definition is
precise and well understood, the strategy to constructfil@pendence in dynamic structural
models has been largely ad hoc and often achieved by relyirgsumptions that are either
theoretically unjustified or by significantly restrictinget data. Altug and Miller (1998),
Gayle and Milleri(2003), and Gayle (2006) rely on completekets and degenerate transi-
tion probability assumptions to form counterfactual €tgiés that obtain finite dependence.
A key insight of Arcidiacono and Miller (2011) is that “the@acted value of future utilities
from optimal decision making can always be expressed agifunrscof the flow payoffs and
CCPs foranysequence of future choices, optimal or not.” This insighhesbasis of our ex-
tension of the finite-dependence property. | show the exgecdlue of future utilities from
optimal decision-making can be expressedag linear combinatiorof flow payoffs and
conditional CCPs, as long as the weights sum to one. Thighhsonverts the difficult prob-
lem of finding one pair of sequences of choices that obtaiiite filependence to a potential
set of finite dependencies from which to choose.

Given that | am now able to choose from a class of finite-depeoel representations,
the question becomes whether a choice of weights existotitains one-period finite de-
pendence. Indeed, one-period finite dependence is acleenagardless of the form of the
transition functions, as long as they are non-degeneraterdsulting form of the conditional
value function provides a simple method for accommodatorginuous choices.

The approach taken to model continuous choices may be @esié dynamic version
of the Roy (1951) model, and parallels the method for estigatiscrete/continuous static
structural models of Dubin and McFadden (1984) and Hanen(a®®d). Particularly, in
each period and for each discrete alternative, the ageetwdssthe period-specific shocks
and solves for the associated conditional continuous ekajecenceforth CCCs) that max-
imizes the corresponding alternative-specific value ofdiserete choice. The agent then
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chooses the alternative with the highest (maximized) valhés dynamic selection on unob-
servables implies the distribution of observed CCCs diffesm the distribution of optimal
CCCs, rendering first-stage estimation of optimal CCCsedulasithout additional restric-
tions, such as the Pareto optimality condition imposed kygAbnd Miller (1998) and sub-
sequent authors. The alternative sequence of the revelztibe shocks assumed in Blevins
(2014) also circumvents this dynamic selection on unolad#es problem, but at the cost of
restricting the sources of selection effects.

Along with individual-time-specific shocks, the model dieyeed in this paper allows for
discrete-valued, permanent unobserved heterogeneitgiatility functions and production
functions. The distribution of these unobserved randonalées may be correlated with
observable covariates of the model. | provide sufficientdattoms for identification of the
utility functions and the distribution of the unobserveddnegeneity. The identification strat-
egy taken in this paper is closely related to Magnac and The@002), Blevins (2014), and
Arcidiacono and Miller (202(&. Magnac and Thesmar (2002) investigate the potential for
restrictions such as absorbing states, additive sepiyahbitd terminal conditions to deliver
identification of the period-specific payoff functions iratbnary environments. Blevins
(2014) investigates identification of the parameters of e®udith discrete and continuous
choices, also in stationary environments. Although thentimestriction of Blevins[(2014)
— the discrete-choice shocks are observed before the consAchoice shocks — is an effec-
it restricts the scope of selectivity in dynamic structuraddels. This paper assumes the
continuous-choice shocks are observed before, or sinadtasty with, the discrete-choice
shocks, but also assumes the distribution of the contineboge shocks are known.

As discussed by Arcidiacono and Miller (2020), identifioatibecomes more difficult
in nonstationary environments, particularly when the fipatliod of the decision process is
unobservable to the investigator. Arcidiacono and Mill20Z0) discuss identification of
models of this type under the assumption that single-agitdependence holds, meaning
the p-period-ahead transition probabilities of the observedestariables given any action
in the current period and the normalizing actions (the actoy which the period-specific
utilities are known) in allp periods thereafter coincide. The identification strategyhis

1Blevins (2014) and Arcidiacono and Miller (2020) provide @mprehensive review of the literature on
identification of dynamic structural models.



paper imposes different restrictions on state transitimbabilities of the observed state
variables, which can obtained by index restrictions or@sidn restrictions.

| propose a GMM estimator for these parameters and an iteralgorithm to compute
them. Relative to maximum likelihood-based estimators, @M estimator has the ad-
vantage of not requiring specification of the distributidm@@asurement errors, which is of
particular concern in this framework because continuousarue variables are often mea-
sured with errors. Also, the GMM estimator is robust to thiiakconditions problem in
that consistent estimation of the parameters does notreeqghserving the initial state vari-
ables or estimating the initial conditions. A consequerfogpting for the GMM approach
to estimation is that the method developed in Arcidiacor Miller (2011) to account for
unobserved heterogeneity is no longer available. | addnessleficiency by developing an
iterative Bayes method that uses information from the Cdftsea

| investigate the finite-sample properties of the propossdnator by way of Monte
Carlo methods. | consider two environments. The first is &rdte-continuous choice
model in which the performance of the proposed estimatanggared with the full-solution
method of obtaining the CCPs and CCCs. The second compaepfmoach proposed in
this paper with the one proposed in Arcidiacono and Millé&d1(?) in estimating a model
that exhibits the renewal property. The results show thpgsed estimator performs well in
both environments.

| apply the methods developed in this paper to estimate a lhobdducational attainment
and labor supply to investigate properties of the distrdsubf the returns to education, using
data from the NLSY79. Key features of the model are as foliddsl allow for individuals
to choose to simultaneously participate in the labor maaket enroll in school; (2) | treat
hours worked as a continuous-choice variable and allowtfty affect the probability of
completing the grade level enrolled in; (3) | allow for psigcbosts of school attendance and
labor market activities; and (4) returns to education is eted as a random coefficient with
a finite-mixture distribution and mixing probabilities deqling on racial, parental income,
and on Armed Forces Qualification Test score (AFQT) categorThe model estimated in
this paper is closely related to those estimated in Kean&\ipin (1997; 2000; 2001) and
Eckstein and Wolpin (1999). A key distinction between theadttetical model presented in
these cited papers and the one in this paper is this papédfispemobserved heterogeneity
as a random coefficient on the level of education.



The results show the distribution of returns to educatiaregasignificantly with AFQT,
with the distribution for individuals with AFQT above the dian first-order stochastically
dominating the distribution for individuals with AFQT beldhe median. Racial differences
in the distribution of returns to education are greatly tiwhen AFQT is accounted for.
However, parental income remains a significant determin&the distribution of returns
to education, with the distribution for individuals withgh parental income stochastically
dominating the distribution for individuals with low patahincome for all AFQT and race
categories, but marginally so for blacks with high AFQT.dafind the black-white gap in
constants of the log wage function is decreasing in highegrgal income, suggesting this
gap reflects greater access to higher-paying jobs by ingsdwith richer parents (higher
permanent income) rather than a skill gap.

The results suggest that, net of differences in scholastiowments as measured by
AFQT, no economically significant racial variation existshe barriers to school enrollment,
nor in the likelihood of completing a grade level given etmant. | also find inclusion of
AFQT significantly reduces the effect of parental incomelmldarriers to school enrollment
and grade-completion rates. This result is consistent @dameron and Heckman (2001)
and Carneiro and Heckman (2003), who argue the effect ohpalremcome on educational
attainment is primarily a result of it being a proxy for pemeat income, which influences
early childhood development of scholastic abilities. Arportant caveat to these results
pertains to individuals who work while attending school,fdhom | find the nonpecuniary
costs of working while enrolled in school is higher for black also find these costs to be
increasing in parental income, which is consistent withetkistence of borrowing constraints
found in Keane and Wolpin (2001).

| find that nonpecuniary costs of labor force participatios decreasing in parental in-
come and does not vary by race. These results are unchantgethwinclusion of AFQT,
which itself reduces the nonpecuniary costs of employmé&hese results suggest AFQT
also measures valuable labor market abilities, which aveldped during early childhood,
and that individuals with richer parents possess greatarsado the labor market.

The rest of the paper proceeds as follows. Section 2 outlireeslass of dynamic struc-
tural models investigated in this paper and presents theaftewative representation of the
value functions that | use to obtain finite dependence. &e@&ithen defines generalized
finite dependence, shows one-period finite dependence cabtdi@ed in my class of mod-
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els, defines first-order optimality conditions for optimabeces, and outlines my approach
to incorporating correlated unobserved heterogeneitiiemtodel. | provide sufficient con-
ditions for identification of the parameters of the modelaatgon 4. Section 5 proposes a
GMM estimator for the parameters. Section 6 outlines therélygm | propose to compute
the estimator, and section 7 presents the limiting variahogy estimator. The Monte Carlo
analysis of the finite-sample properties of the proposeichastr is presented in section 8,
and in section 9, | implement my method to estimate a modeldatational attainment
and labor supply. Section 10 concludes. The Appendix costiie proofs and the tables
reporting the estimation results from my empirical apglmain section 9.

2 Model

2.1 General framework

This section outlines the class of dynamic structural @igtcontinuous-choice models that |
consider and corresponding alternative representatiois. flamework only modifies that of

Arcidiacono and Miller|(2011) to include the CCCs, and | ntain the notation of notation

of Arcidiacono and Miller((2011) where feasible for consisty. The inclusion of continu-
ous choices follows closely the framework of the static git®'continuous-choice models
presented in Dubin and McFadden (1984) and Hanemann!(1984).

In each periodt, an individual chooses amorlgdiscrete, mutually exclusive, and ex-
haustive alternatives. Lel; be 1 if the discrete actiope {1,---,J} is taken in period,
and O otherwise, and defirdg = (dys,---,dst). Associated with each discrete alternative,
j, the individual choosek; continuous alternatives. Le&t € Gt C U4, 1j €1,--- L,
be the continuous actions associated with alterngtivith ¢, > 0 if djy = 1. Define
Cit = (Cat, - ,CL;t) € Cjt, Where(jr = ><|ij:1C|,-t andc = (Cy,---,Cjt) € G, WhereG =
x]_;Gr € OY, andL = 37_ L. Also, let(j,cjt) be the vector of discrete and continuous
actions associated with alternatiu€eT he current-period payoff associated with actipcit )
depends on the observed state X C OPx, whereDy is the dimension of;, the unobserved
(to the investigator) statg € § C OPs, whereDs is the dimension o, the unidimensional
discrete-choice—specific shogk € 0, and the. j-dimensional vector of continuous-choice—



specific shocksj; = (ry,---,r ) € OY. Letz = (%, ) € 2 C OPPs, e = (gj,rp),
& = (ey, - ,€jt), andry = (ry, - ,rjr) € O-.

With respect to the empirical application, the individuboses among foutJ = 4)
discrete alternatives, which are, stay home=(1), not attend school and work & 2),
not work and attend schooj & 3), and work and attend school simultaneougly=(4). The
CCCs the individual faces is the number of hours to work gthem he chooses to participate
in the labor marketj = 2,4). The shocks associated with these CCCs are the shocks to the
wage-offer functions, and the unobserved state vestas, the returns to education. The
distribution of returns to education is assumed to depenthemace of the individual, the
individual’'s parental income, and the AFQT of the indivilua

Defineyjt = (djt,cjt) and letuj (%, cj,ejt) be the individual's period-specific payoff.
The individual chooses the vectar= (yi,---,Yst) to sequentially maximize the expected
discounted sum of payoffs:

T 3
E {t; jzlﬁt_ldjt [th(Zt,Cjtaejt)]} ; (2.1)

wherep € (0,1) is the discount factor. In each periddthe expectation is taken with respect
to the joint distribution ofz1,---,zr ande1,---,er. Let fjt(%+1,8+1/z,Cjt,&) be the
probability function of(x1,8+1) given (z,&) and action(j,cj) taken in period. The
following restrictions are placed on the period-specifiitytand probability functions.

Assumption 2.1.For j=1,---,J,

1. the period-specific utility function,uiz, cjt,€jt) = ujt(z,Cjt,rjt) +€jt, and

2. the transition function, f(z1,&+1|z,Cjt,&) = fjt (2112, Cjt)e(Et+1)0r (rt+1)-
3. The individual observeg;, &) at the beginning of period t.

Assumptiorf 2.11.1 is the standard additive separabilitirict®n of the period-specific
utility function in the discrete-alternative-specific ske. Note that, similar to Blevins
(2014), the continuous-choice-specific shocks may engepdhiod-specific utility functions
nonlinearly, which is necessary to avoid statistical degacy during estimation by maxi-
mum likelihood. Assumptiofh 211.2 is the standard cond#ldndependence assumption,
with the additional restrictions that the discrete-alégnre-specific shocks and the CCC-
specific shocks are statistically independent. This assomps stronger than the condi-
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tional independence assumption imposed in Blevins (20449, assumes these two shocks
are independent given the discrete choice and the obserstdik variables in peridd As-
sumptiori 2.11.2 can be extended to allow for the distribubitihe CCC-specific shocks to be
non-stationary and dependentxynbut at the cost of increased complexity in the exposition
of the key results.

The key transition probability in the empirical applicatis the probability of completing
a grade level given the individual enrolls in sch¢pk= 3,4). The probability of completing
a grade level depends on the hours worked by the individua¢ iflecides to both attend
school and worK j = 4).

Given Assumptioh 2]1.3, the individual computes the optitoatinuous choice for each
discrete alternative and then chooses the optimal discheiee, given the optimal contin-
uous choices. Assumption 2.1 implies the alternativeifipezontinuous choices are not
functions of the discrete-choice-specific shocks, Blevins (2014) considers the case in
which g is first observed by the individual amgdis observed only after the discrete action is
taken.

Let the optimal decision rule at peridcbe given byy? = {(d} (z,&),c}(z,rt)), | =
1,---,J}, and defineu) (z,r) = ujt(z,C%(z,rjt),rjt). Let the ex-ante value function in
periodt, t(z), be the discounted sum of expected future payoffs, priorbeosinge;,
given the individual follows the optimal decision rule:

T J

Vi(z) =E { 2 .ZlBT‘td?AZr,er)[U?T(Zn o) To) +€ir]} :
1=t j=

The expected value function in peribd- 1, givenz, the discrete choicg, and correspond-
ing CCC’s,cjt, is

Vit 11(z,Cjt) = B/Vt+1(2t+1)fjt(2t+1|Zt,Cjt)dZt+1- (2.2)

Let \7j?+1(zt,rjt) = \7jt+1(Z(,C(j)t(Zt,rjt>). The ex-ante value function can be then written
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recursively:

<
&
I
m
—
o
O

dii(z. &) [U‘j’t(zt,rjt)Jrsjt+\7,-?+1(zt,rjt)}}

Il
=

o
O

2 (z.@) [U(j)t(zt,rjt)‘i‘ejt +\7,-?+1(zt,rjt>} or (re)driQe (&) det,

I
— —
— —

d} (z,@) [V} (z,rjt) +€jt] or (re)drige () dey

[N M«

wherev?t(zt,rjt) = u(j’t(zt,r,-t) +\7j?+1(2(,rjt). Define

Vit (z,Cit, Tit) = Ujt (z, Cit, Tit) + Vit +1(z, Cjt), (2.3)

to be the choice-specific conditional value function giygnexcludingejt, so thais/?t (z,rjt) =
Vjt(Zt,C?t(Z[,rjt),rjt). Then, under Assumptidn 2.1, the optimal CCCs associatéu the
discrete alternativg in periodt, satisfy

0
Evjt(zt7cﬂ(ztarjt>vrjt>zov (24)

J

forlj =1,---,L;, and the optimal discrete choice of alternatjs

©(z.a) =t it VR (z )+t > Vi (z, M) + 8l VK | 2.5)
: 0 otherwise.
Finally, the optimal CCCc]-kt(z[, rit), is given by
Cii(z,e1) = df (z,@)ch (z, ). (2.6)
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2.2 CCP formulation

The probability of choosing alternativieat timet, conditional onz, r, and the vector of
choice-specific optimal CCCs(z, ), is given by

pjot(zbrt):E[d%(zba)‘zt?rt]? (27)

so that, for all(z,r), y{_1P%(z. 1) =1, andpf(z,r) > 0 for all j. Let pd(z,r) =
(p%_(zt,rt),-u , pgt(zt,rt))’ be the vector of CCPs. Lemma 1 of Arcidiacono and Miller
(2011) shows a functiog : [0,1]? — O exists such that fok=1,---,J,

Wk(p2(z, 1)) = V(2 Tt) — Vi(Z Tio)- (2.8)

Equation[(2.B) is simply equation (3.5) of Arcidiacono andi& (2011), modified so the
choice probabilities and value functions are also cond#i@n the i.i.d. shocks associated
with the CCCs.

The key insight is that if.(2]18) holds fdec= 1,--- ,J, then for anyJ-dimensional vector
of real numbers = (ay,---,a;) with 3;_; ax = 1,

J

W(zr) = 3 ad(a ) + B )L (2.9)
=1

Letajt1(z41,Mt+1) = (Qjt+1(Z4+1,M1t41), - &je+1(Z41,3er1) ), be the weights asso-
ciated with the initial discrete choicg, in periodt. Substituting equatio (2.9) into equation

(2.3) gives
Vit(z, Cjt, it ) = Ujt (%, Cjt, T jt)
J
B3 [ [ Meal@nnosn) + W feo)]
k=1

X Ajt+1(Z+1, Mkt 1) Or (1) dreya Fie (2 41]%, Cjt )dZ 41 (2.10)
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2.2.1 Clarifying example

To clarify the alternative representation, | provide aifgied down” example of the model
formation for whichd = 2. In this example, | assume the individual-time—specifscabte-
choice shockgijt, is distributed i.i.d., type 1 extreme value. The expectade function in
equation[(Z.R2) becomes.

_ 2
Visazen) =B [ [In'S efaldesteng (na)dn otz a0+ By, (210)
k=1

andyis the Euler constant. Also, the peribég 1 conditional choice probability of alternative

j =1,2is given by
eV?t+1(Zt+1J'jt+1)

0
- r = . 2.12
pjtJrl(ZH_l’ t+1> Zﬁzl ev(lgt+1(2t+17fkt+1) ( )
From equation(Z.12), the following equality holds foe 1, 2:
2 P
In> € v (B fiers) = Wiz i) —INp 1 (21, Teg)- (2.13)

k=1

Notice equation[(2.13) is simply equatidn (2.8) under treuasptions of this example and
evaluated at periotl+ 1. Also, note the (LHS) of equatioh (2]13) is a term insideithe
tegral on the (RHS) of equation (2]11). For alternatjve 1,2, let agji11(z+1,rt+1) be
weights associated with alternatijein periodt and alternativek in periodt + 1, with

ajt+1(Z+1, 1) + &jt+1(Z+1,Mt+1) = 1, j = 1,2. Then, from equation (2.1.3),

N

n eVEt+1(Zt+lvrkt+l)

0l
N

ajt+1(Z+1,t+1) [V%H(Zm, Mkt+1) —In p8t+1(zt+l, reva)]- (2.14)

il
[
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Substituting equation_(2.14) into equatién (2.11) obtains

\7jt+1(2t,Cjt)

= B//élakjtﬂ(ztﬂ,rtﬂ) Vits1(Zi+ 1, Ter 1) — N Poesq (21, Tegn)]

X O (rt41)drei1fit (21|12, Cjt )dz 11 + By. (2.15)
Now, substitutingﬂtﬂ from equation[(2.15) into equation (2.3), obtains

Vit (2, Cjt,'jt) = Ujt (&, Cjt, Tjt)

+I3// ilakjt—i—l(ZHl,rt+l)[v(k)t+l(zt+larkt+1) —IN PR 1 (z11,Ter1)]

X O (rt41)dree1 fit (21|12, Cjt )dz 1 + By, (2.16)

which is equation[(2.10) under the assumptions of thisfgiag example.

Equation[(2.10) shows the value function conditiona(mrr;) can be written as the flow
payoff of the choice plus any weighted sum of a function ofdhe-period-ahead CCPs plus
the one-period-ahead conditional value functions, whiseenteights sum to 1. This exten-
sion of the results of Arcidiacono and Miller (2011) prowcke powerful tool for obtaining
finite dependence in a larger class of models than previomadgtigated.

3 Generalized finite dependence

This section shows that for any periodc T — p, the conditional value function can be
expressed as a linear combinationpsperiods-ahead period-specific utility functions and
CCPs, and theé + p+ 1 expected value functions. To that end, defﬁj‘@ézt+1|zt,rjt) =
fjt(Zt+1|Zt,C(j)t(Zt, rit)). For any initial choicgj, cjt ), define the sequence

{al(jT(ZTvrT|Zt7Cjt)7T :t+17 7t+p7k: 17 7‘J} (31)
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with Zﬂzl akjt(z, 1|z, cjt) = 1, and corresponding state transition functions,

Kjt(Zr41,|%,Cjt) =
fit(z+1)z,cjt) fort=t

Sir S [ 18 (zer1|ze, N ) Akje (2o, T Z, Cjt ) O (i) MK o1, (Z] z, Cjt )0 (3.2)
fort=t+1,---,t+p.

Theorem 3.1. Suppose Assumptidn 2.1 holds. For initial period T — p and subsequent
periodst = {t+1,---,t + p}, the alternative-specific conditional value function caam b
expressed as a linear combination@fperiods-ahead period-specific utility functions and
CCPs, with weights defined in(8.1), and {he 1-periods-ahead continuation value, where
the utility functions and CCPs are evaluated at the optim@(ds.

The proof of Theorer 3l1 can be found in Apperidix]A.1.

Definition 3.2. For initial periodt < T —p, a pair of initial choices(j,cjt) and(j’,c;1),
exhibits generalize@-period dependence if the difference in their alternasipecific con-
ditional value functions can be expressed a linear comioimaif p-periods-ahead period-
specific utility functions and CCPs, where the utility fuocts and CCPs are evaluated at the
optimal CCCs.

The following theorem provides sufficient conditions on weights defined in equation
(3.7) to achievep-period finite dependence. Its proof can be found in AppelAdik

Theorem 3.3. Suppose Assumption P.1 holds. For initial period T — p, a pair of initial
choices,(j,cjt) and (j',cjt), exhibits generalizeg-period dependence if corresponding
sequences,

{(akje(z, 11|z, &), A je (Z, 11]2, G ), T=t+1,--- t+p, k= 1,---,J} exist for which

Kijt+p(Z+p+1|2,Cjt) = Kjitsp(Z+p+1/2,Cjt)

almost everywhere wit§iy_; awr(zr, M|z, 6) =1, K =j,j".

If the conditions imposed on the weights in Theofem 3.3 hiblein the difference in the
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conditional value functions is given by

Vit (%, Cjt,T'jt) — Vi (%, Cjit, Fjit) = Uit (z, Cjt, T jt) — Ujt (%, Cjrt, i)
thp  J

‘S Z//BTt[ugr(zT,rkT)+Luk[p?<zr,rr>]]

=t+1k=1

X [akjr (2, M|z, G )Kjr—1(Z |z, Cjt ) — Akjre(Z, ke | %, C)K jre—1(Z| %, Cjt )] O (1) dred 7,
(3.3)

which is the central result of this section. Notice the reai@f the first subscript on CCC
in the definition of the weights, because the discrete-@iapecific weights defined in The-
orem[3.8 may depend on the CCCs associated with the compksicrgte alternative.

3.1 One-period finite dependence

The advantage of CCP estimation of dynamic structural nsoaihtive to the full-solution
method is its numerical advantage in terms of computatioe tiand this numerical advan-
tage depends on the order of finite dependepceSmallerp generally results in faster
computation time, and more precise estimates of the stalgharameters if the CCPs are
estimated in a first stage as in Hotz, Miller, et al. (1994jugland Miller (1998), and Gayle
and Miller (2003). In the context of this paper, the compotal advantage of the CCP
estimator also depends on whether the transition proliabiliand hence the weights that
achieve finite dependence in Theorlem 3.3, can be estimatsidethe model. This section
provides sufficient conditions for which one-period finitgpéndence in models where the
transition functions are such that the weights can be coetpatitside the model. | consider
two cases. In the first case, the transition function doed@eoend on the continuous choices,
nor the unobserved effects, in which case, the CCCs and anadaseffects only enter the
period-specific payoff functions. In the second case, thesition functions depend on the
continuous choices, but not the unobserved effects, intwbése, the unobserved effects
enter the transition functions only through the optimal GC@h both cases, | assume the
unobserved effect is permanent to the individual.

Assumption 3.4. The unobserved effect,s s for all t.
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3.1.1 Casel

The first restriction on the transition functions considareas follows.

Assumption 3.5. The transition probability, ff(z+1|z,cjt) = fjt (%+1/%)-

Assumptiori3.b restricts the transition probability of tieserved states variables to not
be a function of the continuous choices and the unobservyectef his restriction holds in
the empirical application foj = 3, the choice of enrolling in school and not work.

Theoreni 3.8 implies one-period finite-dependence holdmival choices(j, j') if

J
|3tz [ 0cae) fr o) = a0 ) freOesalx)] dsa = 0,
=1

(3.4)
J

Z akk’(xt+1|xl) = 17 k/ = j7 j/ (35)
k=1

almost everywhere, where the time subscript on the weigbtd@pped for convenience, in

which case, equation (3.3) becomes

Vit (%, Cjt,r'jt) — Vi (%, Cjn, T j1t) = Ujt (z, Cjt, T jt) — Uje(Z, Cjr, i)
J

+B Z //[u8t+1<zt+l7rkt+l)+wk(pt0+1<zt+17rt+l))]gr<rt+1>drt+l
=1

X (@ (%2 %) Fijt (%) — @iy (e a /%) Fe O 1) ] A1 (3.6)

In general, one would have to solve equatidnsl|(3.4)-(3.®ptain weights that achieve
finite dependence. However, special cases exist in thatlitex for which the weights that
solve this system of equations are closed-form. Althoughétcases satisfy one-period finite
dependence defined in Arcidiacono and Miller (2011), shgwiow they can be considered
special cases of one-period finite stated defined in Defmi3i@ is instructive. It is suffi-
cient to consider models whede= 2, because the weights that achieve one-period finite
dependence can be computed pairwise.

Let x; = (x1t,X2t), Wherexy; is a vector of strictly exogenous variables. | discuss three

18



such cases in the following under the framework of the glarg example wherd = 2.

Simple Transition A simple transition function is defined by the restrictioratlthe
periodt + 1 conditional distribution of the endogenous state vaesgls independent of the
periodt endogenous state variables given the joint distributidh@period andt + 1 strictly
exogenous state variables. In particular, the transitioetion takes the form

fit (%er1|%) = Fit (Xora[Xaes1, Xae) fe (Xae 2] Xat), (3.7)

in which the LHS of equatiori (3.4) is given by

2
/ > fra(Xa2/Xar2, X 1) frea (Xaer2[Xa1)
=

></[akz(XtHIXt)fzt(X2t+1|X1t+1,X1t)—akl(Xt+1|Xt)flt(X2t+1|X1t+1,X1t)]dX2t+1

i (X4 X ) dXae 1. (3.8)

Therefore, settingy1(X+1/%) = a12(%+1/%) = Y (and henceg1(X+1[%) = az2(X+1[%) =
1—v), for anyy e 0 satisfies equation (3.4).

Renewal. A model with the renewal property is one for which an actiay, slternative
one, can be taken in period- 1 so the conditional distribution of the peribél 2 endogenous
state variables does not depend on the action taken in pgrgiden the joint distribution
of the perioddt,--- ,t + 2) exogenous state variables. In other words, equatioh (8/8sh
for only j = 1. Then, one-period finite dependence is obtained by sedifio1(%) =
a12(X+1/%) = 1 in equation[(3.18). The bus-engine-replacement model sf Ri987) is the
central example of a model with the renewal property, whiaeestate variable of interest is
mileage of the bus, and the renewal action of replacing tlseelmgine (alternative 1 in our
example) in period + 1 resets mileage to zero, thus making the distribution oéagé in
periodt + 2 independent of the decision of whether to replace the bgimermn period.

Exchangeability. A model with the exchangeability property is one for whichimg
“opposing” discrete actions in periotigndt 4 1 results in the same distribution of the two-
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period-ahead state variables, that is,

/f1t+1(><t+2\xt+1) f2t(><t+1|Xt)dXt+1=/f2t+1(Xt+2\Xt+1) fae (%1% ) d%+1 (3.9)

Then, equation (314) is satisfied by settim@(x+1/%) = a21(%+1/%) = 1. The exchange-
ability restriction holds in the typical labor-supply made which, say, alternative 2 is the
decision to work and the endogenous state variable is yéaveperiencey'_7 dor, which
enters the classical Mincerian wage-offer function. Irtjé@nplement these weights in the
empirical application to obtain finite dependence of théed#nce between the conditional
value of working and not attending sch@gl= 2), and the conditional value of staying home

(J=2).

Additional model frameworks may exist for which closedAoweights that satisfy the
system of equation$ (3.4) [- (3.5). However, this system ofadqns has to be solved nu-
merically to obtain the weights that obtain finite depen@eimcmore general frameworks.
The following are two examples with no constants for whick-@eriod finite dependence is
satisfied, in which case, one-period finite dependence asedeiin Arcidiacono and Miller
(2011) is not achievable.

Education attainment. At any aget, the individual chooses to enroll in school or stay
home. The endogenous state variable is the completed greeleat agé, x;. If an individ-
ual at age with grade levek; enrolls in school, she advances the grade léxeh = x + 1)
with probability Tg(% ). It is straightforward to check that i (%) # T&+1(X), no two se-
guences of choices are equivalent the resulting perie@ distributions of education, in
which case, equations (3.4) - (B.5) must be solved numéri¢atieed p-period dependence
is not achievable for ang > 1, due to the dependence of the probability of completing a
grade level on age. With respect to the empirical applicativese weights are computed us-
ing equation[(3.11) below to achieve one-period finite depane of the difference between
the conditional value of enrolling in school and not wdik= 3) and the conditional value
of staying homé j = 1).

Fertility choice. In each period, a household decides whether to try to havédy ahd
the endogenous variable is a live-birth outcome, whoseaitity depends on the house-
hold’s history of birth outcomes. Ldt be equal to a if the household successfully gives
birth, and 0 otherwise. Le§ = th;ll 0:b; be the household’s history of live-birth outcomes.
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The live-birth transition function is given b (bi1|%). Because the probability of a live-
birth depends on the pattern of previous live births, no teguences of choices exist for
which finite dependence as defined in Arcidiacono and Mi&€x1() is achieved. One re-
striction to the model that achieves finite dependence issarae the probability of a live
birth depends on the history of live births only through thenter of lives births (the num-
ber of kids), in which case the exchangeability conditiotdlo The results of Gayle and
Miller (2003) show this restriction is substantial, espdlgiin models of fertility choice and
labor supply in which the spacing of births substantialfgetls the labor market success of
females.

To provide sufficient conditions for one-period dependandbe general case, | assume
the state variables are discrete.

Assumption 3.6. The observed state variable, is discrete with cardinalityx|.

Under these restrictions, the model exhibits one-periatefaependence if

2 X

> Z[fkt+1(&+z|m)aka+1(m|&) Far (% [%e) — Fic2 (%-+21%) Auar+2 (% %) Fae (% %)) = O
k=1i=

(3.10)

for Xey2 = Xq,- -+, X, With agje11(X[%) +ajt+1(X[%) = 1, j = 1,2. Denote the probability
of reaching stat& , » andx 1 from statex;, and actiong in periodt andk in periodt + 1 by

fij (X2, %+ 10%) = Fiern (%2 Xe1) Fit (% 1/%).-

Further define

fie (%) = (i (%, Xa[%), -+ fig (XX %)) 5 Fie (%) = (Fie(xalx)’s -+, i (X)), and
(%) = (Ajra(xal%),  ajie1 (X))

Equation[(3.10) implies thi| system of equation}ﬁzl[sz(n)akz(xt) — fra(%)aka (% )] = 0.
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Imposing the conditiomyj(X) = |y — a2j(%), ] = 1,2 obtains

(f12(%) — f22(xt))a12(x) + (f21(x) — f11(%))@11(%) = (f21(x) — f22(%))1x, = (3.11)
Fi(%)a(%) = F2(x)! (3.12)

whereF (x) = [(f12(x) — f22(x)), (f21(%) — f11(x))], is @ 3| x x| matrix, F>(x) = f21(%) —
f22(%) is an|x| x [x| matrix,a = (a12(x%)’,a11(x)")" is an|x|-dimensional vector, and,; is
the |x|-dimensional vector of ones. In general, equation (3.1hytitutes|x| equations with
at most 2x| unknowns, making it a consistent and underdetermined rsygti¢h an infini-
tude of solutions. A column oF(x) takes the form(fi1(X'|x) — fjt+1(X[X)) fit (X|%),
X' =1,---,|x|, which is nonzero iffjt (X|%) # 0 andfy.1 (X |x) # fjt+1(X'|x) for at least one
X € {x,--- ;Xjx }- In other words, this column is nonzero if statean be reached in period
t + 1 from x;, given actionj, and least one state in period- 2 exists for which the action
taken in period + 1 is consequential for its occurrence. Therefore, a nepgssadition for
at least one solution to the system of equations (3.12) tsathaastx| columns inF; satisfy
these conditions. Theordm B.7 states the correspondifigisaf conditions.

Theorem 3.7. Suppose Assumptions2.113.4] 3.5, 3.6 hold. Then oielfimite de-
pendence holds if Prank(F1(x))) = |x|) = 1.

Proof. A solution to systeni(3.12) is given by
a=F;" (%)F2(%)x, (3.13)

where™ denotes a generalized inverse. These weights in turnysatisfations[(314) {(315).
[

Implementation of one-period finite dependence in practigeires estimation offit (X[ ).
This quantity can be obtained by nonparametric methodsliasvi

~ 3 X1 = Xpdjie e = % }
Fie Oxpxe) = Sidjit 1{xt = %} '

Notice these quantities can be computed once before egiimdithe period-specific utility
functions, which reduces the computational burden. Toeabestimate i (x|x) by para-
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metric methods, which is preferred when the dimensioxieflarge is not uncommon.

3.1.2 Case?

The second specification of the transition probabilitieesidered assumes the transition
probability of the observed state variables depends ondhgnuous choices.

Assumption 3.8. The transition probability, ff(z+1|z,cjt) = fjt (%+1/%,Cjt)-

An implication of Assumptiof 318 is the unobserved statea@es affect the observed
state variables only though the dependence of the optim&sC& the unobserved state
variables. To simplify notatiorgj; is treated as unidimensional in what follows.

Suppose Assumptidn 3.6 holds. Settmg 1 in equation[(3.]2) obtains

Kat+1(X+2,|Z, Cat) — Kat+1 (X2, [z, Cat) =
2 ¥ 0
/Z Zl[fkt+1(><t+2\2i,fkt+1)ak2t+1(xi,rt+1\Zt,Ct)fzt(Xi\Xt,Czt)
K=1iS
— fo 1 (%20, M 1) @11 (%, T 1|2, ©) Fae ()%, €a) ] G (Fese1)d e, (3.14)

wherez = (x;,s) and f3_ ; (%+2|Z, 1) = fier1(%+2/%, €%, 1 (Z, k1)) One-period finite
dependence may be obtained pointwise aoyver. Specifically, define

2 X

Kjt+1(Xer2, [Mt41,2,Cjt) = Zfl?t+1()(t+2|zi,rkt+1)akjt+l(xi,rt+1|zt7ct)fjt (Xi[%:Cjt),
k=1i=

(3.15)

so thatjt+1(X+2, %, Cjt) = [ Kjt+1(X+2, [Mt+1, %, Cjt )Or ('t+1)dr41. As in the previous sec-
tion, let

e (%2, X111, 2 Cjt) = Firq (%t 2] 21, e 1) Fit (%1%, )

be the probability of: (i) reaching state., in periodt + 2, given state§x.1,rt+1) are
realized and actiofk, Cf()t+1(2t+1, rke.1)) is taken in period + 1, and (ii) state 1 is reached
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from statex, given action(j, cjt) is taken in period. Define

fj(x|r, zz, cjt) = (ka X, X1, z, Cjt) ,fkj(X7X|x|\r7Zt,Cjt))’
fiij(r, 2, &) = (fij(xalr,z, cjt)’ fkj(x|x|‘r7ztacjt)/)lv
a(r,z,0) = (ajra(xe |1z, Ct) e (xglnz,a))
Fi(r,z,¢) = ((f12(r,z, c2t) — f2a(r,z,C2t)), (f20(r, Z, c1t) — f1a(r, 2, Cnt))) s
Fo(r,z,¢) = f21(r,z,Ct) — f22(r,z,c2), and
ar,z,c) = (a12(r,z,a) , a11(r, z,¢)’)".

Theorem 3.9. Suppose Assumptionsi2.113.4] 3.8, 3.6 hold. Then,ariwddinite de-
pendence holds if Frank(Fy(r,z,¢))) = |X|) = 1 for almost every r,z and ¢.

Proof. Under the conditions of the theorem and imposing the camuéti;(r,z,c) = Ux| —
aj(r,z,a), j = 1,2, the solutiora(r, z,¢) = Ff(r,zt,ct)Fz(r,z[,ct)l‘x‘ satisfies

Kat+1(X, |r, Z,C) — Kat+1(X, |1, %, Ct) =0

for all x e {xa, -, X} with probability one and almost eve(y, z,c;), implying

Kot+1(X, |z, C) — Kat1(X, |z, C1t) = /[sz(x, Ir,z,Cx) —Kit+1(X, |1, z,C1t)] Or (r)dr =0
(3.16)

with probability one. 0J

3.1.3 Approximating one-period finite dependence.

Implementation of the one-period finite dependence in Casentore involved than Case

1. The first consideration is that direct implementation b&édreni_3.0 requires inversion of
F1(r) for each trial values of the deep parameters of the model.appeach to circumvent-

ing this complication is to compute the weiglats 1 on a fine grid of the continuous choice.
To do so, let

ficj (X2, %2/ Cket-1, % Cjt ) = e 2 (Xe2%e+1, Okt 1) Fit (Xe2[%e, Cjt)
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be the probability of: (i) reaching staxg, > in periodt + 2, given states; . 1 is realized and
action (k,cx11) is taken in period + 1, and (i) statex1 is reached from state, given
action (j,cjt) are taken in period. Assumecj is bounded above with known bound in
addition to the continuous choice being strictly posititregt is,cj; € Cj := (0, Cjt], where
Cjit < % is known. Consider a fine gri&jt ={0< € <&, --,< &n = Cjt} of mpoints,
wherem can potentially depend opandt, and define; = Cit x Cx. Define

fiej (X%, Cjt) = (Fiej (X, Xa|€1, %, cn> fkj(X,X1|62,Xt7Cjt>,"‘,fkj(xax\x\|6m,)(t,cjt))a
ka %, Cjt) = ( fiej (X%, €)'+, Tie (X 1%, Cit))')
(%, Ct) = (akjesa Xl,Cl|Xt Gt). A1 (X1, €%, €0, s At (X Eme, @)
(Xt,Ct) = ((f12(%, Cot) — f2o(%, C2t)), (f21(x%, Cat) — f12(X%,Cut))),
Fo(x, ) = fa1(%,C1t) — fa2(x,C2), and
a(x,c) = (a12(%, ) a11(%, @)')".

Then,a(x,¢) = Fi" (%, ¢t)F2(x, &)1y obtains
Kot+1(%42,|%,Cot) — Kat41 (%42, |72, Cnt) =

2 X
/ Zl fitr1 (%212, Pket1) 8kot+1 (%, Fe1] %, ) For (X[ %, Ct)
k=1i

— fier1(%r21Zis e 1) Bt 1(X, Tz ) Fae (%%, Cat) | G (P 1) A1 A O, (3.17)

where

ft 1 (%202, Tiert) = Fiert (s 2]%i, Bker 1(Z Tkt 1)),

Akjt+1(X, M+1]z, ) = akji+1(Xi, Cker1(2, rt+1)[%, C), andcei1(z,ke+1) is the nearest fo
C%+1(Zi,ft+1)- One can then compuggx,¢c;) for ¢; on the gridZ‘t to obtain weights out-
side of the main estimation. How welli 1(%2, |%,Cjt) approximatejt1(%-t2, %, Cjt)
depends om, which | explored in sectiolnl 8.

As in the previous section, estimates §jf(x1|%,Cjt) are required to compute the
weights that satisfy one-period dependence. This can be Hgrparametric or nonpara-
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metric methods, where in the latter case, a candidate dstifisagiven by

£ (i, ) = 2 0% = X3 1% =} Ko(Ci — i)
J ) ZF djit l{xlt = Xt}Ko(Cjit _Cjt) ’

whereKg is a kernel ana is a bandwidth.

The second concern is existence of measurement errors émveloiscontinuous choice,
which would lead to inconsistent estimatesfptx1/%,Cjt ). However, consistent estimates
of these transition probabilities can be obtained by thérunsental variables estimation
methods such as in Newey and Powell (2003), where laggeéwalithe continuous choice
may serve as the instruments under the conditions set owgweiand Powell (2003).

3.1.4 Optimal continuous choice

This section presents sufficient conditions for uniquenésise optimal CCCs, and discuss
how they may be computed in the framework set out in the pusvsctions. The sufficient
conditions for uniqueness of the optimal CCCs are outlimettié following assumption.

Assumption 3.10.For j=1,---,J,1; =1,--- ,Lj, and(z,rjt),

(1) the period-specific utility function,ji{z, cjt,rjt), is strictly increasing, strictly concave,
and twice continuously differentiable ifjcon int(Cjt) with Iimqjﬁoaujt(zt,cjt,rjt)/aqjt =
o, and

(2) for all (%, %:+1), SUR, e oK i (xt+1|xt,c,-t)/ac}‘jt <y<w, k=0,1.

Under AssumptionBZlOc(j’t(zt,rjt) uniquely maximizesvjt (z,cijt,rjt) over Cit, for j =
1,---,Jand all(z,rjt).

Under certain conditions, one-period finite dependenceiges a simple and convenient
representation of the condition for optimal CCCs. Spedlficéet alternativej = 1 be the
normalizing alternative and let; be either O or known. In the empirical application of this
paper, the alternative = 1 is to stay home, for which no continuous choice is assatiate
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Then, under Assumpti@]ldft(zt,rjt) uniquely solves

0
0= (Vit(z, Cjt, Tjt) — Var (%, Cat, F1t)) = =—Uje (z,Cit, T jt)

acit - dcjt

J X

+B Z Z[UE(Zi7rkt+1) + lle[ptO+1(Ziart+1>H
k=17 0=

9
X E[akjt—i—l(xi,rt+1‘zt,ct)fjt(xi|xtycjt) — aat+1(Xi, re+1]z, &) Fae (X%, €1t )] Or (Fes-1)drera
]
(3.18)

for j =2,---,J. This first-order condition becomes more complicated inainous way if
the period-specific utilities are functions of lagged contius choices.

4 |dentification

This section discusses identification of the parameterseofrtodel presented in section]2.1.
The negative result of Rust (1994) and Magnac and Thesma@g2j20that models of the
form presented ih 211 are generically non-identified — shaglditional restrictions must be
imposed on the structure of the model to identify the pegpdeific payoff functions. The
class of models considered by Rust (1994) and Magnac andmEn€2002) are stationary
and do not include continuous choices. Blevins (2014) plesisufficient conditions for
identification of the period-specific payoff functions irasbnary models with continuous
choices and appropriate continuous state variables.

As discussed in Arcidiacono and Miller (2020), identificatibecomes more problem-
atic in non-stationary environments. The model presemteskction 2.1 is not only non-
stationary, but also includes CCCs and permanent unolibbaterogeneity. Appendix A.3
provides sufficient conditions for nonparametric idengifion of the period-specific utility
functions and the distribution of the permanent unobsehetdrogeneity under the assump-
tion the distribution takes a correlated finite-mixturenfiorThe approach to identifying the
parameters of interest taken in this paper imposes theatestrthat level sets can be con-
structed from the difference between the transition fumctf a particular choicej* and
the others. In practice, such level sets can be achieveddex irestrictions on the transition
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probabilities, or exclusion restrictions. The applicatio the paper imposes both restrictions
where: j* = 3 (enroll in school and not work), the probability of combet a grade level
given enrollment is specified as a linear index probit, amsl phobability depends on labor
market experience interacted with age and AFQT, which actudrd from period-specific
utilities. Full development of the nonparemetric idenéfion of the period-specific utility
functions and the distribution of the permanent unobseeftetts can be found in Appendix
A3

5 Estimator

In this section, | propose a GMM estimator for the periodespeutility functions, as well
as the distribution of the unobserved effects. | choosedapgse a GMM estimator instead
of the ML estimator for two reasons. First, the definition loé tGMM estimator does not
require specifying the distribution of measurement errasich is of particular concern in
discrete- and continuous-choice models, because obseoveithuous-choice variables are
often measured with errors. Second, the GMM estimator iasbto the initial-conditions
problem: consistent estimation of the parameters doe®gatre observing the initialization
of % givensor for it to be specified.

How to account for and estimate finite-mixture distribusan the GMM framework is
unclear. Indeed, accounting for finite-mixture distriloas typically requires the likelihood
function to be fully specified, such as in Eckstein and Wol{di899), Keane and Wolpin
(2000a), Keane and Wolpin (2001), and Arcidiacono and M{#911). The estimator in
this section is designed to account for and estimate thefiikture distribution, and allow
the distribution to be dependent on observed permanenadeaistics of the individual. |
assume consistent estimates of the state transition ptiblestare obtainable in a first-stage
estimation, as discussed in secfion 3.1.

The estimator proposed in this section assumes the pepedfs utility functions, and
the distribution of the shocks are known up to a finite-dinn@mel set of parameters. Specifi-
cally, ujt(z,s,Cjt,rjt) = Ujt(%,S,Cjt, r'jt; B1, ), ] = 2,--- ,Jare known up t®; € Pe1, Uijt (%, S, Cjt,r'jt)
is known, andg; (r) = gr(r¢;B2) is known up toB, € 0P8z, DefineB = (By,B;) € B C
[Pe1+Pe; . |dentification of the model outlined in section A.3 of thepapdix imposes a
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finite-mixture specification of the distribution of the peanent unobserved effects. This
assumption is reproduced below for completeness.

Assumption 5.1.1. For all x € X and we 7/, the conditional density; fx|w) > O.
2. The permanent unobserved heterogeneity has finite supjtbprobability mass function
(%) = 1(s|w), s€ S(w), and cardinality @w), possibly depending on w.

The estimator imposes the following additional restricti@n the conditional distribu-
tion of the mixing distribution angb.

Assumption 5.2.1. w is discrete valued with cardinalify|.
2. The number of types and the support of the mixing disichudre not a function of w:

3. The investigator has prior knowledge of the number ofgyQe

Definen(wk) = (T[l(Wk)7 T 7T'Q(Wk))/’ = (T[(Wk)vk: 1,-- 7‘WD' eq = (B7 SQ) < @q =
BxS,andd = (B,{s,---,S0}) € ©:=B x SQ. For each, and fort = 1,---, T, define

14
o

(Xit; 6q) = (p (Xit;6q), - -,pgt(xit;ﬂq))/,
& (xi;0g) = (e (%it;0q)', - - dsiecQ (it 6q)’)'s
he (%t; 8q) = (BY (%t: 8q)', & (%t 89)")',
(
(

h(x;8q) = (h1(%i1;6q)", hr—1(XT—p; 6q)")’,
h(xi;8q) = (h(x;81),- -, h(x;8q)),
P(Yi,%i; 0, 1) =y — h(x;; 8) (W), (5.1)

where the vectoy; is defined analogously.

The vectorp(y;,x;; 0, m) is of (L+J —1)(T — p) dimension. LetX; be a vector of in-
struments with dimensioNyx, > L +J—1, and define = diag{Xi,t =1,---,T —1}. Pre-
multiplying equation[(5J1) by obtains the following\x := 5 ;' Nx,-dimensional vector:

mi (6,10 = Xip(Yi, xi; 8, T0). (5.2)
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The GMM objective function is given by
§(6; 1) = im(6; I QM(8; 1),  where (5.3)

1n
:a;m@m, (5.4)

andQ is consistent estimator for dx x Nx positive-definite weighting matrixQ.

Although the objective function (5.3) is standard, additibrestrictions need to be im-
posed to jointly estimate the type probabilities. WoeE wy, the likelihood ofd;; given
(Xit, 8q) implied by the model be given by

J
f (dit[Xit,0q) = I_l Pjit (Xit, Oq) dit (5.5)
For wi = wg, for any value o, and given type probabilitiesy(wy), Bayes’s rule implies

the following vector of posterior type probabilities,

Ty (dit, Xit; 8, TH(Wi) ) = P (di it 8) iy (Wi , 9=1,---,Q. (5.6)

S g (che|Xit, O ) iy (W)

The validity of the estimator is based on the following tresor whose proof is provided in
sectiofALY.

Theorem 5.3.Supposé6, 1) is identified; that is, the assumptions in Secfiod A.3 holeenT
E [1q(dit, Xit ; 0, Ti(Wi) ) [ Xit , W] = Tiq(wi) for g =1,---,Q, k=1,---,|w|, and almost every
Xt € X if, and only if(0, 1) = (6p, Th).

Fork=1,---,|wl|, define
. f(dit‘Xit,Gq)
f. (6, =d q=1---.Q%, 5.7
¢ (6, T(wi)) Iag{z§_1ﬂdﬂmheqﬁm%mm>q Q} (5.7)
Mt (6, Ti(Wi) ) = (i) — ¢ (8, TH(wio) ) Te(wic),
. 1010
nﬂ(e,n(Wk)) n_ki;ft: nﬁt(e,n<Wk))|i(Wk), (58)
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wherel;j(w) is the indicator variable equal to vif = w, and 0 otherwise, antk = 31", I (Wk).
For fixed® € O, let T(w;8) be the solution tan(6,T(w;0)) = 0, and definef(8) =
(Ti(wy; 0),k=1,---,|w|). The estimator foBy is therefore defined as

6 =argminS(6; 7(0)), (5.9)

and the estimator fam is given byfi(6).

6 Computing the estimator

In this section, | present a method for computing the esbmptoposed in the previous
section. | describe updating the parameters of the modehétiwvidual i in periodt at the
o+ 1 iteration with <9[°],T[[°],c[°],p[°}) in hand. In the development of the algorithm, |

suppress dependence éﬂ[o},rﬂo},do},p[o]) and(i,t), and | set the first alternative to be the
normalizing alternative. Therefore, we have the notation

Viq(X,C,T) = Vjit (Xit,Cit,rit;GBO},T[[O},C[O] o]y,

Updating the CCCs
The continuous choices[j?;l} (X,rj) andcgzﬂ] (x), are updated by solving equation (3.11) as
follows:
9 Vjiq(X,C,r) =0 (6.1)
A j1 y Lyl ) = U, .
aCj C:cg)ﬂ] (%0r) 1
CE%“](X) :/cﬁl}(x,rj)gr(rj)drj. (6.2)

Conditions for uniqueness of the solution to equatfon] (&r€) given in Assumption 3.10,
and the integration in equation (6.2) is taken numerically.

Updating the CCPs
Let

/
vix g 00,0 = (vagx ey D06ra)n, - vaglx ey oxra).n)
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For eachj € {1,---,J}, the CCPs are updated as follows:

pla o eg Hoen)n) = @y (v g ) ). (6.3)
Pl 00 = [ Pl e e e ). ngr (6.4)

where the functional form d¥; is determined by the distribution of the alternative-speci
shocksg. For example, i€ is distributed i.i.d. type one extreme value,

. [0+1] .

po ke xr),n =

[o+1] :
zﬂ:]- erq(Xkaq (erk)vr)

Updating 1t
Fork=1,---,|w|, equation[(5.8) may be solved recursively by iterating

0+1 ZT Zf [0+1] [0},T|{<O/}>T|L0q|i(wk>. (6.5)

in o until convergence, wherg® (wg) is taken as the initial prior (see Richardson (1972)
for an analysis of Bayesian-based iterative algorithmshe Tipdated type probabilities
m°+1 (wy) are these convergent values.

6.1 Updating

Let rﬁ["“]( Bl io+1(0l9)) be the moment function defined in equatibn5.4) evaluated at
< o+l glot+ p[o+l]) Let Mo+ (gl rfo+1(glol)) andglo+1 (gl rfo+1 (Bl0)) be

M(8,71(0)) := %m(e,n(e», and

6(8,7(6)) := — [N(6, T(6)ONI(8,7(8))] "~ M(8, (6))'C(8,TY(8))

(o3}

also evaluated a(te[o},n[o*”,d‘”l],p["*l]). The updated values 6f 8(°"Y are given by
e[oJrl] _ e[o] + ¢[O+l] (9[0] : T[[OJrl] (e[O])) (66)
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The full algorithm for computing the estimates of the modeds follows.

Algorithm

1 - Initialize (e[ol,rﬂohdol,p[@).

2-Foro>0,
2.1 - Computel®t by solving equation{6]2)
2.2 - Compute!®*U using equatior {6]4)
2.3 - Computat®Y using equation$(61.5)
2.4 - Computd®t1 using equation$ (6.6)

until convergence i®.

Convergence of the Gauss-Newton algorithm is not guardrfteea variety of reasons,
and if it does converge, it may be slow (see Dennis Jr. and&#hah996) for discussion).
Methods to improve the success and rate of convergence dbdlss-Newton algorithm
have been proposed in recent years (see Fan and Yuan (20@k),add Chen (2010), and
Ferreira, Goncalves, and Oliviera (2011)). Although | adapmponents of these proposed
algorithms in the simulation exercise and empirical aggian, a detailed discussion of these
modifications is beyond the scope of the current paper.

What we do know, however, is that good initialization of therameters of the model
does improve the likelihood that the algorithm convergesl ia reduces the number of it-
erations required to achieve convergence. Good initialasgafor the above algorithm may
be obtained by first obtaining initial values @f and type-invariant estimates of the CCCs
and CCPs. These quantities can then be used to execute step3.2 of the algorithm to
obtain initial type-specific CCCs and CCPs. With theseahitalues, the above algorithm
iterates on the quantities in a way similar to Aguirregabémd Miral(2002) and Arcidiacono
and Miller (2011). Therefore, no loss of precision resulterf multistage estimation of the
parameters of the model such as in Hotz and Miller (1993)ygA#ind Miller (1998), Bajari,
Benkard, and Levin (2007) and other papers that apply sut¢haus.

7 Limiting variance of the estimator

The estimator proposed in sectibh 5,/§1— consistent and asymptotically normal under
standard conditions such as those in Newey and McFadded ) 196wever, the form of the
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limiting variance is somewhat nonstandard because of thibeaddor jointly estimating the
type probabilities. This section provides the form of thmiting variance, whose derivation
can be found in sectidn A.8.

Define

my(0,m) = — f, (6, M, M(6, ™) th (6,m), and
mg(w;6,1) = E[ny(6, )|w],

wheref; (0, 1) is defined in equation (5.7). Léand! be theg— dimensional identity matrix
and iota vector, respectively. Define alge- diag{my, --- , g}, and let

T

Ml?(evn) =I- fit(evn) +T[fit (97T[>“/fit (97T[>7 MIT[(evT[) = % Z\Ml?(ev.r[% and
=

Mg (w; 0, 11) = E [M[(8,10)| W] .

Finally, let my = my(6p, o), M;(B,1) = dm(6,11)/00, and Mo = E[M;(8p, )], Mr;(0) =
Xih(x;,8), Mro(w) = E[Mri(80) w], mfi(w) = m(w; 8o, To) andMZ(w) = ME(w; 8o, To). The
limiting variance of the estimato8), is

V = (M§QMo) ~1H(MHQZ QM) (MpQMo) %,  where
S=E [(m + My (W) ME(wi) ~2mf) (my + Mno(Wi)Mg(Wi)flmn)} : (7.1)

In practice, a consistent estimator for the asymptoticavareV is required. One can
be obtained via the plug-in approach, where the parametevsare replaced with their
respective estimators, and the expectations are replaitbdsample averages. The proof
for consistency of this plug-in estimator is standard and also be found in Newey and
McFadden|(1994).
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8 Monte Carlo evidence

In this section, | present the results of two sets of MontddCexercises to illustrate the
finite-sample performance of the proposed estimator. Batathese exercises can be found
in sectioAT1.

The first set of exercises investigate the performance oafpeoximation to finite de-
pendence presented in section 3.1.3 under the restriadiotise transition probabilities im-
posed in Assumption 3.8. The performance of the estimatosrigpared with the estimator
for which the CCPS and CCCs are obtained from the full sahdiiod one for which the true
CCPs and CCCs are known, in order to isolate the source obziopation error. The results
show the proposed estimator performs well in finite samplés some loss of precision rel-
ative to the estimator based on solving the model. Howelvergsults also show significant
computational gains from the proposed estimator relatitbe full-solution approach, with
average computation time of the proposed estimator beimgaiod a half times faster than
the full-solution approach.

The second set of exercises investigate the performandesastimator relative to the
one based on the EM algorithm developed in Arcidiacono arlteMR011) for models that
satisfy the renewal property discussed in sedtioh 3.1. Thpgsed estimator performs sig-
nificantly better in recovering the parameters of the madelvever, the Arcidiacono Miller
approach is significantly faster — being almost 19 timesefaitan the proposed method.
These gains are largely due to the difference in the appesachupdating the type probabil-
ities, and the proposed estimator is based on two-stage GMM.

9 Education and labor market choices and the heteroge-
nous returns to education

This section implements the method developed in the prevsaations to investigate life-
cycle educational and labor market choices, using a sanipteumg men from the 1979

cohort of the NLSY. The primary objective is to estimate theg-run ex-ante distribution of
returns to education. The model developed in this sectiatosely related to those devel-
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oped in Keane and Wolpin (1997; 2000; 2001), and Ecksteirvdmigin (1999) in a variety
of ways. Specifically, the model incorporates psychic co$tschooling and working, as
well as direct and indirect benefits from working. The diteenefit from working is current
income earned, and the indirect benefit is future potemta@me earned from the additional
years of experience gained. To allow for simultaneity irsthehoices, | adopt the specifica-
tion of Eckstein and Wolpin (1999) and Keane and Wolpin (J0@hich includes the option
to simultaneously work and attend school in the individaiahoice set, for the number of
hours worked while attending school to influence the chaneendividual will advance the
grade level, and incorporate psychic costs of working winilechool. Additionally, similar
to these papers, | allow for permanent unobserved heteettgemd individual-time—specific
shocks in the wage-offer function. A key point of departgrehie permanent unobserved het-
erogeneity is specified as a random coefficient on the levetio€ation, whose distribution
is allowed to vary by race, parental income, and AFQT caiegor

The inadequacy of the classical Mincer equation to obtaiitypoelevant estimates of
the returns to education has been well documented overshina decades (see Heckman,
Lochner, and Todo (2006) for a review of the relevant literaf. Heckman, Lochner, and
Todd (2003) cite notable extensions to the classical Mima@ge equation that are likely to
reduce the biases in estimates of returns to education.eTdensions include direct and
psychic costs of schooling, nonseparability between éxpee and schooling, heterogeneity
in returns to education, and disentangling marginal andaasereturns to schooling. Indeed,
the authors show that if psychic costs of schooling are Bggmt and ignored, the Mincer
coefficient is expected to be larger than the internal ratetwirn. Other important factors
that may affect estimates of the returns to education ircthé endogeneity of schooling
and work-experience choices and uncertainty about the letetpblevel of education. The
structural model in this section is designed to incorpottaése extensions.

The model allows for race, parental income, and AFQT to affexgrade transition prob-
ability, the utilities of leisure, the psychic costs of sohenrollment and employment, and
the wage-offer function. In investigating the determirsasfteducation attainment, Cameron
and Heckmanl (1998), Cameron and Heckman (2001), and Caralett Heckman (2003)
argue the effect of parental income on educational attammseprimarily a result of it be-
ing a proxy for permanent income, which influences earlydttabd development, and less
that it captures short-term credit constraints. Richeepts have more resources to invest
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in the environment that fosters early childhood developgménognitive abilities and social
skill, which rewarded in terms of academic achievement.yTdrgue a significant propor-
tion of the racial disparity in academic achievement cagdirbe traced to differences in
schooling abilities developed during early childhood. Awplication of these arguments is
that controlling for family income and AFQT should mitigdhe effect of race in the struc-
tural model, and controlling for AFQT should mitigate théeet of parental income on the
barriers to school enrollment, as well as the likelihood thatudent will advance a grade
level given enroliment. Interpretation of any residuageftfof parental income on academic
achievement, net of AFQT, becomes more convoluted. Onecsafrany such an effect
may be a result of permanent income on scholastic aptitudel@@ed during early child-
hood in dimensions not captured in AFQT. Another channeldcbe that parental income,
as a measure of permanent income, may be capturing accesi$eindzhools and academic
assistance outside of normal school hours. These potsotiates of the effect of parental
income cannot be investigated with the data implementduismpiaper but remain within the
research agenda.

Performing the same analysis as done in Heckman, LochnérTaad (2008), where
the psychic cost of working is included, shows this cost @swees a wedge between the
Mincer coefficient and the internal rate of return to edwratiAlthough the resulting size
of the Mincer coefficient relative to the internal rate ofuret is ambiguous, accounting for
the existence of psychic costs of working is still necesgagrder to obtain policy-relevant
estimates of the returns to education using the Mincer 8pation of log-wages. Another
important layer of complication comes from the psychic aafstvorking while attending
school, because working while in school breaks the secaldraimework of school to work
assumed in the model analyzed by Heckman, Lochner, and POi&).

The joint effect of race and AFQT on labor market success bas Bn extensively inves-
tigated phenomenon, with notable studies including NeadlJarimnson (1996) and Keane and
Wolpin (2000a). These authors find that accounting for AF@@ssantially reduces, and in
some cases eliminates, the racial gap in wages, a phenorttetdmas become the general
consensus in the literature. Models that find this result@tcascount for racial disparities
in wage offers that may be education-specific. The modekptes in this section incorpo-
rates both the direct and indirect effects of race on wagksrethe direct effect is modelled
as an indicator for whether the individual is black, and théirect effect is modelled as
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black-white variation in the distribution of returns to edtion.

A variety of interpretations of the effects of parental ime@on labor market outcomes,
if they exist, are plausible. One potential explanatiorheke effects is consistent with Heck-
man, Lochner, and Todd (2006), in that parental income ioaypfor permanent income,
which influences early childhood development resultingah anly higher schooling abil-
ities, but also higher market abilities. Another explamatis that individuals from richer
families have greater access to the labor market in termspfayment opportunities and
higher-paying job offers. The model developed in this sectias the potential to shed
some light on the more plausible interpretation of the twssdming AFQT also measures
individual market ability, if the effect of parental inconoa the psychic costs labor force
participation and wage offers diminishes substantialyhwhe inclusion AFQT, parental in-
come is more likely predominantly be a measure of markeitgb®n the other hand, if the
size of this effect remains relatively unchanged with thetuision of AFQT, parental income
is more likely to capture the greater access to employmepbrdypnities and high-paying
jobs for individuals with rich parents.

9.1 The theoretical model

In each periodt, the individual is endowed with a fixed amount of time, whismormalized
to 1. He faces four mutually exclusive and collectively exstave alternativesj: to stay
home ( = 1); to not attend school and work € 2); to not work and attend schogl € 3);
and to both work and attend schogl-€ 4). Letdj; be equal to 1 if the individual chooses
alternativej in periodt, and 0 otherwise. If the individual chooses to work in petipde
must decide how to allocate his time endowment betweenrkeispand labor supplyh;, so
thatl; +h = 1. Definedth to be equal to 1 if the individual chooses to work in peripdnd

0 otherwise.

If the individual decides to work in periog he gains an additional year of experience.
If he decides to enroll in school, he advances the grade Veitelprobability R (h,x?; 62),
where the variables composing include parental income (Par Inc) as at 1979 in $10,000
1983 dollars, hours worked in the academic year (Hrs WorKestel of completed educa-
tion (Edu), the indicator for whether the individual is a Ihigchool graduate (HS Grad),
the indicator for whether he obtained some college edutgB8ome Col); the indicator for
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whether he is a college graduate (Col Grad), and years of laboket experience (Exper).
This specification is a key (though not only) source of uraiety affecting completed level
of education. The individual compares the benefits from waykvhile in school, which in-
clude income generated and the level of labor market expegiearned, to the costs, which
include loss of leisure time and the potentially negativpait of working while in school
on the likelihood that he will complete the grade level.

In each period, the individual receives a wage offeage’, which is parameterized as
follows:

In(wagé’) = x'6" + SEDU + 1y,

whereEDU, is his level of education as sis returns to his level of education, ands the
period-specific shock to his wage offer, which is assumedetdibtributed i.i.d.N(0O, oy ).

The explanatory variableg, contains years of experience and its squared value, a dummy
variable for the individual being black, parental incomel ais interaction with the black
dummy variable, and AFQT.

| assume returns to educatios,are discretely distributed witQ = 3 support points,
se {s1, --,Sq} and corresponding PMAgw) = (T (w),---,Tio(w)), wherew represents
the eight categories of race (black and white), parentalnme (above and below median
income), and AFQT (above and below median AFQT). | allow fa kog of the wage offer
to be measured with additive error, which is assumed to hewe mean with distribution
independent of all the covariates in the model.

The contemporaneous utility function is given by

u(z) = d'6iwagq In(wagehy) + exp(x83) In(l;)
+d'% 64 + dfx 64 + d'dF %68 + d(;, 9.1)

wheredf is equal to 1 if the individual enrolls in school in perigcand 0 otherwisex is a
vector of observed demographic characteristigss (dy,---,dy)’, ande = (€11, ,€3t),
wheregj; is the alternativeg-specific shock to utility, which is distributed i.i.d., tgfdl ex-
treme value. This specification of the contemporaneougyutihposes some desired re-
strictions on the preference for consumption, and leisaseyell as optimal hours worked.
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Specifically, for6j > 0, the contemporaneous utility is increasing and concab®ih con-
sumption and leisure, and optimal hours are restrictedetathictly between 0 and 1. |
impose these restrictions by settigiy= 0.1.

The utility-of-leisure taste shifter includes the blackmiay variable, parental income
and its interaction with the black dummy variable, AFQT, ,s&yed age squared. The school-
ing and employment taste shifters include the black dummplke, parental income and its
interaction with the black dummy variable, and AFQT, edimgtyears of experience, and
age. Unlike Keane and Wolpin (1997), Eckstein and WolpiD&)9and Keane and Wolpin
(2000a), 1 do no allow for permanent unobserved heterogeirethe utility taste shifters,
because how the monotonicity restriction required for tidieation in sectioh A.B would be
maintained in the current framework is unclear. By allowiogpermanent unobserved het-
erogeneity in the psychic cost of schooling and the constatfite log wage-offer function,
Keane and Wolpin (2000a) remain agnostic about the soulleetefogeneity in endowments,
instead of prior commitment on the source of potential endewnt effects as in the current
model. The schooling and employment taste shifters aldadedagged values of school
enrollment and employment to capture intertemporal ncarsdyilities in preferences.

9.2 Data

The data are taken from the NLSY79, a comprehensive pargesdathat follows individuals
who were 14 to 21 years of age as of January 1, 1979. The dataitsgty consisted
of 12,686 individuals: a representative sample of 6,111viddals, a supplemental sample
of 5,295 Hispanics, non-Hispanic blacks, and economiaifigdvantaged, non-black, non-
Hispanics, and a supplemental sample of 1,280 militarylyduterviews were conducted on
an annual basis through 1994, after which the survey ad@pkeennial interview schedule.
This study makes use of the individuals observed for the 28syears of interviews, from
1979 to 2006. The data are restricted to include non-Higpawales and respondents with
missing observations on the highest grade level complatgadannot be recovered with high
confidence from other data information. The details on timepda restrictions are provided
in Appendix A of Gayle(2006). | further restrict the datanadlividuals who were at most 16
years of age when they were first interviewed in 1979. Witls¢hestrictions, the data used
in this application consist of 1,443 individuals in 1979.

40



9.3 Estimation

This section discusses calculation of the weights usedh@aed one-period finite depen-
dence for estimation of the model, which are outlined inisa.1.

| setaja(X+1) = a21(%+1) = 1 when evaluating the difference of the values of working
and not enrolling in schoolj(= 2) and staying homegj (= 1), because the theoretical model
satisfies the exchangeability condition. A key restrictimposed on the theoretical model
for exchangeability to be satisfied is that the wage-offecfion depends on years of expe-
rience, and not on accumulated hours worked as in Ecksteliiéartpin (1999). If the wage
offer is specified to depend on accumulated hours, exchéailfgaan be achieved if it was
assumed to depend discretely on accumulated hours.

The probability of advancing by a grade level given enrolitri@ school, R (h,X@; 62),
is specified to depend on the distribution of returns to etioic@nly through optimal hours
worked, and | assume observed hours worked is not measutie@mor, so this probability
can therefore be estimated by standard means. | assumetiabpity of advancing a grade
level takes the logit form. | compute the weights that achieme-period finite dependence
when evaluating the difference in the values of enrollingahool and workingj(= 3, h =
0), and staying homej (= 1, hy = 0) using equation (3.11). To compute the weights that
achieve one-period finite dependence when evaluating tleeatice in the values of working
while attending schoolj(= 4, hy > 0) and staying homej(= 1, hy = 0), | implement the
approximation approach developed in seclion 3.1. Speltyfitapproximated the weights
on a grid of 20 equally spaced grid points of hours worked irejmfom 0 to Q7. This range
includes the maximum hours worked while enrolled in schgoinalividuals in the sample
of 0.53.

9.4 Results
9.4.1 Grade-promotion probability

Table 1 presents the results from estimation of the proityaloif completing a grade level
given enrollment, which is assumed to take the logit formlu@m (1) contains estimates
of this transition probability without controlling for AFQ and column (2) includes AFQT
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and its interaction with labor market experience. The tssshow that when AFQT is not
accounted for, the coefficient on black is negative and 8aamit, and the coefficient on
parental income is positive and significant. AccountingA&QT eliminates the effect of
black on the grade-promotion probability and reduces thegymal effect of parental income
by 58%, which becomes imprecisely estimated.

The results indicate that, given employment, additionairkavorked reduces the proba-
bility of advancing to the next grade level, providing evide for the crowding-out hypothe-
sis, which is consistent with D’Amico (1984), Ehrenberg &teerman (1987), and Eckstein
and Wolpin (1999). Although the coefficient on labor forcetigipationd], which captures
the extensive margin of employment, is positive acrossifpations, it becomes imprecisely
estimated after controlling for AFQT. This finding suggestgnificant proportion of what
is considered evidence for the congruence hypothesis cargdained by individuals with
high scholastic ability taking advantage of their greaternce of advancing a grade level, re-
gardless of whether they work while attending school, to @come and gain labor market
experience.

Table 1: Probability of Grade Promotion

Specification I Il

Variable Estimate Std. Err. Estimate Std. Err.
Constant 4.1345 0.7981 4,7323 0.8220
Black -0.4012 0.1214 0.0271 0.1242
Par Inc 0.1224  0.0282 0.0516 0.0291
Black x Par Inc -0.0506 0.0551 -0.0320 0.0555
Hrs Worked -3.4947 0.7517 -3.1941 0.7612
Employment 0.2124 0.1035 0.1679 0.1049
Edu 0.9162 0.1418 0.4704 0.1466
Edu Squared -0.0273 0.0058 -0.0144 0.0061
HS Grad - Some Col -0.3658 0.1481 -0.7687 0.1539
Col Grad -0.6090 0.3155 -0.9662 0.3192
Exper -0.4730 0.1198 -0.3150 0.1205
Age -0.5038 0.0439 -0.4099 0.0440
Age x Exper 0.0250 0.0048 0.0228 0.0049
AFQT —_— —— 0.0326 0.0026
AFQT x Exper — —— -0.0030 0.0005
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9.4.2 Period-specific utility

Utility of leisure. The first panel of Table 2 presents the estimates of the pasasrgovern-

ing the period-specific utility of leisure. The results icatie the utility of leisure is increasing
in both parental income and AFQT, and the effect of parentaime on the utility of leisure

is lower for blacks. | find no evidence of a direct effect belmgck on the utility of leisure.

These results remain unchanged when AFQT is included intilityf-leisure taste shifter.

The results also show that utility of leisure is decreasimgj @nvex in age.

Psychic value of labor force participation. The results presented in the second panel of
Table 2 imply significant psychic costs of working. The caxéfint on black is statistically
insignificant across both specifications, and the coeffia@nthe interaction of black and
parental income becomes statistically insignificant whEe@A is included, suggesting racial
variation in the barriers to employment can largely be @rgld by variation in market ability
measured by AFQT. The coefficient on parental income is pes#nd significant across
specifications, and the inclusion of AFQT does not reducendgnitude, which supports
the hypothesis that individuals from richer families haveager access to the labor market
in terms of employment opportunities. The coefficient on AR positive and significant,
implying AFQT also measures market ability developed iyeenildhood. The results also
imply significant nonpecuniary benefits to continuous ermyplent.

Psychic value of school enrollment.The results in the third panel of Table 2 provide evi-
dence of the preference for continuous schooling, and thehpscost of school attendance
is increasing in labor market experience and age. Theségesa consistent with those of
Eckstein and Wolpin (1999), who provide a detailed disaussif the economic interpreta-
tion of these coefficients.

The results imply psychic costs of school attendance aredsitig in parental income
and AFQT. | find no evidence from either specification thatghsy costs of school enroll-
ment vary by race. Furthermore, including AFQT reduces tlgmtude of the (positive)
effect of family income by 59%. The conclusion implied frohese results and those from
the estimated grade transition probability function, vahis consistent with Cameron and
Heckman|(2001) and Carneiro and Heckman (2003) is thatngWeT, educational attain-
ment varies by parental income but not by race, and indivgwéh higher parental income
are more likely to attain higher education. These conchssamme with an important caveat,
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which is discussed in the following.

Psychic value of working while attending school.The conclusions drawn so far from the
results pertain only to individuals who exclusively eninlschool or exclusively participate
in the labor market, and not for individuals who work whiler@fed in school. The fourth
panel of Table 2 provides the estimates of the psychic vatugooking while attending
school. They show significant psychic costs of working wkiteolled in school for blacks.
The results also suggest white individuals with high paincome are less likely to work
while enrolled in school, a result that is consistent wignélistence of borrowing constraints
found in Keane and Wolpin (2001). These results hold for Isptrifications and are not di-
minished by the inclusion of AFQT, which itself increases fisychic cost of working while
in school. These results suggest significant differencésamiemographic characteristics of
individuals who work while in school relative to individgalvho do not, and not accounting
for these differences is likely to bias estimates of therifistion of returns to education.
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Table 2: Period-specific Utility

Specification 1 2

Variable Estimate Std. Err. Estimate Std. Err.
Utility of leisure exp(85x;)In(1—hy)

Constant 1.3964 0.1070 2.7533 0.0934
Black -0.0476 0.0358 0.0609 0.0284
Par Inc 0.0525 0.0059 0.0424 0.0038
Black x Par Inc -0.0250 0.0161 -0.0203 0.0135
AFQT 0.0038 0.0002
Age -0.0511 0.0076 -0.1379 0.0067
Age Squared 0.0010 0.0001 0.0023 0.0001
Psychic value of labor force participationdf’x 05

Constant 0.1695 0.3980 0.3937 0.7350
Black -0.1141  0.3674 0.3608 0.5101
Par Inc 0.3936 0.0825 0.4348 0.0895
Black x Par Inc -0.3510 0.1681 -0.2863 0.2253
AFQT 0.0581 0.0061
Lagged Enrollment  0.5903  0.0235 1.2012 0.0511
Edu 0.1720 0.0316  0.1324 0.0799
Exper 0.1664 0.0177 0.1816  0.0298
Age 0.0428 0.0176  0.0433 0.0308
Psychic value of school enrolimentifx 6%

Constant 0.4910 1.1258 1.6259 1.2196
Black -0.7636  0.5692 -0.2700 0.6620
Par Inc 0.7629 0.0843 0.3094 0.0907
Black x Par Inc -0.1243  0.2262  0.0717 0.2563
AFQT 0.0951 0.0057
Lagged Enrollment  4.6888 0.2632 5.8061 0.3596
Edu 0.1603 0.0549 0.0981 0.0914
Exper -0.1216  0.0749 -0.3431 0.0790
Age -0.1458 0.0685 -0.2764 0.0728
Psychic value of working while attending schoodlhthxteg
Constant -2.3564  0.2820 -2.8900 0.3025
Black -1.5807 0.5531 -1.9543 0.6532
Par Inc -0.5808 0.0986 -0.5667 0.1014
Black x Par Inc 0.5440 0.2190 0.5082 0.2725
AFQT -0.0632  0.0060
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9.5 Wage-offer equation

Table 3 presents the results from estimation of the waga-@dinction. AFQT is included
in both specifications in order to be consistent with thetegsliterature. | allow for the
wage-offer function to be directly dependent on race andrgat income, and for the distri-
bution of returns to eduction to vary by racial and paremtabme categories. In addition to
racial and parental-income categories, Specification®valffor the distribution of returns
to education to vary with AFQT categories.

The results from both specifications suggest the existeheebtack-white gap in the
level of log wages. The results also indicate wages are asang in parental income, with
higher increases for blacks. Therefore, the black-whiteigahe level of log wages narrows
as parental income increases, and is eliminated or revéss@arental income 37% above
the median income in specification 1 and 65% above the medaomie in specification 2.
Allowing for the distribution of returns to education to dgywl on AFQT results in a negative
and statistically significant coefficient on AFQT in the wagféer equation, indicating an
overcorrection of the direct effect of AFQT on wage offerhie$e results suggest parental
income, and not AFQT, explains the male black-white wage gajch supports the hypoth-
esis that individuals with richer parents have greater ete higher-paying jobs. These
results are not immediately comparable to those of Neal ahdsbn|(1996) and Keane and
Wolpin (2000a), who find the inclusion of AFQT in the wageesfequation significantly
reduces the black-white racial wage gap, because of thesiocl of parental income in the
log-wage equation, as well as the correlated random-sffgmecification of the returns to
education.

The ranges of the supports of returns to education are dstint@be from 0.062 to 0.10
when AFQT is not included and from 0.060 to 0.09 when AFQT @uded, and the Wald
test rejects the null of equality in support points at the B¥el of significance in both cases.
These ranges of returns to education lie within the rangh@estimates from other studies
that implement OLS and IV methods and data from similar tirereqals (see Card, 1999, for
a review of these studies). It includes the estimates ofmstto education for white-collar
workers in Keane and Wolpin (2000a), but lies at the lower ehdstimates produced in
Heckman, Lochner, and Todd (2008).
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Table 3: Wage-Offer Equation

Specification 1 2

Variable Estimate Std. Err. Estimate Std. Err.
Constant 0.2888 0.0433 0.3143 0.0373
t/T -0.9442 0.2677 -0.8529 0.2209
(t/T)? -1.0522 0.3483 -1.5486 0.3044
(t/T)® 1.6782  0.1947 2.0535 0.1822
Exper 0.1203 0.0078 0.1281 0.0022
Exper Squared -0.0031 0.0001 -0.0031 0.0001
Black -0.1665 0.0280 -0.1464 0.0277
Par Inc 0.0096 0.0040 0.0226 0.0037
Black x Par Inc 0.0678 0.0105 0.0325 0.0106
AFQT 0.0004 0.0003 -0.0013 0.0003

Wage Shock Std. Dev.  0.6880 0.0192 0.9874  0.0238
S 0.0622 0.0059 0.0602 0.0053
S 0.0851 0.0061 0.0735 0.0054
3 0.1000 0.0057 0.0906 0.0047

9.5.1 Returns to education

Table 4 reports the estimates of the distribution of thernstto education by racial, parental-
income, and ability groups. The first panel reports the ithstion when AFQT is not ac-
counted for, and the second panel reports the distributioanwt is allowed to vary with
AFQT.

When AFQT is not accounted for, the distribution of retutmeducation for whites first-
order stochastically dominates the distribution for bkaaekross income categories, and the
distribution for high-parental-income individuals doraias the distribution for low-parental-
income individuals across race. The probability that a gZimtividual with high parental
income receives high returns to education is 0.57, whicll is&tcentage points higher than
the probability that a white individual with low parentalcmme receives high returns to
education. The probability that a white individual with Igyarental income receives high
returns to education is 5 percentage points higher thanrt®pility that a black individual
with high parental income receives high returns to edunatidich is in turn 7 percentage
points higher than the probability that a black individuaithAtow parental income receives
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high returns to education.

When AFQT is accounted for, the distribution of returns ta@ation for individuals
with high AFQT strongly first-order stochastically domieatthe distribution for individu-
als with low AFQT within all race and parental-income categ®. Also, when AFQT is
accounted for, the racial difference in the distributiomeifirns to education reduces signifi-
cantly within AFQT categories. Interestingly, this diferce reverses in sign for individuals
of low AFQT with high parental income; that is, the probalilthat a black individual
with low AFQT and high parental income receives high retuocnsducation is 4 percentage
points higher than a white individual from the same AFQT aadeptal-income category.
These results support the hypothesis that racial diffeencreturns to education are largely
explained by differences in skill endowments developedduearly childhood. The conclu-
sion drawn from these and the above results is that, net f&reifces in skill endowments
as measured by AFQT, no economically significant racialagemn exists in the barriers to
school enrollment, the likelihood of completing a gradeelegiven enrollment, nor in the
distribution of returns to education. However, a significgaip in wage offers exist, which
narrows as parental income increases.

The results show parental income remains a significantmé@tant of the distribution of
returns to education when AFQT is accounted for. The digtidin of returns to education
for individuals with high parental income stochasticalynainates the distribution for indi-
viduals with low parental income for all AFQT and race catggg though marginally so for
blacks with high AFQT. However, AFQT accounts for approxietyg 31% of the parental-
income gap in the probability that a white male receives hmeghrns to education, and the
residual gap is approximately the same across AFQT catgo@®n the other hand, black
males with low AFQT account for almost all of the parentaldme—gap in the probability
that a black male receives high returns to education, whipparts the hypothesis that indi-
viduals with rich parents have a significant advantage inegher market with respect to the
returns they receive from an additional year of schoolingm@ined with the above results,
the conclusion drawn is that individuals with rich parendsgess significant advantages in
the labor market in terms of lower barriers to employmerghbr wage offers independent
of level of education, and higher returns to education. &Habor market advantages of
individuals from rich parents are independent of the skid@vments developed by during
early childhood, except for the returns to education fockdafor whom the gap in returns
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to education exists for the low-AFQT subgroup. An importeaneat to these conclusions
concerns the group of individuals who work while attendiega®l, for whom the results
indicate the psychic cost of working while in school is higla blacks, individuals with
high parental income, and individuals with high AFQT.
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Table 4: Distribution of Returns to Education

Specification 1

Support 0.0622 0.0851 0.1000 Mean Std. Dev.
White

Low Parental Income 0.4555 0.1881 0.3564 0.0800 0.0171
High Parental Income 0.3071 0.1276 0.5653 0.0865 0.0169
Black

Low Parental Income 0.5547 0.2117 0.2336 0.0759 0.0161
High Parental Income 0.5146 0.1797 0.3058 0.0778 0.0169

Specification 2
Support 0.0602 0.0735 0.0906 Mean Std. Dev.
Low AFQT

White

Low Parental Income 0.4687 0.2808 0.2505 0.0716 0.0123
High Parental Income 0.4468 0.2325 0.3206 0.0731 0.0131
Black

Low Parental Income 0.4925 0.2435 0.2639 0.0715 0.0127
High Parental Income 0.4319 0.2061 0.3620 0.0740 0.0135

High AFQT

White

Low Parental Income 0.1841 0.0865 0.7294 0.0836 0.0121
High Parental Income 0.1421 0.0662 0.7917 0.0852 0.0110
Black

Low Parental Income 0.1815 0.0573 0.7612 0.0841 0.0119
High Parental Income 0.1705 0.0508 0.7787 0.0846 0.0117
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10 Conclusion

CCP estimation of dynamic structural models has flourishesr the last two decades,
largely because of the potential for a quantifiable reduactiocomputational costs relative
to the full-solution approach. Building on Hotz and Mill&993), Arcidiacono and Miller
(2011) show the expected value of future utilities from wyati decision-making can be ex-
pressed as functions of the flow payoffs and CCPs for any seguef future choices. Any
future choice sequence chosen for a given initial choiceggas a corresponding sequence
of distributions of states. The terprperiod finite dependence is obtained if two distinct
initial choices with two corresponding future choice sates can be constructed so that
their respective distributions of states are the same pfpmriods in the future. The compu-
tational advantage of the CCP approach depends signifycamth, particulary if the CCPs
are updated as recommended by Aguirregabiria and Mira [2@&ecifically, the computa-
tional cost reduces, and in many cases, the accuracy of tineaésr improves with smaller
p. Although Arcidiacono and Miller (2011) represents a diigant advancement relative to
Hotz and Miller (1993), application of the CCP method oftéiti equires strong assump-
tions about the choice sequence or the state transitiorapilities or both. The general-
ization of the concept gb-period finite dependence proposed is the paper overcorass th
issues. Specifically, this extension obtains one-perigetddenced = 1) in a large class of
dynamic structural models, which includes most modelstihge been estimated using the
CCP method, and it imposes minimal restrictions on the $tatesition probabilities, which
widens the scope of models for which the CCP method is cortipntdly beneficial.

The class of models | consider includes continuous choltasare associated with the
discrete choices, where the shocks associated with theéoons choices are observed by
the agent simultaneously with or before the discrete-aspecific shocks. This specifi-
cation allows for selection on unobservables, which is inti@st to the results of Blevins
(2014). With respect to identification of the parametersefrmodel, however, allowing for
this form of selection on unobservables comes at the coststriicting the distribution of the
continuous-choices—specific shocks to being known up tate{thimensional set of param-
eters, a restriction that is unnecessary in Blevins (20T4g identification strategy of this
model imposes three key restrictions. | assume the stadles can be varied in a way that
changes the difference in the period-specific utility fumes, but leaves the difference in the
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transition probabilities unchanged. This restriction banattained by index restrictions on
the transition probabilities or by the existence of statéaldes that drives the difference in
the transition probabilities to 1, O, or -1. The second retsbn is that the differences in the
period-specific utility functions is strictly monotonic the permanent unobserved hetero-
geneity. The third is the support of the state variables devénough that any two distinct
period-specific utility functions evaluated at any two ilist values of the unobserved effect
cross each other. The Monte Carlo exercise performed irpdpsr shows the proposed es-
timator performs well in recovering the period-specifiditytifunctions and the distribution
of the permanent unobservables.

| apply the methods developed in this paper to estimate a hobdducational attainment
and labor supply to investigate properties of the distidyubf the returns to education, us-
ing data from the NLSY79. The main lesson learnt from thidiappon is AFQT accounts
for all of the racial disparity and significant portion of tharental-income disparity in aca-
demic achievement: the likelihood of enrolling in schoati dhne likelihood of completing a
grade level given enrollment. This result is consistenhv@ameron and Heckman (2001)
and Carneiro and Heckman (2003), who argue most of the ran@lparental income gap
in academic achievement can be explained by differencearlg ehildhood development
of scholastic ability as measured by AFQT. An important eayertains to individuals who
work while attending school, for whom I find the nonpecunieogts of working while en-
rolled in school are higher for blacks and individuals witghhparental income, and these
costs are not diminished with the inclusion of AFQT.

On the other hand, although AFQT accounts for the racialagigps in the barriers to
labor market participation and the distribution of retutmsducation, it does not account for
the parental-income disparities in these economic quesitifurthermore, | find family in-
come, and not AFQT, has a mitigating effect on racial digpamiwage offers. The primary
conclusion of Carneiro and Heckman (2003) is that, becadseation is a key determi-
nant of earnings, public investment designed to eliminaegacial and parental-income gap
in earnings should be more targeted toward enhancing thaastit ability of the young,
and less on policy interventions such as tuition subsidéssgshed to enhance the education
level of older individuals with low skills. The results ofithpaper suggest public invest-
ment should also target enhancing employment opportsratiel earnings, independent of
education, of older individuals from poorer families. Iethltimate goal is to address the
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socio-economic disparity in labor market success, thetsestithis paper provide a refine-
ment of how a dollar of public spending should be allocate@/ben enhancing skills of the
young on one hand, and improving employment opportunitiesrgages of older individuals
entering the labor market on the other. Further analysib@ftlocation of public spending
on the young versus the old would involve counterfactuailcganalysis similar to Keane
and Wolpin (2000b) and Cameron and Heckman (2001), whicleystd the scope of the
current paper but belongs to the research agenda.
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A LEMMA AND THEOREMS

A.1 Proof of Theorem[3.1

Proof. For any initial choice(j,cjt), evaluating equation (2.3) at period- 1 andcj1 =
c%,1(%,Tjt), and substituting into equation (2110) obtains

Vit (z,Cjt, rjit) = Ujt (z,Cjt, r'jt)
J
#BY [ [ ea(@aner) + U la @)
k=1

+B//\/t+2(2t+2,ft+2)gr(ft+2)dft+2f|?t(2t+2\2t+1,fkt+1)d2t+2]

X ajt+1(Z+1, Nkt+1) 9 (Ne+1) At Fie (z42] 2, Cjt )z 41, (A1)
so that

Vit (2, Cjt, Mjt) = Ujt (2, Cjt, Tjt)

+Bkil//[u(k)t+1(zt+l,rkt+1) +ka(pt0+1(zt+l, re+1))]

X jt4+1(Z+1, Mkt+1) O (Ne-1)drep1 fjt (41|17, Cjt )d 241

+BZ//VHZ(ZH&rt+2)gr(rt+2)drt+2Kjt+l<zt+2‘Zt,Cjt)dzt+2~ (A.2)

By forward substitution, equationis (2]110) ahd (A.1) obtain

Vjt(Zt Cjt,rjt) = th(Zt,Cjt,rjt)

Hp J //Brt (Z0, i) + W[ PR (z2, 1))

= t+lk—
X At (Z, Mk ) Or (o) Ke—1,j (Z|z, Cjt )drrd %

+l3t+p+1//\/t+p+1(2t+p+1, Mtip+1)

X Or (t4p+1)dltp1Kjt+p+1(Z+p+1/%, Cjt )dZ 1 p 41 (A.3)
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A.2 Proof of Theorem[3.3

Proof. Using equation[(AJ3), the difference in the conditionalueafunctions associated
with two alternative initial choiceg,j,cj;) and(j’,cjt), becomes

Vit (%, Cjt,T'jt) — Vi (%, Cjn, T jit) = Uit (z, Cjt, T jt) — Uje (%, Cjrt, i)
thp  J

£33 [z ) + Wz ol

=t+1k=1
X [akje (2, M| Z, Cjt )Kjr—1(Z |z, Cjt ) — @xjre(Z, Tke| % Cjrt ) K jrr—1(Z| %, Cjrt )] Or (1) drrd
+BHerl//Vt+p+l(2t+p+1,rt+p+1)gr(rt+p+1)drt+p+1

X [Kjt+p(Z4pr1lz,Cit) —Kjnip(Zrpr1lz, Cjn)|dZpra. (A.4)

Kit+p(Z+p+1|2, Cit) = Kjitp(Z+p+1|2, Cjrt)

almost everywhere witli}_, agwr(z, ) =1, K = j, |/, the last term on the RHS of equa-
tion (A.4)) is eliminated to obtain

Vit (%, Cjt,T'jt) — Vi (%, Cjit, jit) = Ujt (Z, Cjt, T'jt) — Ujt (%, Cjt, T i)
t+p J

+ Y Z//BT_I[U%(ZT,FM)+ka[p9(zr7rr)]]

T=t+1k=1

X [akjr(Z, Tie|Z, &K jr—1(Z| z, Cjt) — axje (2, M|z, G )Kjr—1(Z |z, Cjn )| Or (rr)drd %.

A.3 Identification
Defineujk (%, S, G, 't) = Ujt (%, S,Cjt, Ijt ) — Ukt (%, S, Ckt, Fkt) - Defineviue (%, s, ¢, rt) and fixe (% 11[%, )

analogously. In what follows, | assunfig(x+1/%,Cjt), j = 1,---,J are identified in the pop-
ulation from the observablés; 1, %, Cjt). For a given alternativg® and anyc; € G, for any
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measurable functiofi : X — X and constanty,= {y;, j € 7\j*}, define the set
x(yo = fxe e x: [T fyabbeo) i e AT} 49

The following assumption provides sufficient conditionstiee uniqueness of the map-
ping between the differences between the conditional Vialuetions and the period-specific
payoff functions.

Assumption A.1. 1. The discount factds € (0, 1] is known.

2. The distribution of the alternative-specific shocks,ig known and twice continuously
differentiable and log-concave with suppai.

3. The distribution of the shocks associated with the caotiis choices, g is known and
continuous.

4. wi(%,S,Cit,r1t) is known for all(x, s, Cat, r1t)-

5. For each je 7, x exists for which y(x,s,cjt,rjt) is known for all(s, Cxt, r1t).

6. Forl =BVi11(-,9), the setxy; := { X (T",y,c) : y€ 0771, ¢ € G} is such that PXy;) > 0.

Parts 1 and 2 of Assumptidon A.1 are standard in these modetgnhdt and Thesmar
(2002) show the discount factor can be identified from exclusestrictions. | conjecture
such exclusion restrictions can deliver identificationha tiscount factor in the model pre-
sented in sectidn 2.1, but such explorations are beyonatpef this paper. Blevins (2014)
proposes sufficient conditions for identification of the gk®associated with the continuous
choices under the assumption that these shocks are reussfie@ the shocks associated
with the discrete choices. Part 4 of AssumpfionlA.1 statesptriod-specific payoff asso-
ciated with one alternative is fully known. This assumptisrweaker than assuming the
utility of the outside alternative is identically zero, aischn emerging standard in the litera-
ture of identification of these models (see Blevins, 2014jidiacono and Miller, 2020, for
examples). Part 5 of Assumptibn A.1 is a location normailigtwithout which the period-
specific payoff functions would be identified only up to a ftion of the continuous choices.
Location restrictions of this type are developed and dised®xtensively in Matzkin (2003),
Chesher/(2003) and Matzkin (2007), for examples. Blevii@d 42 implement similar loca-
tion restrictions, the difference being the author impdkesestriction based on a value of
the continuous choice. Location restrictions are replaaéultraditional rank restrictions if
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the period-specific payoff functions are parametricallgcfied.

DefineU = {uj(%,S,Cjt,rjt), forall (%,s,Cjt,rjt), j=1,---,J,t=1,---,T}. The fol-
lowing lemma is proved in section A.4

Lemma A.2. Suppose AssumptidnsZ.1,3[10] A.1 hold ULehd U generatd; (x,s, G, ')
and Vit (%, s, G, rt) according to the Bellman equatidn(2.3). Thgpt (XS, G, I't) = Vjj« (%, S, G, It),
forall j € J\j* implies(ij (%,Ss,Cjt,rjt) = Ujt (%,S,Cjt,rjt), ] = 1,---,J onXy.

The next assumption imposes restrictions on the period{fspé&unctions that are suffi-
cient for the difference in the conditional value of an ailtdive and the others,; to be
strictly monotonic in the permanent unobserved heteragemenich is assumed to be unidi-
mensional. In the empirical application, this alternats/¢ = 2, the choice of working and
not enrolling in school.

Assumption A.3. For some je j,forallk € 7\ jandall (c,rt),t=1,---,T, the following
hold.

1. ForT = BM+1(-,8 —V+1(+,9)], % and corresponding constanfsx,k = 1,---,J} exist
for which % € X (I',y,¢) and Uyt (%, 5, G, ') — Ujke (%, S, G, t) > Yk — Yj for §> s. Define
Xo = {%(T,y):ye D1 ¢ e Gl

2. ForanyU #U and§+#s, and form =8 [\7t+l(‘7§) —Vey1(+,9)], % and corresponding con-
stants{yk, k=1, ,J} exist for which xe X; (", y, &) andlijk (%, § ¢, It) — Ujkt (X, S, &, ') >
Yk —V;j. Definexz = {X(T,y):ye 07 Lc € G}

3. P(X) >0, whereX; := { Xy N X N Xat}-

Part 1 of Assumption_Al3 provides conditions for which th&edence in conditional
value functions are strictly increasing in the unobsentatiesvariable on a set of the ob-
served state vectors for all values of the CCCs and theicadsd shocks. The identification
results to follow also hold under sufficient conditions thestricts the difference in condi-
tional value functions to be decreasing in the unobservai# stariable. However, one of
these monotonicity restrictions must be imposed, and wenasgthe investigator has prior
knowledge of the direction. For example, the unobservedrbgeneity in the empirical ap-
plication is the returns to education, in which case, theeaaifer function is strictly increas-
ing in returns to education, and the period-specific utdityvorking is strictly increasing in
the wage offer. Part 2 of Assumptibn A.3 is a crossing resti¢ which states that for two
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distinct differences in period-specific payoff functionglavalues of the permanent hetero-
geneity, a value of the observed state variable exists fartwthe two payoffs are sufficiently
separated.

Lemma A.4. Suppose the conditions of LemmalA.1 and Assumpptidn A.3 fiblen, for
some je 7, forallk € 7\ j, and r, the following hold:

1. \/J-Jkt (X,S,rt) is strictly increasing in s for all xe X:.

2. Forany§#s, % € X; exists forwhicrﬁ?kt(m,i re) > v?kt(m,s, r).

The following assumption imposes restrictions on the itigtron of the permanent unob-
served heterogeneity. In particular, | assume the digtdbus finitely supported and depen-
dent on a time-invariant subsetxf w € W C OPw. Magnac and Thesmar (2002) presents
sufficient conditions for identification of the period-sgecutility function in two-period
binary-choice models, where they impose restrictionsctliyeon the CCPs conditioned on
the permanent heterogeneity relative to their correspandnconditional CCPs.

Assumption A.5. 1. For all x € X and we W/, the conditional density; fx |w) > O.
2. The permanent unobserved heterogeneity has finite suppoprobability mass function
(%) = T(s|w), s€ S(w) and cardinality Gw), possibly depending on w.

Let (sq(W)|W) = Tq(W), TI(W) = (L (W), -+, Tiouy) (W))', FI(W) = ({s1(W), -+, Sqw) (W)},
m(w)’, Q(w)), andln = {M(w),w € W}. Equation[(2.7) obtains

p?t(xt,s;U):/p?t(n,s,r;u)gr(r)dr, and

Q(w)
PROGU. W) = 5 it (06, 55():U) (). (A.6)
q:

DefineP(x;U,MN) = (p‘j)t (x;U,MN(w)),j=1,---,J,;t=1--- T)and, analogously define
Po(X) = (pojt (%), j =1,---,J,t=1,---,T,), wherepojt (%) is the true CCP, which is ob-
servable in the population. LéUg,Mg) be the true parameter vector; that is, the prob-
abilities generated from the model @lp, Mp) coincide with the population probabilities:
P(x;Ug,Mg) = Po(x). DefineX = (J{_; X%. Note that, although the identification theorem
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is stated for alk, it also holds for cases in which neither the initial nor fipakiod of the
agent’s decision process is observed, in which case, thadespecific payoffs are identified
for only the observable periods. The identification theorestated as follows.

Theorem A.6. Suppose the conditions of LemmalA.2 and Assuniption A.5Twdah(Ug, Mo),
is identified onX in the sense that arfyJ , M) satisfyingP(x; U, 1) = Po(x) implies(U, 1) =
(Uo, M) on X with probability one.

The proof of Theorern Al6 is provided in AppendixA.6.

RemarkA.7. The estimator developed in the paper assumes the periatispaility func-
tions are known up to a finite-dimensional set of parametghsch are not functions of
the state variables. | assume this restriction extendsahapon whichUJg is identified in
TheorenAb fromX to X. | also assume the distribution of the shocks associateuttmit
continuous choices, can also be parametrically specified, given the paranesicictions
on the period-specific utility function.

A.4 Proof of LemmalA.2

Proof. Recall that for eachj = 1,---,J, and under Assumptidn 2.1, the conditional value
function in equation’(2]3) is given by

Vit (%, S, Cjt,rjt) = un(xt,s,cjt,rjt)+B/Vt+1(xt,5)fjt(xt+1|xt,0>dx¢+1.

This representation of the conditional value function igjue for giverd under Assumption
[3.10 and parts 1-3 of Assumptibn A.1, by the uniqueness db#ek induction, and so is

Vijt (%, S, Cit, T jt) = Ujj=t (%, S, Cjt, T jt) +B/Vt+1(xt,8) fijt(eqalx cip)dxy1. (A7)
Likewise, the alternative set of utilities,, uniquely generate

Vjj*t (%, S,Cjt, rjt) = Gjj (%,S, Cjt, I'jt) +B/\7t+1(xtas)fjj*t(xt—i—1|xt,cjt)dxt+1- (A.8)
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Then,Vjj«(%,S,Cjt,jt) = Vjj«t (%, S, Cjt,r'jt) obtains

Ujj«t (%S Cjt, jt) — Ujj=t (%, S, Ct, Fjt) = B/ V1%, S) = Ve (%, S) ] Fjjee (Xera X, € dXra-
(A.9)

Under part 6 of Assumption Al.1, for anis,r;) and fixedc;, by varyingx on X (T',y,¢c)
wherel’ = BVi+1(+,S), equation[(A.D) obtains

0jjt (X, S, Cjt, Fjt) — Ujj=t(%,S,Cjt, Tit) =Y (A.10)

onl = BVi+1(+,S), which holds for allj # j*, includingj = 1. By part 4 of Assumption All
and equation (A.10),

Uj=t (%S, Cjt, T jt) — Uj=t (%, S, Cjt, Mjt ) = V1. (A.11)
Part 5 of Assumption All and equatidn (Al11) imgly= 0, so that
Gyt (X, S, Cjt, Tt ) = Ujrt (%, S,Cjt Tt
which case, part 5 of Assumptidbn A.1 and equation (A.10) ympl
Gjt (%,S,Cjt,r'jt) = Ujt (%, S,Cjt,rjt), j=1,---,J

onX;(I',y, ¢ ). Noting these results hold for alandc; for which X; (", y, ¢) C X3 completes
the proof. 0J
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A.5 Proof of LemmalA.4
For j defined in Assumption Al3, and € Xx defined Assumption Al3.%5,3 simplies

Vikt (%, 5, C, M) — Vike (%, S, Ct, t) = Ujke (X, S, G, It) — Ujke (%, S, G, It)
+B/[Vt+1(xt+1,§) —Vi+1(%+1,9)] Fike (%1%, )

= Ujkt (%5 Ct, ') — Ujke (% S, Gt I't)

B [ Ma0a,9) —Wera2,9)] fie(xabi, )

- B/ Mg 1(%+1,8) —Ver1(%+1,9)] fijrt (%er2/%, )

= Ujkt (%, 5, Ct, It) — Ujkt (%, S,Ct, 1) +Yj — Y >0 (A.12)

for anyr; and anyg, includingc?(x, s, rt). This completes part 1 of the theorem.

For any(x,Ct,rt) ands# s,

Vjkt (%, 8,Ct, ) — Vike (%, S, G, It ) = Gijie (%, S, Gty Tt) — Uit (X, S, G, It)

Uik
+B/ Vi1 (%4158 — Vir1 (%1, 9)] Fjjot (%1%, &) d%1

—B/ Vi1 (%+1,8) — Vi1 (%41, 9)] Fiejoe (%1%, G ) A% 1. (A.13)

Therefore, forg € X3 defined in Assumption Al3.2, equatidn (Al13) obtains

ijt(xtagacbrt) _ijt(xtasvctart) = ijt(XI,g?Ctvrt) - ujkt(xtasact7rt) +y] —Yk > 0. (A14)

Now, for anyr; ands# s,

= Vit (%, 8 (%, § 1), ) — Vit (%, S, (%, S, Tt) Tt
(

= [ijt Xt7§76[0<xt7§7 rt)7rt) _ijt(Xt,S,Ct (Xt,S, rt)7rt)]
+ [Tkt (%, 8,60 (%, 5.1, 1) — Vi (%, S, 62(%, S, 1e) 1) ] (A.15)

By uniqueness of the optimal CCC, the first term in brackettherRHS of equatiori (A.15)
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is positive, and equation (A.lL4) implies the second is pastn X3. This completes part 2
of the theorem.

A.6 Proof of Theorem[A.6

Proof. Consider choicg satisfying Assumption’Al3. Under the conditions of the tleso,
Lemmas A.2 and Al4 imply the following are true:

1. Foralls, U # U on.x implies p (x,5,U) # pf (x,sU).
2. pcj’t (%,s;U) is strictly increasing irs for all x; € X.

3. ForanyU #U ands#s, x € X; exist for whichp$ (%,50) > p (x,sU).

Define
= {P(x.SgU) % € X, 5q€85.9>1,2,---}, (A.16)
Qw)
Po(WU) = {pﬁ-’t(ﬁ:U,ﬂ(W)) P (% U, M(w Z Pit (% Sa(W); U)Tg(w), Tig(w) > O,
Z Tg(W) = 1, pjt (¥, Sq(W); >€T1(w,U),Q(W>21,2,---}. (A-17)

By parts 2 and 3 of Assumption A.%; (U) is a linearly independent set for any fixddwith
probability 1. Therefore, result 1 above implip%(Xt;U,I'I(W)) € P>(w,U) has a unique
representation as a linear combination of finitely many elets of 1 (U) (see Kreyszig,
1989); that is, any induces a unique corresponding finite-mixing distributidfw; U ) =
({s1(w;U),---,so(w;U)}, m(w;U),Q(w;U)). By hypothesis,

Q(WUO)
Pojt (%) = P (%; Uo, M (w; Ug)) Z P% (%, Sq(W; Uo); Uo) g (w; Uo).
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Supposé) # Up exist for whichpojt (%) = p% (%;U,N(w;U)) so that

) Q(w;Up)

Q o i
Pt (%, Sg(W;U);0)miq(w;U) = Zl Pt (%, Sg(W;Uo): Uo)Tlg(W;Uo).  (A.18)
0=

S

1

q
Because the weights sum to 1, equatfon (A.18) can be writtdollaws:
p% (%, s1(w; U);U) — pS (%, S1(w; Ug); Uo) =

Q(w;Uo)
ZZ (P} (%, S(w; Uo); Uo) — Pt (%, S1(W; Uo) ); Uo) ig(W; Uo)
g=

QwU) .. N ~
_ Zz (P (%, Sq(w; U );0) — pf (%, s1(w; U));U) i (w;, U ). (A.19)
g=

Relabel the abscissa if necessary soshat; Ug) > s4(wW;Up),q=2, -+, Q(w;Ug) ands; (w;U) <
sg(wW;U),q=2,---,Q(w;U). By result 2 above, the RHS of equatidn (A.19) is negative for
all x, € X(w). However, by result 3 above, € X (w) exists for which the LHS of equation
(A.19) is positive, contradicting the claim in equation18) and therefore implying = Ug

on X (w), which in turn impliedT(w; ) = M(w;Ug) = Mo(w). Noting these results hold for
anyw € W completes the proof.

A.7 Proof of Theorem[5.3
Proof. Forq=1,---,Q,k=1,---,|w|, equation[(5.6) obtains

f(clit it , ) T (Wk)
St T (i X, Or) Ty ()
f(ch e, Oq) (W)
= o((dit [Xit , Wi ) ddl;

/ 5O f(chlxe 0y (w) ‘
51 f(dht Xt Boqy) Togy (W)
S o T (e X, Or) Ty ()

E [ (dit, Xit; 6, (W) ) [ Xit, Wk] = E [ Xit,Wk]

= Ty (W) f (dit |Xit , Oq) dldlit (A.20)
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for almost everyx; € X, where fo(di |Xit,Wx) and is the population-conditional density of
di given (xit,Wg). The last equality is a result of identification of the paréene of the
model, which implies the unique representatidg(di |Xit, Wk) = Zqul f (dit|Xit , Bog) Toq (Wi )-
Supposg 6, ) = (6o, Tp). Then equation (A.20) obtairts[g(dit, Xit; 8, Th(Wi) )| Xit, W] =
Tig(Wk). Conversely, SUpposE[Ty(dit, Xit; 0, TyWk) ) [Xit, Wk] = Tiq(Wk) for almost every; €

X. Then, equatiori (A.20) implies

Sy T (dhit Xk, Bog ) Tiog (W)
S g1 T (dhe X, Br) iy (W)

because the RHS of equatidn (Al.20) varies witlotherwise. By identification of the model,
equation[(AZ]L) implie$6, 1) = (6o, Th). O

A.8 Asymptotic properties of the estimator

| use the following notations in all assumptions, theorears] proofs: sup= supe,
SUR = SUReaQ-1, SURY = SURco SUReae-1, andy = ZLVL- The first assumption imposes
the typical random-sampling restriction of the samplinggasss.

Assumption A.8. As sample of nindependent realizations is drawn frq(h, E, ). For each
i=1,---,n,(di,Ct, %, t =1,---,T) is observed.

The next assumption imposes restrictions on the parampésesand the admissible
functional forms of the period-specific utility functions.

Assumption A.9. 1. The setst and® are compact; 26, € int(®) and for j=0,1,2, and k=
1,---,|wl, |0 To(Wy; 8) /06! || exists at each € int(©); 3. E[||c||?] < « and E||h(x;,80)||%] <
o ; 4. h(x;8) is twice continuously differentiable at eake int(©), with ||1h(x;8) /81| <
hj(x),j = 0,1,2 for all 8 € © and soméhj(x) satisfying Eh;(x)] < o for j = 0,1,2; and 5.
Fork=1,---,|w|, ng/n— cx > 0.

Assumption A.10. Q is symmetric and positive definite witf — Q|| = 0p(1).
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Some additional definitions and notations are requiredacged. Define

T

mi(0,m) =n— f (6, )T, M6, ™M) = Z
mg(w; 6,1 = E[m(6, m)|w], M (w6, Zlmi (6, 71 (w)-

Let|l andi be theq— dimensional identity matrix and iota vector, respectivédefine also

n=diag{my,---,Tg}, and let
ME(O.1) =1 (0,10 + T, (0.1, O, M@ = T 3 MF(O.1,

MZ(w; 8, 1) = E[M™(8,)|w], M™(w;8,m) = ZM (0, Tl (W ).

The proof of the following consistency theorem is in Apperifliol.

Theorem A.11. Suppose (i) Assumptién A.3 holds, (i) Assumpiioh 5.2 haldd (iii) As-
sumption§ A8, Al9, ad Al10 hold. Thén.>s 6o, and for ke {1,---,|w|},
0!

Hae] 00) - 2o 0 j=o1

Tio(Wk; 6o)
Letm =my (8o, o), Mi(6, 1) =0m;(8, 1) /08, andMo = E[M; (8o, o)}, Mri (6) = Xih(x;, 8),
Mro(w) = E[Mr (80)[w], mg(w) = mp(w; 8o, o) andMg(w) = Mg(w; 6o, To).

Theorem A.12. Suppose the conditions of theorem A.11 hold, &g in the interior of®.

Then,
V(B —80) 2 N(O,V),

where V= (M;QMo) ~1(MHQZQMo)(MHQMo) 1, and

S=E [(m + Mg (W) MZ(wi) 1m0 (my + Mno(wi)Mg(wi)—lm“)] .

The proof of Theorern A.12 is in Appendix Al10.
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A.9 Proof of Theorem[A.11

Proof. Fork=1, -, |w|, defineh(w,8) = S, h(xi,0)li(wk)/ng andho(wiB) = E[h(x;, 0)|w; =
wg]. Under Assumptiornis Al8, Al9.ML, A.9.3, and A.9.5, Lemma Z.Mewey and McFadden
(1994) implies

9l
=57 0(Wi. 6 H—>o j=0,1,2. (A.22)

j
9 hw8)—

SUp 20

| suppress the dependence of the type probabilities andieal@nd theoretical expectations
and onw. Note the denominator term ify (6, 1) satisfies 0< 3 f(dit |Xit, 6) Ty < 1 uni-
formly over® € © andmte AR, Then, by definingf;(8,m) = S, f,(6,m)/T, (8, =
sy, fi(6,m)/nandfy(6,m) = E[f;(6, )], equation[(A.2R) implies

ol
0eirt

j+
00irt

’\

sup f(6,m) —

fo(G,n)H 2o, j1=012 (A.23)
Consistent with equation (A.20)(6,71(8)) = 0 for any6 € ©. The mean-value expansion
aroundry(0) obtains
0= riy(
1 dlit |X|t , eq) .
s Tg(8) — Tiog(6)

f d|t|X|t79q)TQ1|
S -1 T (die|Xt, 8 (8)) iy (6)

(6,0(0

f(dit|xit,eq/> .
T /(8) —Tioq (8 (A.24)
P 59, f(dilxe, 84)7 (6) (g (6) — Tag >)]

identically over® over®, wherer(0) are mean values. Stacking equation (A.24) obtains

= 1i7(6,T0(6)) + M™(8,T(8)) (fu() — T0(8)). (A.25)
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Note eachy() is strictly positive, sM{(8,11(0)) can be written as follows:
Mi(6,7K(8)) = T(8) [1(8) * (I — f;r(8,7)) + fir (B.T)1 F;(8,70)] .

Note also that(8) 2 (I — f(8,T)) + f, (6.’ f (6,70 is symmetric with strictly positive
elements, and

det[T(8) (1 — £,,(6,7) + (8.7’ f (6,70
= (10 F3, (8,70 (1 - £,(8,70) " T(0) Fy, (6.7 | det[M(6) (1 — F;,(6,70)]
>0, (A.26)

so thatr(8) 1 (I — f; (8, ™)) + f; (8.mu’ f; (8, ) is symmetric and positive definite, which

in turn implies 5, () 1 (1 — f;(6,7) + fi (6.7’ (8,T0) is symmetric and positive
definite. The diagonal matrim(0) is also symmetric and positive definite. From these results,
conclude thaM™(8,T1(8)) is invertible so that equatiof (A.R5) obtains

() — To(6) = —M™(6,71(8)) (6, o(6)) (A.27)

identically in© over®. Dy definition,

f(0) = f
m(6) = f

(8,71(8))f(8) and (A.28)
0(6,10(8))10(0) (A.29)

hold identically in6 over ©, and equation (A.29) implies¥(6,1y(0)) can be written as
follows:

m(6,10(6)) = f4(8,10(6))10(8) — f;(8,T0(6)) (). (A.30)

Equations[(A.2B) and_(A.30), along with Assumption |A.9r8ply

sup 20 j=o0,12 (A.31)

] im"<e,m<e>>\

00!

70



Becausef (8, 1) is a diagonal matrix with probabilities that sum to 1, gy f;; (6, ) || = 1.
Therefore,

IVGE@. 701 < Q-+ [ (6,701 (6,19 < 7 < =
0 , K /
|, | = ety (@mon 1) 2t 0.1+ fu@ (0.1 |

0
<D+T3 a_[fit(e7n) )

where7,; and73 are positive and finite constants. These results and equgig3) imply

ol - o P .
%tjnp a—T[iM (6,1 — a—ano(e,n)‘ =0, j=01 (A.32)
Equations[(A.2l7)[(A.31), and(A.B2) obtain
sup| (8) ~ T0(6) | 0. (A:33)

The mean-value theorem, equatidns (A.23), (A.32) and (A &% Assumption Al9.2 imply

sup|[M"(8, 71(8)) — M5(8.0(8))|

—sup|NI"(@,7(8)) — MF(6.76) + - MB(6.8))(F(®) ~ To(8)) |
< sup|[M"(@.9 — M(6. 1] -+ sup|-2-M5(6. )| suplite) — ro(e)|
6,1 6, || 0T 6
— 0p(1). (A.34)
sup %ﬂe,ﬁ(e» 35 1o(®.10(0)|
2
—sup| ZF(6.716) 55 fo(8.718))-+ 55 To(6.70)) ((E) - o(8)) |
2
< sup aaef<e " - aaef <e,n>H+sup s 107 [supI ) ~To(0)

= op(l). (A.35)
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Because equations (AJ28) and (A.29) hold identicall@iaver ©, the envelope condition
implies

M"(e,ﬁ(e»%ﬁ(e) +(O) @1 a%vec(f(e,ﬁ(e))) _ 0, and (A.36)
ME(®,To(8)) -160(8) + To(8)' 1 vec (8. 0(8)) = 0 (A37)

hold identically in® overint(©), where® is the Kronecker product operator anecis the
vectorization operator. By noting the equalify—"ab= (4—a)(b—b)+a(b—b)+ (4—a)b,
the difference between equatiohs (A.37) dnd (A.36) gives

(0, 716)) ( 5718) — 257o(6) ) = (WT(6.7(8)) - MF(@.10(6))) z5m0(®
+(7(9) ~o(8)) @1  govee((6.7(6))) - Jiveolfo(®.10(8))))
+TH(0) ® I a%vec(f(e,ﬁ(e)))—a%vec(fo(e,no(e))))
+ (T(0) —T[o(e))/®|aievec(fo(ﬂ,ﬂo(ﬁ))). (A.38)
Equations[{A33) {{A38) and AssumptibnA.9.2 imply
sup a%ﬁ(e) - a%no(e) H LN} (A.39)

Now, under Assumptioris A.8, A.9.1, and A.9.4,

Imi(8,10(8))[| < [IXill(llyill + 1h(xi, 8) [[[Ta(B) 1) < Tallyill + Taho(x)

for positive and finite constant® and ‘7, so that Assumption_Al9.3 and Lemma 2.4 of
Newey and McFadden (1994) imply

up| (. T0(8)) —mo(8. T0())| 0. (A.40)
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Therefore, equations (A.46), (A33), and (A.40) imply

IM(8, 71(8)) — mo(8, Tio(8)) || < [|(8, Ti(8)) — mo(8, Ti()) |
+|[EDGh(x,8)]|| | 72(8) — To(8)]]
+ || Min(8) — Mro(8)|| [|2(8) — T0(8) ]| - O, (A.41)

which, along with Assumptidn A.10, obtaifis 6. Finally, this result, Assumptidn A.9.2,
and equations (A.33), (A.89), ard (Al40) imply

1746) (80| = |16) — 160(8) + T 6 -
< supl(®) - o(®)| + su| o2 | 18- 0] r0.  (A4)
and
| 2560~ et | 10) - 2@ + TV 600
.

< sgpﬂﬁ(ﬂ) —To(0) || + sgp

3] N
ang >H 16—8g| -2+ 0. (A.43)

The reintroduction of the type probabilities dependingwaonly involves performing the
above analysis with all theoretical and empirical expéatatreplaced with their correspond-
ing conditional expectations, conditioned on the evemt= wy},k=1,--- ,|w| and noting
thatn/ng — cx < o fork=1,-- -, |w|. With these modifications, conclude that

a . A9
——T1(Wi; 8) — —Tlo(W; Bp)

%6 36 P.0, j=01

max
k
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A.10 Proof of Theorem[A.12
Proof. By recalling thatf; (6, 1) is a diagonal matrix with probabilities that sum to 1,
E[]Imio(wi; 8)"f; (6, o (wi; 8))" ; (6, Tio (Wic; 6)) Tio(Wic; B) [ |wi < e

fork=1,---,|w|. This result implies that for an§ € ©, m’(8, TH(wy; 8)) defined in equa-
tion (A.30) satisfiesE[|m(8, To(wi; 8))'nTY(6, To(Wi; 8) )| [wi] < 0. Therefore, under As-
sumptiong A.B and_A]9, and by notimg/n — ¢, > 0,k =1,---,|w| and equation(A.34),
application of the Lindeberg-Levy CLT to equatidn (A.27yeg ||M™(w; 8, To(W; 0))|| =
Op(1/4/n), k=1,---,|w|. This convergence result, and equatiéns (A.27) Bnd (ArBP)y

Ti(W; 8) — Tio(Wi; 8) = —Mg(Wic; 8, Tio (Wi 9))1,%k _im"(wk: 6, To(Wi; ))1i (W) +0p(1/+/N)

for any® € © and fork = 1,--- ,|w|. Also, under Assumptioris A.8 ahd A B[||mm||] < o
so that, by the Lindegerg-Levi CLT,

I} = Op(1/v/n). (A.44)
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DefineMrn(Wi; 8) = S ; M (8)1i (W) /N, fork=1,--- | |w| and letM (8, = S'_; Mi(8, 1) /n.
The mean-value expansion obtains

(
-+ V(8. 7(6))] (9—90)—r—1]zlxih(xi790)((wl 80) — Tio (W 6))

-+ [M(8,78))] (8- 60——le.hx.,GOZI W) (Ti(Wi; 8o) — Tlo(Wk; 60))

nikiiﬁh(ﬂ,eo)li(wk)] Fk( fi(wic; 80) — Tlo(Wi; 60))

= -+ [M(8,7(6))] (6—60) - >
— th+ [M(8,71(8))] (B 60) s MW 90)%(ﬁ(wk; 80) — Tio(Wk; 80))

= -+ [M(6,71(6))] (8 —80) + > Mno<wk>M5f<wk>-1% ém“(wk; 80, To(80))1i (W) +0p(L/ V)
= -+ [M(8,71(8))] (6 —60) + % é; Moo (Wh) ME (i) ~ 2wt i (wh) + 0p(1/ /1)

= i+ [N1(8.78))] (B—80) + - iMno<wi>M5‘<wi>-1m“+op<1/\m>

— A

— [NI(8,18))] (8 60) +%Z 1%+ Mo (W) ME(w) 17 + 0p(L/ /), (A.45)

wheref andtare mean values. Next, under the same conditions that sieqiration(A.22),

j j
aael (Wk,e)—a—Mno (W, 0 H—>o j=0,1,2. (A.46)

SUp 0]

. 0 0 .
M (6, (6 ZM (Wi G)ae Wi; 8) +Zn Wi; 8) ®INX%vec(Mn(wk;6)),
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so that
IM(. 7x(8)) — Mo(o. To(80))||
<y 6

- ~ 0 . 0
‘Mn(Wk; 0) = TU(Wk; 8) — Mo (W; 90)5“0(90)
~ .aV/ 0 1 . A . ! 0 .
-i—Z Ti(wi; 0) ®|NX%VGC(MT[(WK,9)) — Tio(W; Bo) ®INX%vec(Mno(wk,90))

00

i

=0p(1), (A.47)

where the last equality is obtained using Assumption$ AdA9, the consistency results
of Theoren A1l equatioh (A.#46), and calculations simitaequation[(A.3B). This result
also holds whe# is replaced with the mean valu@s

The first-order conditioM (8, 7i(8))’Qri(8, 7)) = 0, equations{A.45) and (A.47), and
Assumptio A.ID obtain

VA —80) = ~(MGMo) M2 5 -+ MrofunMF(w) ] +00(2),

Application of the Lindeberg-Levi CLT completes the proof.

A.11 Monte-Carlo Exercise

This appendix presents the results of two sets of Monte Gaxtcises to illustrate the

finite-sample performance of the proposed estimator. Thedeat of exercises investigate
the performance of the approximation to finite dependenesgmted in sectidn_3.1 under
the restrictions on the transition probabilities imposedssumption 3.8. The second set of
exercises investigate the performance of the estimatativelto the one based on the EM
algorithm developed in Arcidiacono and Miller (2011) for deds that satisfy the renewal

property discussed in sectibn3.1. The discount factortitodee 0.95 in all cases.

For the first exercise, the number of discrete alternatvésd 2, and the period-specific
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utility function is specified as follows:

Ut (z,Cr, M, &) = dat [IN(1+Cu(z,1t;0)) + @2(X) IN(1— ) +€x] +duen,  (A.48)
@1(z,1t;8) = exp(81 + B2xqt + Sxt +-1t),
@2(%) = exp(0.05x3).

The observed state variablg; = th;ll dor /10 andfjt (Xot1+1|%, Gt ), is distributed discretized
normalN (it (%, Cjt ), 1) with |xo| = 7 support points, where

Mjt (%, Cjt) = 2.5+ dar (0.4 — 0.8¢;) + 0.05¢3(t) + 0.01dx 1 —0.005¢;, and  (A.49)
@s(t) = 0.067 — 0.001t2. (A.50)

The time-invariant observed stated variabilg js distributed discrete-uniform on the interval
[0, 10] with |x3| = 100 support points, and the shock associated with the GG@&distributed
discretized normaN(0,0.1) with |r| = 3 support points. | set the number of types in the
population to two withs € {0.1,0.5} and corresponding probabiliti€9.6,0.4), and the
shocksgit, ] = 1,2, to be distributed i.i.d., type 1 extreme value. | estintat®,, and the
distribution ofsin each design.

The preference parameters &e= 1, 62 = 0.2. The simulated data are generated by
solving the dynamic programming for 40 periods and simatafiO0 replications of 1,000
individuals. Estimation is based on the last 20 periods,|aathitaminate the log CCCs with
additive measurement errors, which are distributed inatmal with zero mean and variance
equal to 10% of the variance in the simulated CCCs.

The parameters are estimated by two-stage GMM, and the edactual CCPs and
CCCs are updated by regressing the type-specific log-otidsarad the type-specific CCSs
implied from the model on a third-order polynomial of thetsteariables in each period. The
weights that achieve approximate one-period finite depacelare computed on 15 equidis-
tant grid points between 0.1 and 0.5. Table 1 presents tlutsed simulation exercise for
this first model design.
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Table Al: Finite-Sample Properties of the Estimator foriped

01 6> S1 ) m
True Value 1.00 0.20 0.10 0.50 0.60
Full Solution. Time* 12.42 (7.30) mins.

MB 0.0249 -0.0046 -0.0031 -0.0134 0.0105
MAB 0.0253 0.0046 0.0039 0.0192 0.0224
RMSE 0.0305 0.0061 0.0046 0.0235 0.0301

Known CCP and CCC. Time: 2.39 (1.60) mins.

MB 0.0313 -0.0084 -0.0044 -0.0147 -0.0154
MAB 0.0314 0.0084 0.0050 0.0214 0.0240
RMSE 0.0367 0.0108 0.0063 0.0241 0.0313

Proposed Estimator. Time: 2.73 (2.01) mins.

MB 0.0291 -0.0073 -0.0043 -0.0149 -0.0162
MAB 0.0294 0.0074 0.0049 0.0212 0.0245
RMSE 0.0350 0.0099 0.0063 0.0241 0.0319

a Standard deviations in parentheses.

The second simulation exercise investigates the perfacemahthe proposed estimator
in an environment where the model satisfies the renewal projpewhich case, the weights
that achieve one-period finite dependence are closed foha.e$timator is compared with
EM algorithm approach of Arcidiacono and Miller (2011). Aggathe model is one of two
discrete alternatives, and the period-specific utilitychion is given by

Ut (Z, &) = dot [S+ B1x1 +62IN(1+ X2t /10) + €1¢] + 1t €1t (A.51)

The time-invariant observed state variablg, is distributed discrete-uniform 0@, 1] with
Ix1| = 200 support points. The endogenous state varigblevolves as followsxa 1 = O if
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dit =1, andxp+1 = Xpt + rey1 if dyx = 1, wherer; € {1,2,3} and

ga(x)
zﬁzl gk@ (%)
@ (%) = 0.5—0.01t + 0.5x; — 0.001xy.

Pr(ris1=rx) = ,  Where (A.52)

The number of unobserved types is set to two with1,3 with corresponding probabilites
(0.6,0.4). In the context of the optimal replace-of-bus-engines &awrk of Rust|(1987),
t is the age of the bus; is the brand of the bus, ang; is accumulated mileage. Action
j = lis replacing the bus, in which case, the accumulated neleathe bus is zero in the
next period. If Harold Zurcher chooses not to replace thedmggne, accumulated mileage
increases by; 1. Equation[(A.5R) implies the probability of high usage dof thus decreases
with age and accumulated mileage of the bus.

| setB; = 1,6, = —0.5. As in the previous Monte-Carlo exercise, the simulated dee
generated by solving the dynamic programming problem fop&@ds and simulating 100
replications of 1,000 individuals with the initial conditi xo; = 0. Estimation is based on
the last 20 periods. To construct the likelihood for the Elfoaithm, the initial distribution
of the endogenous state variable conditioned on the unadd$etate variable is computed
under the assumption that the unobserved state variablseneed. Table A2 presents the
results of a simulation exercise for the second model design
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Table A2: Finite-Sample Properties of the Estimator foriDeg

01 6> S1 S m
True Value 1.0 -0.5 1.0 3.0 0.6
Proposed Estimator. Tinfe0.28 (0.13) mins.

MB 0.0260 0.0015 0.0012 -0.0006 -0.0044
MAB 0.0278 0.0083 0.0086 0.0078 0.0172
RMSE 0.0457 0.0131 0.0134 0.0124 0.0216

EM Algorithm. Time: 0.015 (0.003) mins.

MB -0.0197 -0.0151 -0.0240 -0.0108 0.0105
MAB 0.0312 0.0323 0.0391 0.0216 0.0224
RMSE 0.0397 0.0403 0.0522 0.0276 0.0301

@ Standard deviations in parentheses.
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