Chapter 5

Accessory Circuits

In principle, the synaptic matrix and the retinoid system can perform
important cognitive operations in the networks of the brain. For these
neuronal modules to function effectively, however, given the normal
range of variation in stimulus properties and the constantly shifting
relationships between an individual and significant objects within the
immediate environment, the brain’s basic modules must be aug-
mented by appropriate accessory circuits. This chapter describes a
number of such accessory mechanisms and shows how they work
with the synaptic matrix and the retinoid registers.

Dendrodendritic Gradients of Excitation

The simulation tests of the synaptic matrix described in chapter 3
assumed a discrete point-to-point projection of excitation going from
each active cell in the afferent bundle to its corresponding cell in the
mosaic array within a retinotopic coordinate frame (see, for example,
figure 3.2). The problem with this kind of strict channeling of excita-
tion is that it results in brittle performance. An object that was learned
in one retinotopic position could be abruptly mismatched against its
synaptic profile on a test of recognition if its retinal location deviated
even slightly from the position in which it was originally learned.
Performance would be more robust if the synaptic representation on
filter cells were composed of a gradient of transfer weights (¢) with
peak values corresponding to the input coordinates of the originally
learned stimulus and having progressivly decreasing ¢ values at
neighboring points.

Tlustrated at the top of figure 5.1 is a retinotopically organized
neuronal array with dendrodendritic synapses between each of its
neighboring cells. This structure is assumed to serve during learning
as a local diffusion (gradient) layer between the mosaic cell array
(M) and the ungraded pattern input to M from the afferent bundle.
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Top: Dendrodendritic diffusion layer. Retinotopically organized cells between retinal
output and mosaic cells create a gradient of EPSP around primary stimulus pattern by
dendrodendritic excitation to neighboring cells. Bottom: Cell 4 is discharged directly by
retinal stimulation. Priming of cells in diffusion layer raises total EPSP in each cell so
that EPSP in cells close to cell 4 exceeds threshold (8) and evokes a gradient of discharge
over these neighboring cells.
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Figure 5.2

Distribution of synaptic transfer weights (¢) on filter cells in detection matrix. Top:
Without dendrodendritic diffusion. Bottom: With diffusion. Each point on the dendritic
line represents a discrete synaptic location.

Learning is assumed to occur only with a sufficient level of general
activation (arousal) to the synaptic matrix. Similarly, in the gradient
layer, the general activation normally associated with learning is re-
quired to raise the profile of EPSP transfer by dendrodendritic con-
tacts so that the neighboring cells surrounding a primary afferent
input target can reach discharge threshold, though their spike fre-
quency will be less than that of the primary target cell (figure 5.1,
bottom). When this occurs, mosaic cells neighboring the primary
stimulus targets will discharge accordingly, and this activity will be
reflected in the distribution of synaptic transfer weights on the filter
cell that is modified during learning.

An example of the effect on synaptic transfer weights (¢) in a filter
cell when a dendrodendritic gradient layer intervenes between the
sensory input tract and the mosaic array is shown by the comparative
simulation results in figure 5.2. In this case, a visual stimulus (a cross)
was presented to a 16 X 16 cell retina to be learned in the synaptic
matrix. The screen printout at the top of figure 5.2 presents the distri-
bution profile of ¢ on the modified filter cell after learning without a
dendrodendritic gradient layer. The bottom of the figure shows the
distribution profile of ¢ on the filter cell when the model incorporated
a dendrodendritic gradient layer. The underlying models and the
stimulus for both simulations were identical except for the inclusion
of a gradient layer in one. An arbitrary activation transfer coefficient
of 0.6 was set for dendrodendritic excitation among neighboring cells
in the gradient layer, which was incorporated in the simulation pro-
ducing the profile shown at the bottom of figure 5.2. Because in-
stances of a moderately close mismatch between stimulus coordinates
and coordinates of maximum synaptic efficacy intersect elevated
(though reduced) filter cell transfer weights in the latter case, it can
be seen that such mismatches will be less critical for pattern recogni-
tion when there is a ¢ gradient around each primary synaptic locus.
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Retinal-Afferent Organization

If the neuronal models proposed here are to operate effectively as
processors of events in visual space, the retinotopic coordinates of
the retinal receptor field must be conserved through the afferent
channels and in the mechanisms for central processing. Although
there are a number of different coordinate representations that one
might choose for retinotopic indexing, I have found a ring-ray repre-
sentation to be more useful and efficient than any other that I have
considered. In this representational scheme, receptor cells in the ret-
ina (and their associated ganglion cell projections) are indexed with
respect to the central foveal axis in terms of their locations on imagi-
nary concentric rings (i) centering on the axis, and imaginary rays (j)
projecting from the axis and intersecting all rings. Concentric rings
(?) are indexed from the smallest (i = 1) to the largest (i = n). Rays
(j) are indexed in clockwise sequence from the twelve o’clock position
(j = 1) through one rotation to the last position before twelve o’clock
G = n).

In correspondence with the decreasing density of retinal receptors,
the indexing scheme proposed here assumes that in terms of visual
field coordinates, the spacing between concentric rings increases pro-
gressively as rings become larger and the distance between points of
intersection of adjacent rays on the successively larger rings in-
creases. This principle of ring-ray organization of the retina is illus-
trated in figure 5.3.

Afferent-Field Aperture

The ring-ray organization of the retina lends itself to central nervous
system control of the effective processing aperture for input from the
afferent visual field. Inhibitory neurons that synapse with selected
ring groups of mosaic array cells can constrict the diameter of the
visual window around the foveal axis. Conversely, termination of
the activity of these inhibitory neurons can result in expansion of
the effective visual window (figure 5.4). This afferent control circuit
modulates the field of view and allows either aperture widening or
dynamic masking and cropping of images before they are conveyed
to the synaptic matrix for learning or recognition (Trehub 1977). Con-
trol of the afferent field aperture plays an integral part in the pro-
cesses of focal attention and scene analysis.
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Ring-ray organization of retina. Each receptor and its afferent projection is identified
by its coordinate in terms of the intersection of its ith ring on its jth ray.

Novelty Detection

During the earliest years of human maturation, learning is probably
usually passive and nonselective. It is assumed that this kind of early
learning depends on a high level of generalized arousal (corticipetal
discharge diffusely distributed by the reticular activating system),
which lowers thresholds in the synaptic matrix so that filter cells are
sporadically fired and their transfer weights () modified by whatever
stimuli the alert child happens to encounter. In the more mature
individual, however, it is more likely that stimuli must be salient
before threshold priming and subsequent changes in ¢ occur in the
synaptic matrix. It is assumed that whatever is relevant to the needs
of the individual and also novel (not previously learned) should be
learned. By what physical process might the novelty of the input be
determined? In this model, classification time—the interval between
the presentation of a stimulus and the firing of a class cell—is taken
as the basis for determining the novelty of a stimulus.

Figure 5.5 shows a neuronal mechanism for detecting novelty. At
the detection of an input in a context relevant to current motivation,
a novelty test cell is discharged at an activity level (spike rate) suffi-
cient to fire its target novelty cell after the elapse of a standard period
of time. During this latency interval, the novelty cell integrates EPSP
from the novelty test cell. An inhibitory neuron (—), which serves to
reset the novelty cell, receives its input from the axons of all class
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Mechanism for constricting effective visual field. Discharge of constrictor cell 1 blocks
input from ring 4 (outer ring). Discharge of constrictor 3 blocks input from rings 4, 3,
and 2, restricting input to ring 1, the innermost ring of receptors and afferents.
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Schematic of novelty detection circuit.
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cells (2) in the synaptic matrix. If a stimulus has been recognized (a
class cell discharges) before the elapse of the criterion period, the
novelty cell will be reset before it reaches spike threshold, and the
stimulus will be treated as a familiar one. If an input pattern has not
been learned, no class cell will fire within the criterion period, and
the novelty cell (not having received a resetting pulse) will reach
threshold and fire, signaling that the current stimulus is novel
(Trehub 1977). In this case, it is assumed that the firing of the novelty
cell commands an increment of diffuse excitation to the synaptic ma-
trix, thus lowering the thresholds of filter cells (f) so that a previously
unmodified f will fire and become tuned to the novel stimulus in
accordance with the learning formula.

Transformations of Size and Angular Orientation

An object with a particular size and angular orientation at the time
it is learned can usually be recognized later as the same object despite
wide variations in its projected retinal size and orientation. The neu-
ronal mechanisms described below provide a means for internally
reorganizing the retinotopic projections of visual patterns that un-
dergo such transformations.

Shown in figure 5.6 is a network in which the mosaic cells of a
synaptic matrix project retinotopically through two series-connected
intermatrix neuronal layers onto a second detection matrix. The den-
drite of each cell in the first intermatrix layer receives an excitatory
input from each of two decoupler cells, one activated by an initiate
zoom command the other by an initiate rotation command. The axon
of each cell in the first layer projects in excitatory synapse to its
coordinate cell in the second layer and also sends off two excitatory
collaterals—one that contacts its retinotopically coordinate cell in the
size transformer mechanism and the other that contacts its coordinate
cell in the rotation transformer. The dendrite of each cell in the sec-
ond layer receives, in addition, excitatory inputs from its coordinate
cells in the size transformer and the rotation transformer. Finally, the
axon of each second layer cell projects to form an adaptive synapse
with all filter cells in the second detection matrix.

Size Transformer

The spatial transformation mechanism located above the synaptic ma-
trix in figure 5.6 operates to expand (or contract) an initial activation
pattern represented retinotopically on the mosaic cell array. Inputs
from the intermatrix cells that represent the initial pattern do not
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Synaptic matrices and neuronal circuits for transformation of size and angular orienta-
tion of input patterns. Values in detection matrix 1 represent synaptic transfer weights
(¢) associated with the veridical input of two learned patterns (T and Z). Values in
detection matrix 2 represent ¢ associated with all possible retinal sizes of the two
patterns. Source: Trehub 1977. Copyright Academic Press (London) Ltd. Reproduced
by permission.
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activate the size transformer until the thresholds of neurons in the
transformer are lowered by a concurrent pulse from the initiate zoom
cell. When this occurs, the pattern of discharge that represents the
current retinal image is evoked within the size transformer, and other
input to the transformer is blocked by the inhibitory action of two
decoupler cells. One decoupler line, activated immediately by input
from the initiate zoom cell, inhibits the first array of intermatrix neu-
rons. The other decoupler, activated by the output of any cell(s) in
the size transformer, inhibits the array of interneurons that link the
size transformer to the axons that have provided its initial pattern of
excitation (the image to be transformed). This initial pattern may be
considered a prototypical image, which can then be neuronally re-
represented for learning or recognition at all the size variations that
are within the capacity of the size transformer.

The action of the size transformer can be considered similar to that
of a zoom lens. Given a retina with an output of 48 ganglion cells (as
in figure 5.6) organized into six rings and eight rays, the size trans-
former has a corresponding functional organization. When an initial
input pattern is presented and the size transformer is activated, the
transformer sends this pattern to the second array of intermatrix cells
and then to the second detection matrix. However, when any cell on
a given transformer ring is fired, it in turn fires the cell in the next-
larger ring on its own ray (see figure 5.6). Reversal of the direction
of ring-to-ring excitation in an otherwise similar-size transformer pro-
duces successive contraction in the projected size of any mosaic cell
pattern. Thus, the original pattern is successively enlarged or con-
tracted by the appropriate retinotopic increment in a succession of
projections to the second detection matrix, where it can be learned
and subsequently recognized over a wide range of sizes (see Larsen
and Bundesen 1978).

Rotation Transformer

The spatial transformation mechanism located below the synaptic
matrix in figure 5.6 operates to rotate an initial pattern of excitation
represented retinotopically on the mosaic cell array. As in the case
of the size transformer, inputs from the intermatrix neurons that
carry a given pattern of stimulation do not activate the rotation trans-
former until the thresholds of neurons in the transformer array are
lowered by a concurrent pulse from an enabling command cell. In
this case, the activating pulse is given by the initiate rotation cell.
When such a pulse occurs, thresholds are lowered, and the pattern
of discharge representing the current retinal image is evoked in the
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rotation transformer. At the same time, additional input to the trans-
former is blocked by the inhibitory output of two decoupler cells (as
in the case of the size transformer). The pattern “captured” in the
rotation transformer can then be neuronally re-represented for learn-
ing or recognition at all rotation variations within the capacity of the
transformer.

When an initial input pattern is presented and the rotation trans-
former is activated, the transformer projects this pattern of retino-
topic excitation to the second array of intermatrix cells and then to
the second detection matrix. However, when any cell on a given
transformer ray is fired, it in turn fires the cell that is in the next
clockwise ray on its own ring (see figure 5.6). Reversal of the direction
of ray-to-ray excitation in an otherwise similar rotation transformer
produces successive counterclockwise rotation in the projection of
any mosaic cell pattern. Thus, the original pattern is rotated in a
clockwise or counterclockwise direction in a succession of projections
to the second detection matrix, where it can be learned and recog-
nized over a wide range of angular orientations (see Shepard and
Cooper 1982).

The neuronal transformer circuits can accept a single visual pattern
and re-afferent the same pattern through the full range of size and
orientation transformations that are consistent with the structural
constraints and resolution of the attached retina and transformer
mechanisms. Since the transforms are projected to a synaptic matrix,
each can be stored in memory by the filter cells in accordance with
the learning formula (equation 2.3). Thus, the presence of a single
stimulus can result in the learning of not only the given stimulus but
also that stimulus in a variety of size and orientation manifestations.
In order to avoid interference between transformer outputs, it is as-
sumed that the size and rotation transformers are connected in recip-
rocal inhibition and that only one kind of transformation is performed
at any given instant.

The ability to recognize an object despite changes in size and orien-
tation does not require filter cells to be tuned to all possible combina-
tions of size and orientation. It is assumed that filter cells are normally
tuned to a range of size transformations of any given object so that
on any fortuitous encounter, the object can be quickly recognized
despite variations in retinal size. However, where the trade-off of
recognition time for storage space in the brain is a reasonable one,
filter cells might be tuned to only a few orientation variants. If many
retinal sizes of an object are represented in the detection matrix, any
- veridical orientation later encountered can be rotated internally until
its re-afferented orientation conforms to that of its appropriate size
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representation in the detection matrix. Moreover, given the spatial
gradients of ¢ distributions on filter cells (see figure 5.2), exact
matches of size and orientation are not required for adequate recogni-
tion performance.

Projections from the 3-D Retinoid: Size Constancy

The primate visual system has a large number of separate structures,
cortical and subcortical, devoted to the processing of visual informa-
tion (Livingstone and Hubel 1988). Some nonhuman species have at
least 10 to 15 identifiable cortical areas that are responsive to visual
stimulation (Van Essen 1985), and it is likely that the human brain
has even more anatomically discrete structures, operating in parallel
or hierarchical fashion, that represent and process information from
the visual world. This abundance of visual processing centers sug-
gests that a single complex stimulus is normally analyzed and repre-
sented in the brain in a number of different ways. The capacity of
the retinoid model to represent and process concurrently multiple
aspects of a current visual stimulus is consistent with these findings.

The perceived constancy in the size of an object over a range of
observer-object distance despite large variations in the retinal size of
the object (Graham 1951) does not seem to depend on a process of
iterative size adjustment like that performed by the size transformer.
As an object moves from a position close to an observer to a more
distant position, its projected image on the retina becomes progres-
sively smaller as its visual angle decreases (see figure 5.7 and top of
figure 5.8). Within the 3-D retinoid as well, the size of the autaptic
cell representation of the object decreases accordingly (figure 5.7),
yet it is judged to be of constant size. The scheme of axonal projec-
tions from principal cells in the 3-D retinoid to a mosaic cell array
(bottom of figure 5.8) provides a physical basis for the perception of
size constancy. This model assumes that in the central receptive field,
there is a structure of 3-D retinoid cell to 2-D mosaic cell connectivity
that, in effect, normalizes (roughly) the projected size of an excitation
pattern in the 3-D retinoid as a function of the particular Z-plane that
the pattern occupies. Principal cells in the nearest 3-D Z-plane are
mapped to their corresponding retinotopic coordinates in the mosaic
cell array, while cells in more distant Z-planes diverge to project to
increasingly more eccentric coordinates on the mosaic cell surface in
accordance with the visual distance they represent. Thus, retinal im-
ages that become smaller as a function of increasing object distance
are magnified in compensatory fashion as they are mapped onto the
space represented by the mosaic cell array. (However, the actual
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Representation in 3-D retinoid of same object at different distances (a and b) from
observer.
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Top: Retinal projections of same object at distance d (a) and 2 X d (b). Bottom: Normal-
ization of object-size representations on near Z-plane (d) and far Z-plane (2 x d) by
compensatory projection of autaptic-cell axons to mosaic cell array.

number of cells activated will always decrease in proportion to object
distance, with a corresponding decrease in visual resolution.) This is
another instance of the visual system’s multiple representation of the
properties of objects in the visual world; the relative retinal size of
an object is represented in the 3-D retinoid at the same time that its
relative inherent size is represented on the mosaic cell array.

This size normalization structure serves a singularly useful purpose
for pattern learning and recognition. Since the pattern of excitation
on the mosaic cell array will be roughly equivalent for any given
object over a wide range of arbitrary distances (although degraded
by lower resolution as distance increases), a single filter cell that is
tuned to a particular object at a given distance will be an effective
detector of that object at other distances. Thus an object need not be
learned separately for each distance.
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Given the proposed neuronal structure of projection from the 3-D
retinoid to the mosaic cells of the synaptic matrix, it is revealing to
consider what would happen if the retinal projection of an object
to the 3-D retinoid were to remain constant in size as the retinoid
representation of the object moved to more distant Z-planes. It would
be expected that because of the expanding projection from more dis-
tant Z-planes to the mosaic array, the object should be perceived as
increasing in size as its distance increased. An anomalous percep-
tion of this kind would lend support to the neuronal architecture of
the 3-D retinoid and its projections to the mosaic array that I have
hypothesized.

To verify that this size illusion does indeed occur, cut out a 1-inch
square of black construction paper, and paste it on a sheet of un-
glossed white posterboard. At normal reading distance, fixate the
center of the black square for approximately 1 minute under bright
uniform illumination. This will induce a bright after-image of the
square on your retinas. If you now shift your gaze to a different
region of the posterboard, you will see a square image that is brighter
than the surrounding surface. Move the posterboard farther away,
and the square will appear to grow larger. Move the posterboard
closer than the original fixation distance, and the square will appear
to become smaller in size. You can change the perceived shape of
the square by tilting the surface of the posterboard after the retinal
after-image has formed. If you tilt the fixation surface (the post-
erboard) away from you on a horizontal axis, the square after-image
appears to assume a roughly rectangular shape elongated on the
vertical axis. If you tilt it on a vertical axis, you will see a rectangle
with horizontal elongation. If the after-image is sharp enough, careful
observation reveals that the shape transformations are not quite rect-
angular; an edge that appears on the near surface of the tilted post-
erboard is somewhat shorter than its opposite edge on the far surface.

These visual illusions are predictable from the properties of the
retinoid system and its projections to the mosaic cell array. It is im-
portant to note that the retinal after-image remains constant in size
and shape during all the manipulations of fixation. What, then, ac-
counts for the striking changes in the perception of a constant stim-
ulus? The answer lies in the fact that as the fixation surface (the
posterboard) is viewed at different distances, the concurrent retinal
after-image is necessarily shifted at the same time to the Z-plane that
corresponds to the distance of the fixation surface. Thus, with a reti-
nal image of constant size (the after-image), the 3-D retinoid to mosaic
array architecture produces an inverse of the size-constancy effect.
When the posterboard is slanted, successive slices of the square
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after-image are shifted to successively distant Z-planes and magnified
anisotropically in the direction of slant away from you. Thus, the
true retinal image of a square is perceived as a rectangle.

Clock and Sequential Priming Circuit

For many kinds of cognitive operations, the temporal relationships
among events plays a crucial role; a substantial part of human learn-
ing and memory is episodic in character. Sequences of experience are
related and made meaningful by their temporal contiguity within
particular time frames (Tulving 1972). The common perception of
causal relationships in everyday affairs seems to depend, to a large
extent, on the frequency with which distinct events occur in close
temporal sequence. In the case of planning a course of action, the
order in which the elements of the plan are put into effect is an
essential factor. To meet the demands for a timing mechanism in
such circumstances, the circuit described here (figure 5.9) can control
the timing, registration, and location of episodic learning in a synap-
tic matrix, as well as the relative temporal locus and sequence of
recalled episodic experience (Trehub 1983). It can also serve as a con-
troller for temporal indexing in neuronal programs for behavioral
routines.

The mechanism illustrated in figure 5.9 depends on the short-term
memory properties of autaptic neurons. The whole circuit consists of
two rings of autaptic cells with each pair of principal cells within a
ring linked by excitatory and inhibitory interneurons.

Consider the inner (clock) ring. For each pair of autaptic cells, we
can establish a clockwise direction around the ring. Each autaptic cell
innervates an excitatory interneuron, which innervates its clockwise
neighbor. Conversely, each autaptic cell also innervates an inhibitory
interneuron, which connects to its counterclockwise autaptic neigh-
bor. If any particular principal cell becomes active (discharges), it will
transfer its excitation (via the excitatory interneuron) to its clockwise
neighbor, which will inhibit (turn off) its counterclockwise donor. In
this way, the clock mechanism will be able to maintain a constant
circulation of unitary autaptic cell activity in a single direction (clock-
wise) around the neuronal ring. With fixed integration slopes for
EPSP and uniform discharge thresholds for the neurons in the circuit,
the rate at which autaptic cell activity circulates over the ring will
depend on the level of diffuse excitation (arousal) within the clock
module. The higher the level of excitatory bias is, the faster will
autaptic cell activity circulate (the clock will run faster), and vice
versa. This mechanism provides a neuronal means for temporal ref-
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Schematic of neuronal clock and temporal priming circuit. Large squares represent
autaptic cells that send priming excitatory pulses to synaptic matrix. Small, filled trian-
gles represent control neurons for clock rate and temporal direction (before, after).
Inner ring of autaptic cells and interneurons composes clock circuit. Outer ring of
autaptic cells and interneurons governs episodic recall. Source: Trehub 1983. Copyright
Lawrence Erlbaum Associates, Inc. Reproduced by permission.

erencing and control. If, for example, a particular active autaptic cell
should gate the current environmental input in episodic learning, the
density of episodically learned experience would be directly propor-
tional to the neuronal clock rate.

The outer ring in figure 5.9, designated the recall ring, provides a
means for selective priming or gating of neurons for recalling the
images of past experience from memory. In this ring, each autaptic
cell receives an excitatory input from a paired clock cell at its corre-
sponding sequential position and an inhibitory input from the clock
cell in the next clockwise position. In the absence of any other input,
this causes the principal cells in the outer ring to fire in synchrony
with the inner neuronal clock. In addition, each pair of autaptic cells
in the recall ring is linked by a counterbalanced set of excitatory and
inhibitory interneurons. If we take any particular autaptic cell in the
outer ring as a spatial and temporal reference, a pulse from the com-
mand cell marked BEFORE will bias its local interneurons, causing the
transfer of its activity to its counterclockwise autaptic neighbor (going
back in time in the sense of an earlier autaptic state). A pulse from
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the command cell marked AFTER will transfer autaptic cell activity to
its clockwise neighbor (going forward in time in the sense of a later
autaptic state). The relative direction, rate, and distance of a temporal
excursion will be determined by which command cell (BEFORE or
AFTER) is discharged, the discharge frequency of the command cell,
and the duration of its discharge. (Notice the similarity in the control
principles governing operation of this timing module and those for
translation of patterns over retinoid surfaces.)

A Network for Episodic Processing

Figure 5.10 illustrates how the clock ring and recall ring are connected
to the synaptic matrix so that the system can learn and recall past
experiences. The discussion of the basic synaptic matrix in chapter 3
was restricted to a mechanism in which the changes in synaptic trans-
fer weights (¢) during the course of learning would be long-lasting;
the decay of ¢ over time was not considered as an issue in the initial
description of the model. However, synaptic matrices that are in-
volved in episodic processing will have identical filter cells influenced
by different afferent patterns on different episodic cycles; conse-
quently, in any given filter cell, the changes in ¢ that occur during
learning must decay to approach an initial state before that cell is
involved in a new learning cycle. Otherwise the ¢ distributions repre-
senting the events learned would be confounded over successive
learning cycles.

Each autaptic cell in the clock ring (PRESENT) in figure 5.10 sends
an excitatory gating axon to a paired filter cell (f) in the detection
matrix. At any given time, only that filter cell that is primed by the
output of the neuronal clock can learn the current sensory input. By
this scheme, learning (synaptic modification) is transferred over time,
sequentially and unidirectionally across the filter cells of the detection
matrix, and the sequence of f cell priming is recycled as autaptic cell
activity in the clock ring recycles. For any given filter cell, the changes
in ¢ due to learning must decay to a base value within an appropriate
time period in order to avoid a confounding of learned patterns.

Each autaptic cell in the recall ring (PAsT) sends an excitatory axon
to its paired class cell () in the detection matrix. Thus, sequences of
Q discharge can be initiated and synchronously controlled by activity
in the recall ring. Because the discharge of any given Q will evoke its
associated (learned) afferent pattern in the imaging matrix, sequences
of Q discharge will recall sequences of learned experiences (images)
in their original temporal order, going forward or backward in time
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Schematic showing synaptic matrix for episodic learning and recall controlled by neu-
ronal mechanism illustrated in figure 5.9. Squares at top represent autaptic cells in
clock ring (PRESENT). Squares at bottom right represent autaptic cells governing epi-
sodic recall (past). Each autaptic cell in the clock ring primes an associated filter cell
(f) in the detection matrix. Each autaptic cell in the recall ring can discharge a class
cell (2), which in turn evokes its related learned afferent pattern in the imaging matrix.
The sequence of discharge in the clock ring is unidirectional (forward) in time. The
sequence of discharge in the recall ring can vary in direction (forward or backward in
“time”’). Source: Ibid. Copyright Lawrence Erlbaum Associates, Inc. Reproduced by
permission.
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from any arbitrary past reference image in accordance with the con-
trolling activity of the recall ring.

If the model were to operate only as described to this point, the
initial temporal excursion for the recall of any particular past episode
would have to recede sequentially under the control of the autaptic
cells in the recall ring starting at the temporal locus that is determined
by the currently active principal cell in the neuronal clock (PRESENT).
However, a leap back to the beginning of a remembered episode
rarely involves a complete sequential playback of intervening images
in reverse temporal order from present to past. Rather, a target event
is retrieved first, and related episodic recollections are referred to
earlier or later times with respect to the temporal locus of the target
event. The proposed model can also perform in this way if the clock
ring (PRESENT) is momentarily decoupled from the detection matrix
while a concurrent increase in diffuse excitation is applied to all filter
cells in the synaptic matrix. Under this condition, any input pattern
from the mosaic cell array (M), whether exogenously or endoge-
nously evoked, will maximally stimulate that filter cell having the
highest sum of synaptic products with the given pattern. Its coupled
class cell (Q) will fire first, and this €, through its axon collateral to
its paired autaptic cell in the recall ring (figure 5.10), will trigger
episodic excursions from this point in the ring. Thus, sequential play-
back through intervening images from the present to a past target
episode is prevented, and recall can begin at a target point in “time”
that depends only on the distribution of synaptic transfer weights
within the synaptic matrix and the concurrent pattern of evocative
excitation arriving from the mosaic cell array.





