Chapter 2

Neuronal Properties

The structure and dynamic characteristics that account for the compe-
tence of any articulated physical system are critically dependent on
the properties of its primitive components. In the development of a
neuronal model, we must first specify the minimal relevant proper-
ties of the nerve cells that are to compose it. Then the theoretical
problem is to formulate a competent computational structure that is
biologically plausible with respect to the postulated characteristics of
the individual neurons and to their patterns of connectivity.

Any living neuron is an enormously complex biophysical system.
For the purposes of what is to be a system-theoretical account of the
human cognitive brain, I need to explicate only those properties and
assumptions that are essential for the operational integrity of the
proposed models. We will take for granted all of the biochemical,
electrical, and structural processes and characteristics that contrib-
ute to the singular viability of a functioning nerve cell (Cotman and
McGaugh 1980; Horridge 1968; Kandel 1976; Kuffler, Nicholls, and
Martin 1984; Shepherd 1983) and focus initially on those aspects spe-
cifically required in the mechanisms and networks to follow.

Basic Properties of Neurons

In terms of shape (figure 2.1), mammalian neurons exhibit great di-
versity. The cell body of a neuron can range from 5 to 100 microns
on its longest axis. Projection neurons such as pyramidal cells may
have dendrites that are several millimeters in length and axons that
extend many centimeters. Local circuit neurons may have no axon
and only very short dendritic processes that extend no more than a
few microns. Modern estimates of the number of neurons that occupy
the cortical mantle of the human brain range from 10 billion to some-
what more than 16 billion (Blinkov and Glezer 1968). Despite their
striking variability in size and shape, neurons are all alike in one
respect: their principal function is to receive and integrate electro-
chemical pulses from sensory transducers or other neurons and, con-
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Figure 2.1
Two neurons with a synaptic junction between the axon of one and a dendrite of the
other.

tingent on the characteristics of the received pulses, output their own
characteristic pulses to other neurons or muscle fibers.

The fact that there are contingencies between the input activity on
a neuron and the output it sends to its targets means that it is not
simply a biological device for relaying signals. It performs a computa-
tion on its input. The combined computations of many neurons in
specialized connective architectures account for cognition.

Figure 2.2 illustrates some fundamental properties of neurons. At
the top of the figure is a schematic drawing of a generalized nerve
cell. Stimulation to the cell is provided at discrete junctions (syn-
apses) by quanta of neurotransmitters released into the gap (synaptic
cleft) between an active axon terminal (S)) of a presynaptic cell and a
specialized receptor patch on the postsynaptic cell membrane. The
neurotransmitters released by the donor cell may either excite or in-
hibit a target cell. An excitatory input induces an inward flow of so-
dium and other cations that drives the resting membrane potential
of the target cell (typically, near —70 millivolts at equilibrium) in
a positive direction (depolarization) toward discharge threshold. A
change in membrane potential of this kind is called an excitatory
postsynaptic potential (EPSP) (see the bottom illustration in figure
2.2). If discharge threshold is reached, an action potential (a positive-
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Figure 2.2

Top: Schematic showing the bioelectrical properties of a typical neuron. A single den-
dritic shaft represents the available surface of all the dendritic branches of the cell.
Bottom: Dynamic characteristics of a typical neuron showing relationship of resting
potential, EPSP, discharge threshold, and action potential.

going spike of voltage that is measured inside the cell against an
outside reference) is initiated near the junction of the axon and the
cell body. This voltage spike is the result of an abrupt regenerative
local increase in the membrane’s permeability to sodium cations. The
action potential propagates down the length of the axon and its
branches, where it induces the release of neurotransmitter at each of
the cell’s synaptic terminals. After each action potential, the neuron
will exhibit a brief period of absolute and then relative refractoriness
in its response to stimulation. In contrast, an inhibitory input in-
creases the membrane’s permeability to potassium cations and/or
chloride anions and drives the membrane potential in the direction
of greater negativity (hyperpolarization), away from the threshold
potential required for spike discharge and toward the lower equilib-
rium potential for these ion species (increased within-cell negativity).
A change in membrane potential of this kind is called an inhibitory
postsynaptic potential (IPSP). The specialized postsynaptic receptors
at the dendritic membrane (the darkened areas beneath the synaptic
cleft in the top schematic) can be characterized in terms of their effi-
cacy in mediating changes in EPSP and IPSP in response to presynap-
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tic neurotransmitter release. This property is termed the synaptic
transfer weight and is designated by the symbol ¢ (Trehub 1975a).

The dendritic membrane in figure 2.2 presents a parallel circuit
of capacitance and resistance to any potential gradient across the
membrane, causing the neuron to behave as a leaky spatial-temporal
integrator of its synaptic inputs (see the summation expression within
the cell body shown at the top of figure 2.2). The expression

HSp n
MP(t) = RP + (Z D (S - Lc) @.1)
t=1 i=1

gives a rough linear approximation for the relative value of the mem-
brane potential (MP) in a cell at time ¢ after the initiation of synaptic
input. In this formula, RP represents the resting potential of the neu-
ron, S; represents the activity level of the ith axonal input terminal
where each excitatory input has a positive sign and each inhibitory
input a negative sign; ¢; is a coefficient representing the synaptic
transfer weight at the ith axon-dendrite junction; (S;), is the product
of S; and ¢; at time ¢; /S, is the time following stimulus onset at
which threshold is reached and a spike discharge is generated; and L,
represents the reduction of EPSP by leakage of the membrane charge.
As we shall see later, the simple fact that neurons are time-sensitive
leaky integrators is a useful property in the behavior of certain kinds
of neuronal mechanisms.

Equation 2.1 implies that with transfer weights (¢,) held constant,
the slope of time-integrated EPSP will increase as the net excitatory
input to a cell is increased, either by having a greater number of
active excitatory inputs, an increase in the activity level in one or
more of a fixed set of excitatory inputs, or a decrease in the total
inhibitory input (IPSP) to the cell. A rise in the rate of EPSP integra-
tion means that the latency to discharge threshold will decrease dur-
ing the stimulation epoch. If the stimulus is sustained, the neuron
will exhibit a frequency of discharge that is monotonically related to
the slope of EPSP integration. Thus

 d(EPSP)
d(t)

where F represents the frequency of cell discharge. The relationship
between the rate of EPSP integration and the frequency of spike out-
put is illustrated in figure 2.3. The higher the frequency of discharge
is in any given cell, the stronger is its stimulation to its target cells
and, if the output is excitatory, the shorter is the latency to discharge

2.2)
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Figure 2.3
Relationship between rate of EPSP integration and frequency of spike discharge.

in the target cells. Discharge frequencies as high as 800 spikes per
second have been recorded in large myelinated neurons.

Suppose that there are two general sources of input to a cell: a
source of excitatory information to which the cell must respond and
a subthreshold source of biasing input that shifts the membrane po-
tential closer to or farther away from its discharge potential. The
closer to threshold that a neuron is biased, the fewer the number of
stimulus spikes that will be required to fire the cell, the shorter its
response latency will be, and the higher its output frequency will be
in response to a given sustained excitatory input. Conversely, the
farther from threshold a neuron is biased (by inhibitory input), the
longer its response latency will be and the lower will be its output
frequency (figure 2.4). In a neuronal system of many cells that receive
parallel input from a common stimulus source but control a variety
of competing response options, the selective biasing of the cells can
profoundly shape the stimulus-response behavior of the system.

So far, I have mentioned only synaptic junctions between axons
and dendrites (axodendritic synapse), but there are a variety of other
kinds of synaptic contacts among neurons: contacts between an axon
and a cell body (axosomatic), between two axons (axoaxonic), and
between dendrites (dendrodendritic). Presynaptic activity at any of
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Relationship of cell bias, reaction time (latency), and discharge frequency given a
standard stimulus. Dark bar represents onset and continuation of stimulus.

the various kinds of synaptic arrangements will affect the nature and
degree of ionic flows across the membrane of the target cell and, thus,
the membrane potential. In the case of dendrodendritic synapses,
cell-to-cell influences are typically mediated by graded ionic processes
without the requirement of a spike discharge at the presynaptic termi-
nal. As we shall see, the dendrodendritic structure is well suited for
establishing gradients of membrane bias over large neuronal arrays.

Autaptic Neurons

Autaptic neurons, which are characterized by having one or more of
their axon collaterals in feedback synapse with their own dendrites
or cell body (Shepherd 1979, van der Loos and Glaser 1972), have a
simple structural property that allows them to serve as short-term
memory processors in cognitive mechanisms (top, figure 2.5). In cells
of this kind, it is assumed that if there is sufficient sustained positive
bias (for example, by subthreshold excitatory input from the reticular
activating system), a transient stimulus will cause the autaptic cell to
continue firing even after input from the initiating stimulus has
stopped. If the subthreshold bias is removed, excitation from its own
recurrent axon collateral is insufficient to sustain spike discharge, and
the autaptic neuron stops firing (figure 2.5, bottom).
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Top: Schematic of autaptic neuron. Bottom: Dynamic characteristics of an autaptic neu-
ron. Cell continues to discharge after a single suprathreshold stimulus pulse as long
as subthreshold excitatory bias is sustained.

Autaptic cells can serve as bistable elements in more complex neu-
ronal circuits and mechanisms. For example, large arrays of autaptic
cells can “capture” a transient afferent pattern and hold it as a short-
term memory representation for any additional processing required,
or a fleeting categorical event on a single axonal line can be repre-
sented by continuing activity in an autaptic target so that it can be
effectively related to other brain events that may require more time
to evolve. Since autaptic output can also be used as a subthreshold
biasing (priming) input to other processing modules, autaptic cells
can play a useful role as gating or strobing mechanisms in networks
that perform delicate timing operations.

Adaptive Neurons

How can the human brain establish new internal representations and
input-output mappings that are adaptive to the changing physical
and social environment and the motivational needs unique to each
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individual? When we raise this question, we confront the challenge
of explaining how complex learning can be effectively accomplished
within the biological constraints of a neuronal system. For the reasons
given in chapter 1, I believe that a comb-filter model is the preferred
approach to cognitive representation and mapping. In models of this
kind (and in PDP systems as well), the pattern of activation-transfer
weights among similar processing units determines the content of
the system’s memory, its concepts, and its input-output mappings.
Selective modification of synaptic transfer weights (¢) is generally
assumed to be the principal physical process underlying learning and
memory in the neuronal networks of the brain. But what specific
processes might provide a reasonable biological basis for these adap-
tive synaptic changes?

Before I describe the proposed mechanism for selective synaptic
modification, it will be helpful to consider a number of basic problems
that must be solved in a biological system that is to learn useful
representations and stimulus-response mappings. At the level of a
single adaptive neuron, we should ask the following questions:

1. Under what conditions will an adaptive synapse change its
transfer weight (¢)?

2. How are transfer weights (¢) on the adaptive cell normalized
to prevent significant system errors that can occur because the
complete segment of unit activity representing one stimulus may
be included within the pattern of a different stimulus, because
of variation in the sheer number of active input units associated
with particular stimuli, or because some stimuli are experienced
more frequently than others?

3. How is a particular learned pattern of ¢ on a cell protected
from “overwriting” by subsequent inputs?

4. How quickly do appropriate changes in ¢ take place, and how
long are particular changes in ¢ maintained?

Initiating Change in Transfer Weights

Each of us builds and elaborates an expanding base of world knowl-
edge by establishing internal representations (memories) of our
cumulative sensory experiences. Because we cannot maintain repre-
sentations of all sensory input, even over relatively short periods of
time, we are obliged to specify those principles by which a constant
stream of sensory input is to be sampled and registered by discrete
and enduring physical changes in the brain. In terms of adaptive
cells within a neuronal model, this means that we must propose
biologically plausible mechanisms for initiating change in their synap-
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tic transfer weights on principles that can account for an appropriate
sampling of afferent activity.

Normalization of Transfer Weights

Recall that a fundamental computational problem in processing infor-
mation from complex external and internal environments is that of
pattern categorization. In a comb filter system, we want a physically
indexed cell that has been tuned to a particular pattern of activation
over the array of input lines to signal reliably that pattern’s presence
by producing an output greater than that of any other cell, which
may be tuned to a different input pattern. To illustrate the kind of
difficulty that can arise in relation to the settings of transfer weights,
let us imagine a simple comb filter consisting of only two adaptive
cells (table 2.1). Suppose that when a stimulus vector V1 was pre-
sented, a learning mechanism simply changed the values of ¢ on cell
A from 0 to 1 at each synaptic junction corresponding to the axonal
contact from an active cell in the input array and that the values of
¢ on cell B were changed in a similar fashion when stimulus V2 was
presented. Now, suppose that V1 corresponds to the stimulus vector
000111000 and V2 to the vector 110111011, where 1 represents an
active unit and 0 an inactive unit in the input array. In this case, if
V2 were presented later, cell B would correctly respond with a spike
output frequency greater than cell A because its sum of the products
between active axonal inputs and their corresponding activation
transfer weights would be greater than that for cell A. If V1 were
presented, however, the sum of products for cells A and B would be
equal, and there would be no difference in the spike output frequen-
cies of the cells. Given these circumstances, the system is unable to
classify the input properly.

Suppose, on the other hand, the weights given by this procedure
were strictly normalized by dividing each by the number of active
units in the input vector at the time of learning. In this case, if V1
were later presented, cell A would respond appropriately, but if V2
were presented, the sum of products for cells A and B would be
equal, and again the system would be unable to classify the input.
What seems to be required is a mechanism that combines the respec-
tive advantages of unnormalized and normalized synaptic weight-
ings. This problem in categorization, related to the inclusion of a
given pattern within another, is one that must be solved in a bio-
logically credible fashion.

Another consideration in pattern recognition concerns the relative
effects of noise on performance in response to stimuli that evoke a
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Table 2.1
Sum of products for each cell of a two-cell filter
Input (S ;) i Cell A2 @i Cell B2
0 0 (0) 1 (.14)
0 0 (0) 1 (.14)
0 0 (0) 0 (0)
1 1 (.33) 1 (.14)
1 1 (.33) 1 (.14)
1 1 (.33) 1 (.14)
0 0 (0) 0 (0)
0 0 (0) 1 (.14)
0 0 (0) 1 (.14)
3 (.99) 3 (.42)

a. Nonnormalized weights are in the left part of the columns, normalized
weights appear in parentheses.

small number of active input units compared to those evoking a large
number of active units. We would expect small stimuli to be more
vulnerable to noise than large stimuli, but since small stimuli can be
just as important in an ecological sense as large stimuli, it would be
advantageous for adaptive neurons to compensate, at least partially,
for such differences in vulnerability to noise. Problems of this kind,
related to differences in stimulus size, can be reduced to the extent
that synaptic transfer weights approach true normalization over a
wide range in the number of coactive input units.

An analogous difficulty must be addressed with respect to the
number of times a particular stimulus might be experienced. Since
an appropriate response to a stimulus that is infrequently encoun-
tered can be more critical in some circumstances than a response
to a more commonly experienced stimulus, the selective tuning of
adaptive cells should occur after as few stimulus repetitions as
possible.

Overwriting Weight Distributions

After the distribution of synaptic transfer weights on an adaptive cell
has been changed so that the cell is tuned to respond maximally to
a particular stimulus, how is its established ¢ pattern protected from
further change or overwriting by subsequent stimuli? If such over-
writing could occur fortuitously, then memory would be volatile and
short-lived. Thus, the mechanism for adaptive weight change must
be able to ensure the stability of desired ¢ distributions.
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Duration of Established Weights

Related to the problem of overwriting is the question of the length
of time a particular memory is to be maintained. Certainly forget-
ting is a significant phenomenon in cognitive behavior. Must the ¢
changes that represent each learned stimulus remain intact through-
out the life of the neuron that undergoes such changes? If so, then
forgetting must occur because of some failure to process the output
of adapted cells properly. Alternatively, synaptic weights, once estab-
lished after learning, might decay to their original base values. Might
there be several classes of adaptive cells so that some exhibit little, if
any, decay while others decay at varying rates?

The implications of all of these issues should be taken into account
in the formulation of hypothesized mechanisms for adaptive neurons
and in the design of the processing modules in which they serve as
component parts.

A Model for Synaptic Plasticity

Figure 2.6 represents the synaptic junctions of several axons on the
dendrite of an adaptive neuron. The following assumptions govern
the dynamics of plastic changes in such synapses and constitute a
provisional physiological model for learning and memory that can
satisfy the basic computational requirements of an adaptive array-to-
line filter.

1. Two kinds of biochemical species are essential for the long-
term modification (increase) of synaptic transfer weight (¢): axon
transfer factor (ATF) and dendrite transfer factor (DTF).

2. A long-term increase in ¢ can occur if and only if ATF and
DTF are locally coactive within the postsynaptic dendritic matter.

3. Effective interaction of ATF and DTF can occur if and only
if the presynaptic cell(s) discharges when activity in the postsyn-
aptic target cell(s) is above some threshold level (6).

4. During ATF-DTF coactivity, ¢ elevation occurs only at active
synapses and is mediated by specific macromolecular changes
induced by ATE-DTF interaction.

5. The magnitude of ¢ at each synapse is limited by saturation,
determined by the maximum amount of DTF that can be utilized
in the macromolecular change at the local receptor region (figure
2.7).

6. In all ATE-DTF interactions, ATF makes a fixed contribution
to the transfer weight (¢) of its local synapse, whereas DTF is
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Schematic of synaptic junctions among the axons of five cells and the dendrite of an
adaptive neuron. Input cells 1, 2, and 5 have fired, resulting in an ATF-DTF reaction
at receptors in the corresponding synapses of the postsynaptic membrane. Volume of
darkened area represents magnitude of transfer weight following synaptic modifica-
tion. No change has occurred at the synapses of inactive axons 3 and 4.

distributed over all active synapses and makes a ¢ contribution
to each that is, up to the local saturation limit, inversely propor-
tional to the number of concurrently active axonal inputs on the
postsynaptic cell (figure 2.7).

7. ATF is constantly generated and rapidly renewed and avail-
able for release in axon terminals.

8. DTF is renewed relatively slowly and at different rates in
different populations of adaptive cells.

9. The threshold (0) for ATE-DTF interaction is an inverse func-
tion of the concentration of free DTF in the postsynaptic dendrite
(figure 2.8).

10. Synaptic transfer weights (¢) decay at different rates in dif-
ferent populations of adaptive cells.

11. There is a positive correlation between the rate of ¢ decay
and the rate of DTF renewal in any given adaptive cell.

Expression 2.3 gives the general formula for determining the trans-
fer weight of any plastic synapse that has been modified in the course
of learning.

by = b+ Spulc + kN7 (2.3)

b—Lim

where &,, is the transfer weight of ¢,,, from the basal value (b) to

b—Lim
the saturation limit (Lim), on an adaptive cell m; b is the initial transfer




Neuronal Properties 31

= %Free ifapl Bc—e"—————

k=? 1000 - 7 PHI= 235
AFFERENT LIMIT = ? 400 FREEDTF= O
SATURATION=? 2.5 BFREEDTF= O E-03
410
(]
fu)
-
. :
o . S
w5 — 152
w % "= -
® &
o
- [T
Lim=2.5 E
Lim=10 % Lim=5 Lm=2.5
k L 0
0 liﬁ 2 200
NUMBER OF COACTIVE SYRAPSES
Figure 2.7

Graph showing the change in percentage free DTF and DTF contribution to the transfer
weight (¢) as a function of the number of coactive synapses. Examples are given for
three different saturation limits (Lim = 10, 5, 2.5) and an arbitrary initial store of DTF
(k = 1000). Linear, negatively sloping plots at left represent change in percentage free
DTF. Plots starting with flat horizontal segments represent change in DTF contribution

to ¢.
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Threshold (6) for ATF-DTF interaction as a function of the concentration of free DTF.
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weight of the unmodified synapse; c is the ATF contribution from the
active axonal contact; kN~ is the proportional contribution of DTF in
the postsynaptic cell, taking account of N coactive axons on the cell
m and the total store of free DTF in the postsynaptic cell, which is
represented by the coefficient k; and S, is the activity level of axonal
input at ¢,,,. It is assumed that b < ¢ << k. These formulations consti-
tute the basic learning rule for the systems described later.

There is no direct physiological confirmation of the specific details
of this model for synaptic plasticity; however, the model is broadly
consistent with a number of relatively recent empirical findings at
the neurophysiological level. The discovery of a long-term increase
in the efficacy of synaptic transmission in the hippocampus following
brief high-frequency stimulation of the perforant pathway (Bliss and
Gardner-Medwin 1973, Bliss and Lemo 1973) provided direct evi-
dence of synaptic plasticity in vertebrates and has prompted investi-
gators to search vigorously for the underlying mechanisms for this
effect. Since the initial observations by Bliss and his colleagues of
long-term potentiation (LTP) of the hippocampal response, other
studies have demonstrated LTP in a number of different brain struc-
tures at the cortical and subcortical levels (Gerren and Weinberger
1983; Ito 1983; Komatsu et al. 1981; Lee 1982; Racine, Milgram, and
Hafner 1983; Racine et al. 1986; Voronin 1985).

There appears to be general agreement about some of the events
in the cellular processes involved in LTP. Figure 2.9 summarizes the
details that have been revealed by various neurochemical probes and
together seem to represent a broadly accepted basic description of
neuronal processes underlying LTP (Akers et al. 1986; Bank, LoTurco,
and Alkon 1987; Brown et al. 1988; Browning et al. 1979; Larson and
Lynch 1987; Linden, Sheu, and Routtenberg 1987; LoTurco et al. 1987;
Lynch and Baudry 1984; Murakami, Whitely, and Routtenberg 1987;
Routtenberg 1984). Brief high-frequency stimulation (typically 100
pulses per second for 1 second) results in a sharp influx of calcium
cations and translocation of protein kinase C (PKC) from the cytosol
of the postsynaptic neuron to its membrane, where it induces a stable
phosphorylation of membrane-bound protein. This phosphorylation
is thought to be associated with an increase in the activity of a partic-
ular subclass of postsynaptic receptors, which occurs only beyond
some high threshold of stimulation. These specialized postsynaptic
receptors are called NMDA receptors because they are specifically
responsive to the compound N-methyl-D-aspartate, a synthetic ana-
log of aspartate that is a putative neurotransmitter. Significantly,
low-frequency stimulation (1 pulse per second for 100 seconds) does
not result in long-term potentiation. Moreover, specific chemical
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Neuronal processes underlying long-term potentiation.

blockade of NMDA receptors prevents the initiation of LTP without
eliminating normal synaptic transmission. If LTP has already been
induced, then blockade of NMDA receptors does not reduce the es-
tablished increase in synaptic efficacy (Larson and Lynch 1987; Lin-
den, Sheu, and Routtenberg 1987).

These recent empirical findings are consistent with the main fea-
tures of the earlier proposed model for synaptic plasticity (Trehub
1975a):

1. Synaptic modification can occur on a single brief input if the
axonal spike frequency is high enough to reach the threshold for
protein phosphorylation.

2. The increase in synaptic weight (potentiation), once estab-
lished, is relatively stable over time.

3. Aspartate (or an analog of it) provides a plausible candidate
for the substance represented by ATF (the axon transfer factor
in the earlier model).

4. PKC provides a plausible candidate for the substance repre-
sented by DTF (the dendrite transfer factor in the earlier model).
5. When LTP is induced, PKC translocates from the cytosol of




34  Chapter 2

the dendrite to bind at the dendritic membrane. This corre-
sponds to the reduction in free DTF after synaptic modification,
as I hypothesized in my model.

The assumption of an inverse relationship between the number of
coactive axonal inputs and the magnitude of the DTF contribution to
each active synapse expressed in the basic learning formula (equation
2.3) is consistent with the experimental findings of Hillman and Chen
(1979), who demonstrated in the cerebellum that when the number
of parallel fiber inputs is experimentally reduced (fewer coactive ax-
ons), the area of postsynaptic density (transfer weight) at the lesser
number of synapses on the target Purkinje cells increases proportion-
ally. Thus, the inverse relationship between the contribution of DTF
at synaptic sites and the number of coactive axons predicted in equa-
tion 2.3 conforms with a physiological process actually found to occur
in a part of the brain that is accessible to the appropriate experimental
procedures. The inverse relationship between transfer weight (o)
caused by local DTF effects and the number of coactive axons on an
adaptive cell provides an intrinsic mechanism for quasi-normalization
of synaptic transfer weights that is critical in pattern learning.

Summary of Neuronal Properties

The following key properties that I assume to be true characteristics
of real neurons are relevant to the models in the following chapters:

* There are two major classes of neurons: excitatory and inhibi-
tory. Spike discharge along the axon of an excitatory neuron
causes an EPSP in its contiguous target neuron(s); similar dis-
charge of an inhibitory neuron causes an inhibitory postsynaptic
potential in its contiguous target neuron(s).

* When EPSPs and IPSPs occur concurrently on a common neu-
ron, total EPSP is reduced as some monotonic function of total
IPSP.

* Spatially and temporally distributed postsynaptic potentials
(PSPs) are integrated in leaky fashion within the neuron.

» Whenever the integrated EPSP reaches a threshold level, the
neuron discharges a spike output.

» The membrane potential of a neuron that has shifted in a posi-
tive direction, reflecting EPSP integration, can be reset to its ini-
tial resting level by sufficiently strong IPSP input to the cell.

» Some neurons (autaptic cells) receive excitatory synaptic input
from recurrent collaterals of their own axons and will continue
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Standard symbols used for the neurons and synapses illustrated in this book.
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discharging after a transient suprathreshold stimulus if there is
sufficient subthreshold priming input from another source.

» Some neurons have excitatory synapses that can be modified
in a graded and relatively stable fashion with respect to the mag-
nitude of their contribution to the integrated EPSP of the associ-
ated cells (synaptic plasticity) given standard presynaptic input.
» The chemical factor within the axonal terminal of the presynap-
tic cell (ATF) that contributes to a change in synaptic efficacy
during learning is constantly regenerated and available for use
at its local synapse.

* The chemical factor within the dendrite of the postsynaptic cell
(DTF) that contributes to a change in synaptic efficacy during
learning is limited in quantity, is distributed over all coactive
synaptic junctions up to the limit of utilization at each synapse,
and is regenerated relatively slowly.

* The threshold for a reaction between ATF and DTF that is re-
quired for an increase in synaptic efficacy (transfer weight) to
occur is inversely related to the proportion of free DTF in the
target dendrite.

Symbols Used for Circuit Diagrams

Many of the model mechanisms and networks I set forth will be
illustrated by circuit diagrams. The standard symbols I will use in
these drawings are shown in figure 2.10.



