Chapter 12
Self-Directed Learning in a

Complex Environment

It has been conjectured that a template-filter model for cognitive pro-
cesses such as pattern learning and recognition would not be able to
operate effectively in a complex visual environment because nearby
or partially occluding objects would cause insurmountable interfer-
ence with the processing of target objects (Pinker 1984). Early tests
of this conjecture suggested that the limitations attributed to mecha-
nisms of this kind were not as severe as they were represented to be
(Trehub 1986). Additional evidence has been provided in simulations
of the brain model, where the operation of adaptive filter cells (comb
filters) in the detection matrix is critical. These simulations indicate
that the hypothesized parsing and filtering mechanisms for pattern
learning and recognition can perform effectively in a complex envi-
ronment. The results also demonstrate that when a novelty detection
circuit modulates the excitatory bias of a synaptic matrix, the model
is able, in a completely self-directed fashion, to learn, recall, image,
and find the objects that compose its fortuitous visual environments.

Parsing and Learning

The simulated brain system consisted of a 16 x 16-cell retina, the
neuronal modules for scene representation and visual parsing de-
scribed in chapter 7, a basic synaptic matrix for pattern detection and
imaging, and a novelty detector. The contribution of axon transfer
factor (ATF) to synaptic modification was arbitrarily set at ¢ = 1.0.
The contribution of dendrite transfer factor (DTF) was set at k = 100.
The gradient coefficient of dendrodendritic excitation of neighboring
cells in the mosaic array was set at 0.6.

Outdoor (far) and indoor (near) visual “environments” were cre-
ated in sketch-to-pixel conversions. These complex scenes were then
presented to the simulated neuronal system for parsing, learning,
and object recognition.
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Simulation 1

The model was exposed to a succession of different outdoor environ-
ments, each consisting of a variety of trees, houses, buildings, cars,
and animals and some including the outline of distant hills (figure
12.1). Because the actual coordinate projections from a 3-D retinoid
to the mosaic cells of a synaptic matrix maintain size constancy as
viewing distance changes, the distance of an object as well as its
retinal image will determine the pattern of synaptic transfer weights
() on any filter cell that is modified at the time of learning. Since
the simulation did not incorporate mechanisms of stereopsis or visual
accommodation, the viewing distance to the major elements of each
scene was assumed to be constant.

Environmental scenes were presented in a frame of 4000 pixels.
Thus, there would be 4000 potential fixation points during the view-
ing of each scene if there were no principled constraints on fixation
in an extended visual environment. Given the proposed brain model,
however, the number of potential fixations on any complex scene is
greatly reduced by contour flux control of saccadic action and by
the centroid-finding properties of the retinoid system. A significant
consequence of this is to reduce the number of object exemplars that
must be learned for adequate recognition performance in new visual
environments.

In the previous simulations, visual learning occurred only when a
teacher (the operator) indicated that an incorrect recognition response
was made by the detection matrix. In this simulation, visual learning
was initiated solely by the model brain mechanism whenever it
“judged” an object (or a part of an object) to be novel. If the latency
of discharge for the first class cell (Q) in the detection matrix to re-
spond to a simulus exceeded the delay time of the novelty detector,
then the synaptic matrix received a pulse of excitatory bias and the
current exemplar was automatically learned. Feedback from a teacher
or from an error-detecting module was not required, nor was it given.

Another aspect of the model’s performance that should be noted
is the manner in which it associated common names to the object
tokens that it had learned. Periodically, after the exploration of each
new environment, the system drew an image (on the CRT screen) of
each object (or part of an object) that it had learned to represent by
a biological “name” (a class cell token) but for which it had no com-
mon name. It then asked what that object is called. If a name was
provided, the neuronal network automatically entered that name
(character string) in its lexicon and assigned it to the class cell token
of its referent.

At the start of each scene-parsing operation, the model first fixated
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Figure 12.1

Visual exploration of two outdoor scenes (printout of CRT displays). Upper left panel
in each display shows scene presented. Central panel shows scanpath of 20 saccades.
Middle left panel shows reconstruction on scene assembly retinoid. Bottom panel
shows images parsed after each saccade. Dots mark images that were captured and
gated to synaptic matrix to be recognized and (if novel) learned. Short horizontal lines

mark parsed images that were not captured.
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on the retinotopic locus of the flux detector with maximum output.
The afferent field aperture then closed to its fully constricted state,
arbitrarily set at six retinal units in width and height. The fully ex-
panded afferent aperture was limited to 16 X 16 retinal units. Starting
error tolerance for quadrantal disparity over either horizontal or verti-
cal axes was set at three units. At any fixed aperture, if error tolerance
was exceeded on a given axis, the pattern of excitation on the retinoid
was automatically shifted in the appropriate direction to reduce hemi-
field disparity on that axis. When pattern position satisfied error tol-
erance for one axis, the pattern was automatically shifted on the other
axis unless it was already within tolerance. If shifting the image on
the second axis now resulted in an unacceptable error on the first,
error tolerance was automatically relaxed one unit. Whenever the
retinoid pattern was brought within tolerance for both horizontal and
vertical disparities, the afferent aperture expanded one unit, and the
process repeated automatically until full aperture was achieved. This
operation was assumed to involve an expenditure of processing ef-
fort; if a pattern translation of nine units on any retinoid axis did
not bring disparity within tolerance, the system stopped trying at its
current fixation and initiated a saccade to the next highest flux region.
Whenever the afferent aperture reached the state of full expansion
with an input flux of at least 25 active cells and with disparity within
tolerance on both axes (thus centered on the normal foveal axis), the
excitation pattern on the retinoid was gated to the synaptic matrix
for recognition. Thus, each excitation pattern projected to the synap-
tic matrix was a discrete image parsed out of the complex visual field.
The simulated visual system was allowed to make 20 saccades dur-
ing the presentation of each scene. Because of the requirement for
quadrantal balance before gating from the retinoid module to the
synaptic matrix, an image that falls on the line of sight at the terminus
of a saccade is rarely the image projected to the mosaic cell array of
the synaptic matrix. Here, it will be useful to make a distinction
between visual fixation, which refers to any resting locus of gaze in
the visual field, and visual capture, which refers to the bringing of
an object’s visual centroid to the retinoid’s normal foveal axis, within
tolerance for error and effort. Only images that have been captured
are gated to the synaptic matrix (where they can be learned if filter
cells and mosaic cells receive sufficient excitatory priming).
Threshold for stimulus novelty varied from moment to moment in
a random fashion and corresponded to a recognition latency (first-
order class cell [)] response) ranging from 330 to 360 milliseconds.
If the recognition response time exceeded the current novelty thresh-
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old, the synaptic matrix was primed, and the captured exemplar was
learned.

Through learning during the course of the simulation, the model
visual system was building a repertoire of class cell tokens (labeled
lines in the detection matrix) and latent images (class cell collaterals
on mosaic cells in the imaging matrix), which represented the objects
or parts of objects parsed and captured in each environment. In order
to facilitate communication by providing a common name as well as
a biological name for the things it had learned, the model performed
as follows. After completing the exploration of each scene, it traced
from its imaging matrix one image at a time on the CRT screen. The
images traced were those exemplars that it had just learned but for
which it had no common name. After drawing an image, it asked
what that object is called (figure 12.2). When the name (character
string) was provided, it was linked to the currently active class cell,
the neuronal token of the object in question. As the simulation pro-
gressed, the model was able to signal recognition of an increasing
number of objects by their common names as well as by their neu-
ronal tokens.

The simulation was terminated after 160 exemplars (objects or parts
of objects) were captured. At this point, 12 different outdoor scenes
had been presented, and, of the 160 exemplars that had been cap-
tured, 82 had exceeded the novelty threshold and had been learned.
The examples given in figure 12.1 are two printouts of the CRT screen
during the simulation. The upper left panel in each printout shows
the actual scene presented to the model system for visual parsing,
recognition, and learning. The central panel shows the scanpath of
the 20 saccades that were initiated in the course of visual exploration.
The middle left panel shows the partial neuronal reconstruction of
the full visual field on a scene assembly retinoid. This fragmentary
visual representation was created by the reassembly of the excitation
patterns (images) that the model had parsed during the course of 20
successive saccades over the current scene. In the large bottom panel
are the successive images that were parsed after each saccade. Only
images marked by a dot beneath them were actually captured and
transmitted as input to the synaptic matrix for recognition and, if
novel, for learning. Images marked by a short horizontal line beneath
them were those retinal stimuli that the system was unable to capture
within the constraints of centroid tolerance or parsing effort.

Of 20 saccadic fixations over each of the outdoor scenes, the num-
ber of images captured ranged from 9 (45 percent) to 17 (85 percent),
with an overall capture rate of 67 percent. Because 82 of these stimuli
had exceeded the threshold of novelty, a corresponding number of
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Two instances of lexical assignment. Model displays the image evoked by discharge
of each class cell token for which it has not yet learned a common name and asks what
the image is called. Operator provides the appropriate name (bottom left).
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Figure 12.3

Examples of the distribution of synaptic transfer weights (¢) on dendrites of filter cells
that have learned images captured during exploration of outdoor scenes. Each point
on the dendritic line represents a particular synaptic location. Amplitude of each verti-
cal line represents relative magnitude of ¢ for that synapse. The objects learned by
these cells are as follows: (1) a car, (2) an animal, (3) a house, (4) a different exemplar
of a car, (5) a different exemplar of an animal, (6) a tree, (7) a different exemplar of a
tree, (8) a building.

filter cells in the detection matrix had been synaptically modified in
accordance with the learning formula. Figure 12.3 shows the synaptic
transfer weight (¢) profiles of an arbitrary sample of the 82 learning-
modified filter cells. Differences among the ¢ distributions over the
population of filter cells in the detection matrix determine the selec-
tivity of object recognition. Associated ¢ distributions in the imaging
matrix shape the images that are evoked on the mosaic cell array by
active class cell collaterals.

The course of recognition performance was assessed by examining
the percentage of correct responses in successive blocks of 20 cap-
tured images. Figure 12.4 shows the improvement in recognition as
the number of objects parsed and captured increased to the simula-
tion limit of 160. The curve of performance increases rapidly and
appears to reach a plateau at a level between 80 percent and 90 per-
cent correct recognitions.

Simulation 2

In the second test, the model visual system was exposed to a succes-
sion of cluttered desktop scenes, each having different exemplars
and arrangements of books, bookmarks, telephones, ashtrays, and
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Figure 12.4

Graph showing the percentage of correct object recognition responses in successive
blocks of 20, plotted against the cumulative number of images captured in the outdoor
scenes.

pencils. The model was required to parse, learn, and recognize the
objects that composed its visual environment. Like the previous sim-
ulation, learning was automatically initiated by the model whenever
its class cell response time exceeded the delay time (threshold) of its
novelty detection circuit. Common names were provided in response
to the model’s queries on the basis of images drawn after the explora-
tion of each new scene. All characteristics of the neuronal mecha-
nisms (number of retinal cells, parameters for parsing and capture,
learning) were the same as in the first simulation.

After 13 different desktop scenes had been presented, the model
had captured 160 images, and the simulation was terminated. Of the
160 exemplars that had been captured, 61 had exceeded the novelty
threshold and had been learned. Figure 12.5 shows two printouts of
the CRT screen during this simulation test.

The number of images captured during the 20 saccadic fixations on
each of the desktop scenes ranged from 8 (40 percent) to 15 (75 per-
cent). The overall capture rate was 62 percent. Because 61 of these
stimuli had exceeded the threshold of novelty, a corresponding num-
ber of filter cells in the detection matrix were synapticdlly modified.
Profiles of synaptic transfer weights (¢) on a sample of eight of the
61 learning-modified filter cells are shown in figure 12.6.
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Figure 12.5

Visual exploration of desktop scenes (printout of CRT displays). Upper left panel in
each display shows scene presented. Notice that books are partially occluded by a
bookmark (upper display) and a sheet of paper (lower display). Central panel shows
scanpath of 20 saccades. Middle left panel shows reconstruction on scene assembly
retinoid. Bottom panel shows images parsed after each saccade. Dots mark images
that were captured and gated to synaptic matrix to be recognized and (if novel) learned.
Short horizontal lines mark parsed images that were not captured.
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Figure 12.6

Examples of the distribution of synaptic transfer weights (¢) on dendrites of filter cells
that have learned images captured during exploration of desktop scenes. The objects
learned by these cells are as follows: (1) a book, (2) a telephone, (3) an ashtray, (4) a
different exemplar of an ashtray, (5) a different exemplar of a telephone, (6) a book-
mark, (7) a pencil, (8) an edge of the desk. '

The course of recognition performance was assessed by examining
the percentage of correct responses in successive blocks of 20 cap-
tured images. Figure 12.7 shows the improvement in recognition as
the number of objects parsed and captured increased to the simula-
tion limit of 160. The curve of performance increases rapidly and then
tends to flatten, reaching a level of 95 percent correct recognitions.

Searching for Objects

The ability of the model visual system to search for and find named
objects in complex scenes was also demonstrated. In the simulations
of search behavior, two neuronal processes were automatically trig-
gered. First, whenever the model system was in a search mode, all
cells in the mosaic array received a sustained increment of inhibition
(—1 on each cell). Second, when the name (character string) of an
object to be found matched a common name linked to class cell tokens
in the detection matrix, those class cells that corresponded to the
named object received a sustained increment of excitation, causing
their axon collaterals to induce a pattern of net positive bias on just
those mosaic cells in the imaging matrix that composed their associ-
ated images. These neuronal processes have the joint effect of sup-
pressing the response of filter cells that are not tuned to the object
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Figure 12.7

Graph showing the percentage of correct object recognition responses in successive
blocks of 20, plotted against the cumulative number of images captured in the desktop
scenes.

of search and facilitating an appropriate response to the searched-for
object.

Saccadic activity, object parsing, and capture proceeded in the
same way as in the previous simulations. However, if a captured
image was not identified as the object of search, a new saccade was
immediately initiated, and search continued. When a captured image
was recognized as the object to be found, it was named, and its
neuronal representation and relative spatial location were marked
on the scene assembly retinoid. Figure 12.8 shows two CRT screen
printouts when the model was “asked” to find a car and a tree in
outdoor scenes. Figure 12.9 shows the model’s responses on the CRT
when it was asked to find an ashtray and a telephone in desktop
scenes.

Comments

The simulated brain mechanisms parsed objects out of complex en-
vironments and learned to recognize them at a level of accuracy
between 80 and 95 percent without the assistance of a teacher or
feedback from an error-detecting source; reconstructed rough repre-
sentations of environmental scenes by assembling, at their relative
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Figure 12.8

Active search. Small rectangular frame around parsed object on the scene assembly
retinoid indicates that a searched-for object has been found and its spatial location
registered. In these examples, the model was asked to find a car (top display) and a

tree (bottom display).
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Figure 12.9

Active search. The model finds an ashtray (top display) and a telephone (bottom

display).
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spatial coordinates on a retinoid, the successive images of objects that
it had parsed; and searched for, found, and represented in retinoid
space the location of objects in its visual environment when they
were designated by name. Given these results, it seems fair to con-
clude that brain mechanisms of the template-filter kind can effectively
serve pattern learning and recognition in complex visual environ-
ments.

The processes by which the model assembles a spatially integrated
neuronal representation of a frontal scene from a sequence of dispa-
rate fixations on the environment might provide an explanation for
the clinical findings of hemispatial neglect in some brain-injured pa-
tients (Bisiach, Luzzati, and Perani 1979; Bisiach and Berti 1989). Sup-
pose there were selective damage to a hemifield of autaptic cells in
the retinoids or neuronal failure for one direction of the shift control
mechanism. In the former case, the individual would be unable to
experience beyond the retinal level any representation of environ-
mental space homologous with the damaged area of the retinoids. In
the latter case, an individual would be unable to translate to the
normal foveal axis any image evoked on one of the retinoid hemi-
fields. For example, if the shift-right circuit were damaged, an autap-
tic image in the left hemifield could not be shifted rightward to the
normal foveal axis. Inability to bring an image to the normal foveal
axis means that the image cannot be recognized in the detection
matrix.

The demonstrated ability of the putative brain system to construct
a neuronal analog of the spatial layout of objects in a visual environ-
ment supports the theory that candidate plans of action can be in-
stantiated and tested covertly by heuristic excursions of the self-locus
in retinoid space. Significant spatial locations, paths to goal objects,
relative distances between objects, barriers to direct access, and so
forth can be computed and represented analogically by patterns of
autaptic cell activity on the retinoid substrate. Such representations
can then be learned in synaptic matrices and stored as part of an
enduring knowledge base.

In these simulations, the tasks of parsing, learning, and recognition
were performed in artificial 2-D visual environments. One might
question how well the model would perform in complex 3-D environ-
ments. It would clearly be desirable to run simulations in natural
settings using photosensitive binocular sensors for retinal input. Such
tests would require a computer powerful enough to model effectively
the hypothesized 3-D brain mechanisms as integral parts of the simu-
lated visual-cognitive system.




