Chapter 11
Learning and Recalling Objects with Naturally
Varying Shapes

Computer simulations described in the previous chapter demon-
strated that the putative visual-cognitive system can learn and recall
canonically shaped objects that are presented on the normal foveal
axis or at eccentric locations in the visual field. Furthermore, the
tests provided evidence that recognition performance of the model is
robust under conditions of visual noise and rotational transformation.
In the simulations described in this chapter the proposed centroid-
finding mechanism works with the synaptic matrix to enable the
system to fixate and learn visual stimuli that are not canonical and
presented at random locations in the visual field. Figure 11.1 is a
block-flow diagram summarizing the processing sequence. The
mechanisms within the labeled blocks embody the neuronal proper-
ties described in earlier chapters.

The performance of the model with noncanonical stimuli was
tested by presenting it with handprinted lowercase letters, freely
written on a digitizing tablet as one might write in a notebook but
without the usual guiding lines. Handprinted lowercase letters are
well suited as stimuli because each sample conserves the distinguish-
ing underlying characteristics of the letter it represents and at the
same time varies from one instance to another in its exact shape, size,
angular orientation, and location with respect to a fixed reference axis
(the normal foveal axis). The first test required the model network to
learn and recognize letters printed by one person (Trehub 1990). In
a second test, the system was given the task of learning and recogniz-
ing letters printed by five different individuals. Clearly, in the latter
case, one would expect a much wider range of variation in shape,
size, and slant over the sample of stimuli. Although performance of
the network would be enhanced if each letter presented to the retina
were normalized for variation in size and angular orientation, none
of the simulations embodied size and rotation transformers to correct
for such variations.
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Figure 11.1
Block-flow diagram of simulated pattern recognition subsystem.

Test Procedure 1

A neuronal subsystem consisting of a retina, retinoid, synaptic ma-
trix, and afferent aperture circuit was simulated in a digital computer.
The gradient coefficient of dendrodendritic transfer to neighboring
cells in the mosaic cell array was arbitrarily set at 0.5. The constant b
(representing the initial transfer weight of filter cells) was disregarded
because it is assumed to be very small and uniform for all such cells
in the synaptic matrix. The constant c (representing the axon transfer
factor) was set at 2.0. The coefficient k (representing the dendrite
transfer factor) was set at 38.0. Error tolerance (ET) for centroid align-
ment on the normal foveal axis was set and held constant at 3 retinoid
units.

Input to the retina was provided by a graphics digitizing tablet.
Lowercase letters were handprinted in normal size on an unlined
sheet of paper that overlay the digitizing tablet, which converted the
pressure of the pencil trace to a spatially conforming digital signal
pattern. This two-dimensional binary pattern constituted the stimu-
lus to a 15 X 15-cell retina in the simulated network.

During the initial learning phase, each letter of the alphabet was
presented one at a time. Because the letters were freely drawn within
the fixed visual field of the system, most stimuli happened to project
to parafoveal positions on its retina. Where the fixation tolerance was
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exceeded, the retinoid mechanism attempted to translate its represen-
tation of the letter pattern to the normal foveal axis before the letter
was learned. Despite this effort to fixate each stimulus representation
on the standard learning axis, the coarse resolution of the retina re-
sulted in an inability to satisfy error tolerance for horizontal and/or
vertical axes in about half of the stimulus presentations. When this
happened, the model printed the message “CANNOT FIXATE THIS
OBJECT,” and another exemplar of the same letter was printed. This
phase of the procedure was completed after each letter of the alpha-
bet had been fixated once and then learned, which resulted in the
synaptic “tuning” of 26 filter cells in the detection matrix. The dis-
charge of any class cell was then taken to indicate the presence of
the letter previously learned by its synaptically coupled filter cell.

In a correction phase following the initial learning sequence, letters
were printed, one at a time, starting from the beginning of the alpha-
bet. The model was required to fixate and recognize (by appropriate
class cell discharge) the letter presented. If the response was correct,
the next letter was written. If the response was wrong, the misidenti-
fied letter was learned (that is, an additional filter cell was synapti-
cally modified) as another exemplar of its stimulus class. The model
was then required to recognize another printing of the same letter.
If the response was correct, the next letter of the alphabet was pre-
sented; if incorrect, the current letter was learned as a new exemplar
of its class. This procedure was repeated until 33 lowercase exemplars
had been learned, at which point recognition performance was tested
without correction.

In the uncorrected test sequence, each letter of the alphabet was
presented for fixation and recognition. Each stimulus-response pair
was recorded for all 26 letters, and the entire procedure was repeated
through five runs of the alphabet. Thus, 130 letters were drawn and
130 recognition responses were made with no corrective learning.
Similar uncorrected test sequences were run after 36 and 46 exem-
plars had been learned in interspersed correction phases.

Upon completion of the learning routines, the distributions of syn-
aptic transfer weights (¢) on 46 filter cell dendrites had changed in
accordance with the basic learning mechanism. Figure 11.2 shows
the synaptic profiles of a few selected filter cells in the detection
matrix together with the alphabetic character associated with each
learning-induced synaptic distribution. The selectivity of recognition
response is determined by the differences among such ¢ distributions
over the population of filter cells in the detection matrix.

The graph in figure 11.3 shows the improvement in recognition
performance in the uncorrected test sequences as the number of




192 Chapter 11
Q — s ABMbMUMBBR n 00000

A S EEEWE N U
k 1t 42 A A A RN . -

m — s b AR ..
TS W ¥ N 'E RTINS -

Figure 11.2

Examples of the distribution of synaptic transfer weights (¢) on the dendrites of filter
cells that learned handprinted letters in test procedure 1. Each point on the dendritic
line represents the relative magnitude of transfer weight for that synapse. Letters
learned are shown to the left of each filter cell. Source: Trehub 1990. Copyright Law-
rence Erlbaum Associates, Inc. Reproduced by permission.
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Figure 11.3

Graph showing the percentage of correct letter recognition responses during the test
trials plotted against the total number of exemplars learned before each test. Source:
Ibid. Copyright Lawrence Erlbaum Associates, Inc. Reproduced by permission.
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learned exemplars increased from 33 to 46. Each point on the graph
is based on 130 stimulus-response pairs. When 33 exemplars were
learned, response was 75 percent correct. With 36 learned exemplars,
response was 90 percent correct. After 46 exemplars had been
learned, response was 97 percent correct.

Confusion matrices based on all stimulus-response pairs in the ini-
tial uncorrected test sequence and in the last test sequence are pre-
sented in figures 11.4 and 11.5. For most letters, confusions occur
when the stimulus and response share similar graphic features.

Test Procedure 2

In the second test, the task of learning to identify handprinted letters
was made more difficult: the network was required to learn and rec-
ognize lowercase letters printed by five different individuals, and it
was not permitted to reject stimuli with centroids that it could not
align within a tolerance of plus or minus three retinoid units from
the normal foveal axis. Thus, unlike the previous simulation, an at-
tempt at recognition was required for each stimulus presentation.

The neuronal subsystem consisted of a retina, a retinoid, and a
synaptic matrix, with the retina dimensioned at 16 x 16 cells. The
gradient coefficient for dendrodendritic transfer to neighboring cells
in the mosaic cell array was set at 0.6. The axon transfer factor (c)
was set at 1.0 and the dendrite transfer factor (k) at 100.

Test stimuli were obtained from the writing of five individuals. In
the first sample, each writer printed all lowercase letters of the alpha-
bet in three complete sequences on the page of a notebook, providing
an initial total of 78 stimuli per individual (figure 11.6). In the second
sample approximately two months later, each writer again provided
three complete printings of the alphabet.

Stimulation to the retina was provided by digitized tracings of the
handprinted letters. Most letters projected to parafoveal positions on
the retina as before, but in this case, instead of rejecting stimuli that
could not be fixated within a constant error tolerance, the system
worked to minimize fixation error before attempting to recognize
each stimulus. It first tried to align the stimulus centroid to within
plus or minus two retinoid units of the normal foveal axis. If quadran-
tal disparities exceeded this limit, the model relaxed its error tolerance
by one unit (to plus or minus three units). This process was iterated
until the minimum tolerance was established within which fixation
could occur (figure 7.4). At this point, the letter pattern was gated
through to the synaptic matrix to be recognized, and if the response
happened to be incorrect, that stimulus was learned.
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Response to Handprinted Alphabetic Characters
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Figure 11.4
Confusion matrix following the learning of 33 exemplars. Source: Ibid. Copyright Law-
rence Erlbaum Associates, Inc. Reproduced by permission.
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Response to Handprinted Alphabetic Characters
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Figure 11.5

Confusion matrix following the learning of 46 exemplars. Source: Ibid. Copyright Law-
rence Erlbaum Associates, Inc. Reproduced by permission.
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Figure 11.6

Samples of the handprinted stimuli produced by each of the five writers in test proce-
dure 2. .

All of the letters from the first sample provided by individual A
were presented to the model. At each presentation, if the response
was correct, the next letter of the alphabet was presented; if the
response was wrong, the misidentified letter was learned, and then
the next letter was presented. This procedure was repeated until all
letters provided by source A in the first sample had been presented.
Stimulus presentation, recognition response, and learning (if an error
was committed) continued in the same fashion for the letters from
each source until all stimuli in the first sample had been shown.
Thus, three successive runs of the lowercase alphabet printed by each
of five individuals were presented to the network. At this point, the
entire procedure was repeated with the second sample of letters. In
all, 780 stimulus-response trials were obtained in this simulation.

Figure 11.7 shows the synaptic transfer weight (¢) profiles of the
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Figure 11.7

Synaptic transfer weights on the dendrites of the first eight filter cells modified during
learning in test procedure 2. The synaptic profile on filter cell 1 is the result of learning
a random visual pattern.

first eight filter cells that were modified during the learning proce-
dure and the alphabetic character associated with each.

The proportion of correct responses made by the model for each
complete presentation of the lowercase alphabet (the number of cor-
rect identifications divided by 26) was plotted against the number of
exemplars that had already been misidentified and learned just before
each new test of the alphabet began. These data are shown in figure
11.8 as percentage correct against exemplars learned. There was a
generally progressive improvement in the model’s performance as it
was exposed to more stimuli despite the fact that for each character
there were natural variations in size and orientation as well as shape,
the model was not permitted to reject stimuli with centroids that
could not be aligned within narrow error tolerance, and the letters to
be identified were produced by five individuals with clearly different
writing styles.

For the inputs in the second sample, when the model had to iden-
tify the writing of a given individual, it had already learned some-
thing about the writing of four other individuals. One might wonder
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Figure 11.8

Graph showing the percentage of correct letter recognition responses over each run of
the alphabet presented by each of the five writers, plotted against the number of
exemplars learned at the start of each test run. Letters A-E indicate stimuli produced by
the different writers. Letters without primes indicate sample 1. Primed letters indicate
sample 2.

if the addition of filter cells tuned to the differing letter characteristics
of other writers would interfere with the recognition of new exem-
plars. If, indeed, this is the case, then table 11.1 shows that any
interference effects that might exist are more than offset by a positive
generalization effect from the exposure to other exemplars, which
results in a substantial improvement in performance. The gain in the
percentage of correct identifications from the first to the second sam-
ple over the five stimulus sources ranges from 18 to 34 percent, with
an overall average gain of 24 percent.

Comments

In these tests, the model does not depend on feature extraction or
feature processing for learning or recognition. This differs signifi-
cantly from models requiring preprocessed critical features for their
input or innate “feature detectors” (Hinton 1981). The system simply
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Table 11.1
Change in correct recognition responses

Percentage Correct

Writer Sample 1 Sample 2 Percentage Gain
A 35 69 34
B 51 69 18
c 51 77 26
D 52 73 21
E 62 82 20

Average gain = 24%

learns its current pattern of retinal excitation after it has been shifted
on the retinoid so that the pattern centroid is as close as possible to
the normal foveal axis, given the physical constraints of the system.
Objects that subtend large visual angles will naturally be partitioned
by the visual apparatus before they are learned one part at a time,
whereas small objects like alphabetic characters may be learned at
once as holistic patterns.

Given the coarse resolution of the retina in the simulation, the
lack of compensation for variations in size and slant, and substantial
variability in the shape of each handprinted letter, the level of rec-
ognition performance exhibited by the model suggests that natural
pattern recognition can proceed very well without prior feature ex-
traction when the objects to be recognized are small.

These results also bear on the issue of representation by an
average-based prototype versus representation by a subset of exem-
plars. The system modeled here does not compute a single prototypi-
cal distribution of synaptic transfer weights to represent a given letter
of the alphabet. Instead, filter cells are separately tuned to different
exemplars of each object (letter) class. The robust generalization ex-
hibited in the simulation tests follows naturally from the intrinsic
ordinal logic of the synaptic matrix. This mechanism ensures that
even in the absence of a good match between an input pattern and
its appropriate filter cell, if there is no better match with an inappro-
priate cell, the correct recognition response will occur.

The mode of internal representation used by the putative brain
system (storage of exemplar instances in the form of distinct synaptic
weight distributions on distinct filter cells) can explain another aspect
of letter recognition: we are often able to identify the person who did
the writing. This would not be possible if all instances of a particular
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object were represented by some normative prototype. When exem-
plars are stored, however, one can associate the name of the person
producing a letter with the individual characteristics of the pattern
that is learned. In a more general and important sense, when objects
are represented discretely in the brain, any contextual events that
might be significant can be associated with a particular experiential
instance.

A fundamental question that can be asked of any quantitative
model concerns the range of variation its parameters can tolerate
before the model loses its effectiveness. The narrower the tolerable
range is, the less robust is the model. In the simulations described
here, two different sets of values were assumed in the learning for-
mula. For the first simulation, the coefficient for dendrodendritic
transfer was 0.50, the axon transfer factor (c) was 2.0, and the den-
drite transfer factor (k) was set at 38.0. In the second simulation, the
corresponding values were 0.60, 1.0, and 100. The fact that recogni-
tion performance was satisfactory with either set of parameter values
is additional evidence of the robustness of the postulated learning
mechanism.



