Chapter 1

Introduction

We cannot know exactly when it happened, but some time after the
dawn of humankind our hominoid ancestors must have wondered—
as we do—about the mystery of their inner world. The idea of a
body-inhabiting spirit that animates a lifeless form with feeling and
cunning, that reveals the myriad elements of the world around, is a
strong and recurring theme in myth. Throughout human history
there has been an abiding need to comprehend this primal mystery.
Plato proposed a rational soul located in the head as the source of all
our mental functions. However inadequate Plato’s view might be as
an explanation of mind, who can doubt that however it happens, it
happens in secret places behind the eyes and between the ears in
that quirky-shaped lump of tissue.

Since the late 1800s, the principal effort to understand the human
mind has shifted from the domain of the philosopher to that of the
psychologist, who carries on this exploration as a scientific task (Bor-
ing, 1929). More recently, groups within disciplines ranging from
linguistics to computer science have focused on the problem of cogni-
tion (mindlike activity) and call their joint endeavor “cognitive sci-
ence.” Among cognitive scientists, however, the study of human
cognition is chiefly the concern of the cognitive psychologist.

The cognitive science community at large commonly asserts that
neuroscience has little to contribute to cognitive theory because it has
not yet produced a substantial body of knowledge relevant to cogni-
tive processes. Yet to the extent that cognitive science can provide a
valid explanation of how human cognition is accomplished, it must
conform to the limiting as well as the enabling properties of the hu-
man brain. No account can be a serious explanatory model of human
cognition if it cannot pass this test. My central thesis here is that we
now have sufficient knowledge of the physiology of nerve cells and
the structure of the brain to advance the theoretical formulation of
putative brain mechanisms that can account for the basic competen-
cies of human cognition and, at the same time, satisfy a reasonable
demand for plausibility within the constraints of neurophysiology
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and neuroanatomy. This is not to say that the models we construct
will necessarily allow direct verification or disconfirmation by the
current tools of neuroscience but that they can be assessed as being
consistent with known biological processes, as opposed to contradict-
ing established findings or demanding new physiological properties
that strain current understanding.

Of course, it might be argued that if no model can be found to
account for the important facts of human cognition without straining
the credulity of neuroscientists, then perhaps neuroscience is not
keen enough, has misinterpreted its own evidence, or just needs to
look further. In any event, should there be a fit between the demands
of a cognitive model and the constraints of neuroscience, then our
confidence in at least the cognitive science side of the endeavor will
grow, and such a model might suggest new foci for direct exploration
in the vast physical search space confronting neuroscientists.

Discourse and debate often founder on unacknowledged differ-
ences in belief about (or sense of) the meaning of terms common
among the discussants. This is particularly true in consideration of
“cognitive processes” because of their relatively cryptic and complex
nature. I must, therefore, acknowledge at the outset that the models
I present do not aim to explain directly such ineffable matters as the
felt qualities of a breathtaking sunset or why I believe my intention to
open the door causes me to do so. They do, however, attempt to
explain how a range of cognitive tasks that are of fundamental impor-
tance can be accomplished by the biological machinery of the human
brain, and it is not unreasonable to assume that they might well offer
useful clues to the more subtle aspects of human experience.

The theoretical strategy that guides this work is constructionist in
flavor. The belief that neuroscience has not provided enough of the
right kind of facts about the brain to be of much help to the cognitive
scientist is true in a limited sense. That is, to the extent that the
cognitive scientist frames proposed models only in terms of interac-
tions among functional stages or “black box” computational modules,
one finds that neuroscience is as yet unable to elucidate the micropat-
terns of intercellular connectivity or the dynamics of information pro-
cessing in the brain with sufficient scope and precision to provide
evidence either for or against proposals at this level of explanation.

My approach is to start with first principles. Beginning with the
principal cognitive tasks that are unquestionably solved by humans
and those properties of nerve cells that are relevant to their role as
primitive components in a variety of possible information-processing
mechanisms, the problem is to construct model neuronal mecha-
nisms and systems with the minimal properties required to perform
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the selected tasks (Trehub 1975a, 1977, 1978, 1983, 1987). In the
neuronal-constructionist approach, the initial constraints of neuro-
physiology and neuroanatomy are not merely suggestive in guiding
model development, they are crucial, and their application distin-
guishes a neuronal model from other kinds of connectionist models
that are said to have a neural “flavor” and are often called neural
models (Anderson et al. 1977, Feldman 1985, Feldman and Ballard
1982, Grossberg 1988, Hopfield and Tank 1986, Kohonen 1977, Ro-
senblatt 1962, Rumelhart and McClelland 1986; see also Smolensky
1988).

Widespread adoption of a computational information-processing
paradigm since the mid-1970s has resulted in a surge of experimen-
tation and theory in cognitive psychology. But while the new com-

_putational enthusiasm sparked a wealth of empirical studies and
algorithmic models, it failed to stimulate a comparable intellectual
probing into the kinds of biological mechanisms required to carry out
the cognitive computations. In short, although it was suggested how
abstract computations could account for some natural observations
and various experimental results, it was not explained how the bio-
logical person could carry out the necessary cognitive computations.
I take the latter explanatory burden to be at least as much the respon-
sibility of the cognitive psychologist as it is of the neuroscientist.
Other cognitive scientists whose primary interests might relate to the
properties of abstract automata or machine instantiations of algo-
rithms in the cognitive domain do not share this burden.

Levels of Explanation

David Marr (1982) proposed and laid great stress on the indepen-
dence of three levels of explanation at which any information-
processing machine must be understood: (1) the level of computa-
tional theory at which the computational goal and its logic are
formulated, (2) the level of representation and algorithm at which
the representations for input and output and the algorithm for trans-
formation are formulated, and (3) the level of hardware (or biological)
implementation at which the physical means for realizing the repre-
sentations and algorithms are formulated. Marr has had a notably
strong influence on the field of cognitive psychology, and the psy-
chologist might say in response to a charge of neglecting the brain
that the computational theories and algorithmic models should be all
worked out before worrying about biological implementation. In-
‘deed, Rumelhart and McClelland (1985) write, “However, Marr cer-
tainly does not propose that a theory at the computational level of
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description is an adequate psychological theory. As psychologists,
we are committed to an elucidation of the algorithmic level.” Yet they
also assert, “We believe that psychology is properly concerned with
all three of these levels.” And in a later publication McClelland,
Rumelhart, and Hinton (1986) state that one reason for the appeal of
parallel distributed processing (PDP) models is their ““physiological’
flavor.”

It appears that while cognitive psychology is not prepared to dis-
miss the physiology of the brain as irrelevant, it is committed to what
it perceives as an orderly development of theory in the spirit of Marr’s
independence of explanatory levels: first develop models that provide
understanding at the levels of computational and algorithmic theory
and then (perhaps) address the issue of their implementation in the
human brain. I believe, however, that a less hierarchically ordered
strategy of theory development can be more productive in achieving
the goal of understanding human cognition, and I believe that the
failure of psychology to acknowledge explicitly the critical role of
biological constraints on human information processing is in part
responsible for the frustratingly slow incremental development of a
coherent body of theory and knowledge (Newell 1973). Adoption of
the independent-levels paradigm provides a principled basis for
many more candidate models (and the empirical studies they sug-
gest) than would otherwise be justified and tends to obscure the
distinction between those proposals that are consonant with biology
and those that are not. An optimal search strategy for explanatory
models of human cognition calls for the virtual parallel application
of multiple-level constraints instead of a search for “sufficient”
models within the bounds of each assumed “independent” level of
explanation.

Figure 1.1 illustrates the difference between an independent-levels
search (top) and an interdependent-levels search (bottom). The first
circle at the top of the illustration represents the domain of logically
possible computational objectives that might lead to a solution for
the problem. The right circle is the domain of possible and distinct
algorithmic operations, subroutines, and full routines that can satisfy
each adequate set of computational objectives. The third circle is the
domain of plausible computational mechanisms in the human brain.
In this scheme, the algorithmic level is the most troublesome because
it is essentially unbounded. Since algorithms are wholly symbolic
systems, governed only by formal rules, any specified set of algo-
rithms can be emulated by a different set with equivalent computa-
tional effect. If we try to reduce the size of the domain of possible
algorithms by simply applying a selection rule that accepts only algo-
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COMPUTATION ALGORITHM IMPLEMENTATION

COMPUTATION ALGORITHM IMPLEMENTATION

Figure 1.1
Top: An independent-levels search in theory development. Bottom: An interde-
pendent-levels search.

rithms with the fewest number of computational steps, we face two
problems; the number of steps required for a given algorithm may
be quite different depending on its biological implementation, and,
more important, any chosen algorithm may be composed of elemen-
tary operations or subroutines that the brain does not compute.

A Dbetter way to reduce the size of the domain is to prune, during
the course of composing an algorithm, each assumption that is not
credible on the evidence of neurophysiology and neuroanatomy. This
violates the neat separation of explanatory levels and is, in fact, the
strategy for theory development represented by the interdependent-
levels search shown at the bottom of figure 1.1. In this paradigm,
search is always confined to the much smaller domain established by
the parallel constraints of all three levels. For expository or didactic
purposes, any adequate model resulting from this approach can be
analytically decomposed into the three independent levels of descrip-
tion even though their logical independence was not honored during
the construction of the model.

Competence and Style

Few psychologists would disagree that the central theoretical goal of
cognitive psychology is to explain how humans are able to know and
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understand their physical-social environment and act productively
and creatively. But instead of attempting to provide an explanation
for cognitive competence, psychologists simply assume that compe-
tent cognitive mechanisms exist and model them in terms of abstract
nodes, modules, and processing stages with appropriate functional
labels (canonical feature detector, window of attention) attached (see
for example Biederman 1987, Kosslyn 1980, Kosslyn et al. 1990). At
the same time, their principal theoretical effort is directed at de-
termining the combination of properties (e.g., serial operations, par-
allel operations) in an unexplicated (nominally empowered) central
cognitive apparatus that might force its output to conform with the
curves of performance obtained in experimental studies. This prevail-
ing approach cannot explain basic competence, but it can explain
cognitive style and provide empirical evidence useful in assessing
explicit models of competent brain mechanisms.

A proper model of a competent mechanism has four important
characteristics: (1) it is described in sufficient detail to establish its
biological plausibility; (2) logical analysis and computer simulation
demonstrate that it does perform the task(s) required of it; (3) its
biological instantiation can reasonably be expected to accomplish the
task(s) within a time period commensurate with the normal ecological
demands on the organism modeled (Feldman 1981, Trehub 1987);
and (4) its interface with other mechanisms in its system is biologi-
cally plausible. Among models that have already demonstrated basic
explanatory competence, secondary aspects, such as parsimony and
style of performance, are also considered. For example, if two com-
peting models of associative learning are judged equally competent
and parsimonious but display different acquisition curves, the model
with performance that better matches the data of relevant laboratory
experiments should be preferred. In addition, the ability of a model
to explain cognitive epiphenomena should be considered in choosing
among models equally competent on primary tasks. If the explana-
tion of a known visual illusion, for example, were to “fall out” of a
model formulated to account for other phenomena, we would take
this as additional evidence in its favor.

On these grounds, then, I have chosen initially to explore models
that might provide solutions to some of the fundamental tasks for
the human cognitive brain. If, after basic competence can be dem-
onstrated, it should turn out that the behavior of a given putative
mechanism or system of mechanisms also conforms to experimen-
tal findings in the domain of behavioral style and cognitive epiphe-
nomena, then we will have increased confidence that our theory
building is on the right track.
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Issues in the Design of a Cognitive Model

Any investigator attempting to formulate a model of human cognition
must make initial design choices about scope and process. As he or
she confronts the demand for competence over an increasing variety
and complexity of tasks, these basic choices will necessarily be aug-
mented. An evolving model architecture will include modular com-
ponents that were developed initially and at the same time will be
constrained by the physical principles instantiated in these earlier
modules. Thus, the generality, competence, and operating character-
istics of an articulated model will be strongly influenced by basic
design choices (in practice, often implicit and unexamined) made
at the earliest stages of model building. Some of these issues are
particularly important in planning and analyzing the design of a cog-
nitive system.

System Input-Output

Is the input to the model system to be the low-level output of a
selected sensory modality (visual, auditory, somasthetic) or com-
posed of the preprocessed categories that are assumed to have been
extracted from a modality in some unexplicated fashion? Existing
semantic models, for example, typically assume a high-level network
of abstract nodes or else vectors of activation levels over an assembly
of units, where each node or vector represents a word or concept in
an established lexicon (Anderson and Bower 1973, Fahlman 1979,
Hinton 1981). It is highly unlikely that any single model of human
cognition can be comprehensive, and simplifications of this kind are
inevitable. But where tactical simplification evades a fundamental
cognitive problem, the fact of the problem should be acknowledged
and some indication of its possible solution given.

The neuronal models that I propose, in addition to addressing is-
sues of high-level cognition, attempt to deal with the important com-
putations required to interpret the first level of information extracted
by the sensory transducers from complex external and internal en-
vironments. A fundamental problem common to all modalities
centers on the critical process of pattern classification (Harnad 1987,
Margolis 1987). In the models presented in the following chapters,
patterns are defined as the distribution of cell discharge over phys-
ically indexed arrays of neurons. The signaling of a particular distri-
bution of activity in an array by the discharge of a single physically
indexed cell in a detection set (or by N equivalent cells) constitutes
pattern classification. All of the axonal branches of any given de-
tection cell, taken together, may be thought of as a single discrete
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information channel or line. Thus, pattern classification is an array-
to-line mapping.

If each possible sensory pattern were mapped to a distinct line, the
number of lines required would grow in a combinatorial explosion as
the number of cells in the sensory array increased. Such a scheme
would quickly exceed the capacity of even the human brain despite
its many billions of neurons. On the other hand, if the system could
not map patterns having very small arbitrary differences onto differ-
ent lines, important environmental distinctions might escape detec-
tion. For some tasks, it might be advantageous or simply innocuous
to lump many physically different inputs into a single category (gen-
eralization); for others, a failure to make a fine distinction (discrimina-
tion) might carry a serious penalty. Thus, a fundamental design issue
for any model of human cognition centers on the capacity of the
system to adjust the delicacy of its sensory classifications according
to the ecological requirements of its host.

A number of connectionist models are designed to map input vec-
tors onto output vectors by processes of iterative relaxation involving
widespread positive and negative feedback among cells or by direct
feed-forward algorithms, which do not depend on relaxation (Rumel-
hart and McClelland 1986). These models are among a class of com-
putational schemes that transform a set of input patterns into a
smaller set of patterns represented by differing activity distributions
over a fixed population of cells constituting the output of the system.
Models of this kind, commonly called parallel distributed processing
(PDP) models, are said to have distributed representation as opposed
to local representation, as is the case when an input pattern is identi-
fied by activity on an indexed line.

From a strictly computational point of view, it might appear that
there is an advantage to mapping from array to pattern instead of
from array to line. For any fixed number N of output units (or lines),
there will be many more possible discrete output states for the pat-
terns composed by the activity levels of all N units than for the activ-
ity of only one of N units. In the case of a whole pattern, the potential
number of distinct outputs increases as a combinatorial function of
N; in the case of a single line, the potential number of distinct outputs
increases only as a linear function of N. Thus, it might seem that
an array-to-pattern model would enjoy the economy of fewer units
required to make any given number of classifications when compared
to an array-to-line model. But there are other factors to take into
account.

First, can the algorithms that map input patterns onto output pat-
terns utilize the full potential range of output states? Simulation stud-
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ies have shown that the proportion of N possible output vectors that
can be used in the array-to-pattern paradigm without severe degrada-
tion of system performance is only a small fraction of the full range
(Hopfield 1982, 1984; Ratcliff 1990). Second, if the system is one that
must select an action conditional on the environmental input, then
each output of an array-to-line model represents a distinct physical
channel that can be directly connected to the subsystem that gener-
ates the action required. Thus, a simple action potential from the
axon (line) representing the class of the input pattern can trigger or
modulate the appropriate response. In contrast, the output of an
array-to-pattern model represents a complex signal that must be de-
coded and then selectively routed before the appropriate action can
be triggered (figure 1.2). The requirement of a separate decoding
stage for pattern classification and signal routing makes the array-to-
pattern model a weaker computational candidate than the array-to-
line model unless there is an overriding advantage on other grounds.

Relaxation and Feed-Forward PDP versus Comb-Filter Processing

of Input

Another important design issue concerns the nature of the computa-
tions required to map input to output. One common approach in
connectionist models is to generate each output state by the compu-
tational process of iterative relaxation (Rumelhart and McClelland
1986). In such models, each processing unit U; is directly connected
to all other processing units through a pattern of activation-transfer
weights W;; typically ranging from —1 to +1. The activity level of
any given unit U; at a given time ¢ is some specified function of its
activity level at t — 1 and the sum of all the outputs from other units
after each is multiplied by its transfer weight W;; on U.. If there is an
appropriate pattern of transfer weights, then after an indeterminate
number of time steps, the profile of activity over the population of
output units (output vector) will settle into a state desired by a prede-
termined criterion of goodness. When a stimulus is applied to the
system (for example, an input vector of features), we can think of the
activity over all units as undergoing a process of dynamic reorganiza-
tion, finally converging (relaxing) on a stable output pattern (a local
energy minimum).

An alternative approach utilizes a direct feed-forward filter design
and can be characterized as a one-pass processing mechanism. In a
system of this kind, each unit «; of the input vector connects directly
to each output unit U; through a transfer weight W;. In one version
of this approach, at the start of processing (f,), all output units are
either at zero activity or have uniform low-level activity, and all trans-
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Tlustration of the differences between array-to-pattern (A/P) and array-to-line (A/L)
models. In A/P, input vectors are mapped to output vectors (patterns of unit activity
over a population of cells). The output patterns must then be remapped to labeled
lines (decoded) for selective control. In A/L, input vectors are directly mapped to the
labeled line (discrete filter within a comb filter system) having the highest correlation
with the input vector (line 4 in the figure on the right). If the pattern of activity
represented by the input vector changes sufficiently, the energy minimum will shift
from line 4 to a different line with a higher correlation with the new vector. This will
be the newly activated labeled line.

fer weights range from near zero to some higher positive value. At
t + 1, the activity level of each output unit is a function of the sum
of the products of the activity in each unit of the input array and its
particular transfer weight W;; on the unit of the output array. If there
is an appropriate pattern of transfer weights at any time during the
presentation of a stimulus, the output unit desired by a predeter-
mined criterion of goodness will have a higher level of activity than
any other output unit. This model can be thought of as a parallel-
access comb filter (analogous to an array of independent narrow
pass-band filters in electronic signal processing) in which the distribu-
tion of transfer weights on each output unit determines its selective
tuning for particular input patterns (Trehub 1967, 1975a, 1987).
After considering the relative merits of relaxation, feedforward
PDP, and comb filtering for cognitive systems, I decided that comb
filtering should be the preferred approach. It does not require addi-
tional decoding; it seeks the absolute energy minimum, which is, in
fact, the output unit having the highest correlation with the current
input vector (figure 1.2); it does not exhibit the limitations in memory
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efficiency and discrimination that characterize PDP models (Ratcliff
1990, Hopfield 1982). The level of activity in each unit of a comb-filter
scheme is independent of any of its neighbors, so the number of ar-
bitrary input-output memories that can exist simultaneously in stor-
age is exactly the number of processing units—filters/output lines—in
the system (because of the independence of processing units, subtle
distinctions between mappings will not be confounded or distorted
in memory, a clear advantage from the standpoint of system compe-
tence); it generates a useful output within a single synaptic delay
plus the time required for integration to threshold (typically, 1-5 mil-
liseconds); and it makes the minimal assumption that all activation-
transfer weights in the filtering cells have a positive sign (excitatory)
and that each processing cell in the extended model maintains its
activity as either an excitatory or an inhibitory neuron, thus coriform-
ing with the constraints of real mammalian synapses and neurons.
These considerations, together with additional factors related to ef-
ficient learning, imagery, the recall of specific events, and symbol
manipulation, convinced me to develop cognitive models based on
comb-filter mechanisms.

Representation

At any given moment, a cognitive computational system can be char-
acterized by the internal state that maps an input onto an output. This
state can be thought of as the memory of the system. In connectionist
models, memory resides in their complex distribution of transfer
weights. These complex distributions define an internal set of stan-
dards against which arbitrary input stimuli are matched for appro-
priate routing or classification. The internal standards can be taken
as representations of particular kinds of external events that are sig-
nificant for the system and require a selective response. We may
think of such representations as the concepts held by an individual.
Since the kinds of events to which the system must respond may
vary in a number of particulars yet still maintain their general signifi-
cance, the question arises of how best to structure the internal repre-
sentations for adaptive response despite individual variation within
significant classes of stimuli.

What kind of computational process should we adopt to provide
an appropriate repertoire of concepts? One approach opts for the
construction and storage of generalized prototypes where each proto-
type is a unitary representation of a stimulus class, consisting of some

"average pattern of features obtained by weighting each feature of
a stimulus according to the frequency of its occurrence among the
exemplars of its class (Rosch and Mervis 1975, Stillings et al. 1987).
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There is a serious problem with this kind of model, however. If the
brain were to store its concepts in memory only as unitary averaged
prototypes, it would be unable to recognize individuality among par-
ticular exemplars of a concept. We recognize a face not only as a face
but also as a young face, an old face, a face that is happy or sad.
These distinctions are not trivial and could not occur by matching
sensory input against an averaged prototypical standard. On the
other hand, if we were to maintain in memory a representation for
each sensory entity experienced, then the notion of concept would
have little meaning, and the storage capacity of the brain would soon
be exceeded.

There is a solution to this dilemma, however: store exemplars and
establish new classification standards only when the existing concep-
tual structure fails a real or imagined test of its current utility or when
a stimulus is experienced as a novel one in a significant context. In
this scheme, the number of representations that one maintains grows
as needed by the individual or demanded by the physical and social
environment. Clearly, if representations are built in such a fash-
ion, then there must be critical interactions among conceptual struc-
ture, motivation, attention, imagination, and learning. The behavior
of the cognitive brain model that I propose depends on just such
interactions.

Figure 1.3 illustrates the distinction between representation by av-
eraged prototypes and representation by significant exemplars. Imag-
ine the stippled and black regions in the top box as enclosing the
point locations, in a multidimensional space, of all experienced varia-
tions of two different classes of stimuli. An exhaustive representation
within the brain of all instances of each class is neither physically
possible nor desirable, so some procedure must be employed before
storage to reduce the vast number of stimulus instances depicted at
the top. The box at the bottom left shows all exemplars of the two
kinds of entities collapsed into two distinct multidimensional points
(prototypes) by a process of weighted averaging. Let us call the stip-
pled point A and the black point B. Given an input stimulus, the
system will classify the stimulus as either A or B by determining its
multidimensional distance from A and B and selecting the class hav-
ing the lesser distance. The box at the bottom right shows significant
exemplars of each kind as subsets of multidimensional points with
individual characteristics. In this case, the multidimensional distance
of a stimulus from each of the points in the representational space
will not only determine its class membership but will also categorize
it as having the properties of its closest exemplar.
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Figure 1.3
Illustration of the difference between the averaged-prototypes paradigm and the
significant-exemplars paradigm for the representation of concepts.

Learning

In connectionist models, the distribution of activation-transfer
weights determines the memories the system has, its concepts, and
the input-output mappings it will make. Thus, the issue of how trans-
fer weights are set, organized, and modified must have a high prior-
ity in any effort to provide a full physical explanation for cognitive
processes. In other words, a satisfactory model of learning is of fun-
damental importance.

Among the many problems that arise in attempting to formulate a
neuronal model of human learning, particularly significant are those
related to the biological basis for normalization of transfer weights,
the number of stimulus repetitions required to reach a satisfactory
criterion of performance, and the mechanism for representing the
temporal context of a learned event.

The problem of normalization arises because all stimulus patterns
that must be learned may vary over a wide range in terms of the
number of active units in their input vectors. Moreover, while equal
levels of performance may be demanded in response to a variety of
stimuli, the number of opportunities for learning may be markedly
different for each stimulus. Since the magnitude and distribution of
change in transfer weights during learning can be influenced by the
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number of active input units evoked by a stimulus and the number
of times the same stimulus is experienced, as well as its characteristic
pattern, some mechanism is required to prevent system degradation
by an excessive bias in favor of stimuli that are relatively large (dis-
charge many units) or that occur relatively frequently. Normalization
is important and must be accounted for within the operation of any
proposed learning model (Trehub 1975a).

For some problems, many stimulus-response trials are needed be-
fore learning can reach an acceptable level of performance, and for
others only a single trial is necessary. Most computational models of
learning depend on processes that require many trials to reach an
acceptable criterion of performance (Rumelhart and McClelland
1986). Typically, a stochastic convergence operation is assumed or
incremental weight adjustments are made in an iterative search for a
distribution of transfer weights that will lead to an appropriate sepa-
ration of input patterns. Such models are unable to account for one-
trial learning. Ideally, we seek a plausible biological system capable
of one-trial learning but that also can manifest the characteristics of
progressive improvement over trials.

Another important aspect of any model of learning is whether it
allows for self-initiated and self-organized learning. A prevailing par-
adigm for learning in PDP models is the so-called generalized delta
rule (Rumelhart and McClelland 1986; see also Minsky and Papert
1988), which requires the prior specification of a desired output vec-
tor. The object is to adjust connection weights throughout the net-
work so that a desired mapping from input vector to output vector
is obtained. When the network is stimulated, the activity of every
output unit is compared to its desired (target) activity. If there is a
discrepancy, its magnitude and sign are measured and used as crite-
ria for adjusting all connection weights to the examined unit in a
direction that reduces the observed discrepancy. Typically the mag-
nitude of weight adjustment is proportional to the measured dis-
crepancy. In multilayer networks, the procedure is repeated for
corresponding units, working backward to the input layer. For this
reason, the error correction scheme is often called back propagation.

Learning of this kind requires an external agent (teacher) to set a
standard. It cannot be self-initiated and self-organized unless one
assumes that there is an innate store of desired output vectors (tar-
gets) appropriate to each stimulus situation; however, in this case,
learning would be quite irrelevant. The model I propose is able to
learn without the intervention of an external agent but can profit by
outside guidance.

A substantial part of human learning and memory is episodic in
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character (Tulving 1972). Sequences of experience are interrelated and
rendered meaningful by contiguity within particular time frames. Ep-
isodic representations are also essential for chaining inferences and
for planning future action. Models should be able to learn and con-
serve, in proper temporal order, sequences of stimuli, as well as
nontemporal representations of input patterns.

One final point should be emphasized: any ecologically relevant
model of learning must have a mechanism that can selectively re-
trieve learned representations as a function of an individual’s current
motivation and environmental contingencies. This introduces the col-
lateral problem of structuring effective and plausible interfaces
among the learning mechanism, the various sense modalities, and
the motivational system that guides human behavior.

Selecting the First Modality
The choice of which modality to model first will play a role in shaping
the subsequent development of the cognitive model.

I have chosen to start with the visual system, for both objective
considerations and intuitive preferences. If we assume that the num-
ber of neurons in each of the functional/anatomical areas of the hu-
man brain gives an indication of the relative ecological importance
of that function, then vision must be taken as the most important of
our sensory processes. The primary and secondary sensory areas of
the human visual cortex contain more than 1.2 billion nerve cells. In
contrast, the closest competing cortical areas, devoted to processing
bodily sensations, contain roughly 160 million cells (Blinkov and
Glezer 1968). Thus, in terms of sheer biological resources, evolution
seems to have invested the human brain with at least seven and a half
times as many cells for its visual computations as for its somesthetic
computations. Another anatomical indication of the importance of
vision is revealed when we examine the ratio of the number of cells
in the primary visual area of the cortex (area 17) to the number of
cells in the lateral geniculate nucleus (a lower visual center) over a
variety of mammalian species: in the rabbit, the ratio is 20:1; in the
macaque monkey, 145:1; in humans, 900:1 (Blinkov and Glezer 1968).
And if secondary visual areas of the cortex were counted in comput-
ing these ratios, the divergence among the species would be even
greater. This evolutionary progression underscores the central role
of vision in human adaptation.

In explaining why people need to have so much more of their brain
resources devoted to visual processing than other creatures have, it
can be argued that, say, a monkey, as it swings and leaps from tree
to tree, must make exquisite discriminations, judgments of distance,
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clearance, and the weight-bearing properties of branches, all of which
require greater visual acuity and processing speed than do normal
human activities. Humans, however, must not only respond to the
affordances of the visual environment but must know and under-
stand the world revealed to them through the medium of sight.
Vision is the modality that provides the richest direct source of in-
formation about the nature of our physical world. Beyond purely
sensory considerations, visual experience and imagery give us the
most important extensional anchors for the semantics of language
(Johnson-Laird, Herrmann, and Chaffin 1984; Miller and Johnson-
Laird 1976). One of the key problems in the development of a bio-
logically plausible model for human cognition is to elucidate the
relationship between vision and language and to detail the physical
interactions between visual and linguistic mechanisms.

Tasks to Be Performed

A list of basic tasks that a cognitive model must be capable of per-
forming tends to focus the design of the system and helps sharpen
the test criteria for objective assessment of the model’s competence.
It is highly unlikely that any such list will cover all cognitive tasks,
but whatever is explicitly described will aid the theorist and provide
common points of reference for proponents and critics of the model.

Following are a number of general tasks that I have taken as reason-
able tests of a human cognitive system. The list starts with tasks
specific to the visual domain and broadens to include those related
to semantic processing, reasoning, and planning. The model must be
able to:

1. Parse an object or a part of an object as a stimulus entity
when presented with any arbitrary object or an arrangement of
objects (a scene).

2. Represent the relative location of any parsed object in a
three-dimensional viewer-centered space.

3. See an object or a scene on at least one occasion and recog-
nize it later despite substantial changes in object size, angular
orientation, or position in space.

4. Search for and locate an object that has been learned if it is
present in a complex scene.

5. Reconstruct an approximate image of an object or image that
has been learned when it is absent.

6. Construct and learn new images by combining parts of ob-
jects and scenes recalled from its learned repertoire (memory).
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7. Recognize learned patterns despite inputs that are substan-
tially incomplete or degraded by noise.

8. Disambiguate the stimulus and sequentially recognize the
constituent patterns if the model is presented with a complex
pattern composed by the superposition of previously learned
patterns.

9. Detect, learn, and recall spatial relationships among objects
in a scene.

10. Respond, given any arbitrary input paitern, with a series of
recognition indicants and their associated images recalled from
its learned repertoire, which are ordered in output according to
some measure of pattern similarity with the arbitrary stimulus.
11. Learn substantial sequences of visual input and later accu-
rately recall at least parts of the image content of selected se-
quences in correct temporal order.

12. Learn and recall a name for each entity it has learned.

13. Organize and relate its internal representations as equiva-
lents to subject and predicate in a propositional structure.

14. Generate sequences of related inferences, a substantial pro-
portion of which are logically true within the terms of a complex
propositional structure.

15. Image, or otherwise recall, if the model is presented with a
name, its representation of the object, entity, characteristic, or
relationship that the name stands for.

16. Control its behavior in accordance with its motivational
needs.

17. Attach some indicant of value to any current or imaged envi-
ronment (scene) or episode according to the degree to which it
meets its motivational needs.

18. Plan, execute, and learn sequences of its own behavior that
lead to environments or episodes that meet its motivational
needs.

These requirements motivated the mechanisms and the system ar-
chitecture of the brain model that I propose. They represent a basic
core of processes that must be explained as we progress toward a
full account. The following chapters address these requirements and
present the details of a brain model that I believe provides a credible
biophysical and structural foundation for understanding human cog-
nitive competence.





