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CHAPTER 10

SPARSE CODING OF FACES IN A NEURONAL MODEL:
INTERPRETING CELL POPULATION RESPONSE
IN OBJECT RECOGNITION

Arnold Trehub

Department of Psychology
Neuroscience and Behavior Program
University of Massachusetts, Amherst

ABSTRACT

Response to faces as measured by cell discharge in the temporal cortex of
monkeys suggests a sparse cell-population coding of complex visual stimuli.
The prevailing view assumes that a sparse population code requires the joint
contribution of a relatively small group of cells (a neuronal ensemble) for
effective coding and recognition. This assumption is based primarily on the
consistent observation that single cells in the temporal cortex are broadly tuned
rather than narrowly tuned to individual faces. It has been argued that the joint
activity of a relatively small number of broadly tuned cells, each responsive to
a different constituent feature of a face, could form an ensemble code selective
enough to distinguish individual faces. In the present study, schematic faces
were presented as stimuli to a model neuronal system for visual pattern learn-
ing and recognition. This model effectively codes individual faces by means of
competitive activity among single cells during recognition instead of by ensem-
ble coding. The computer simulation permitted an analysis of the activity pro-
files of all tuned cells during learning and recognition of the faces. All cells
~ were found to be broadly tuned even though coding was mediated by the dis-
crete output of single cells on a competitive basis in a sparse neuronal popula-
tion rather than by the joint activity of a group of cells. The results show that
the observation of broad tuning of cells in temporal cortex under typical exper-
imental conditions does not warrant the conclusion that neuronal ensembles are
“required for the coding of individual faces. Suggestions are made for changes
in the design of experiments to better test hypotheses about the coding of faces
(or any other complex visual patterns).

Introduction

A central question for our understanding of visual pattern recognition in the
brain is how neurons in the visual system code perceived objects. Face recog-
nition is a particularly important aspect of complex pattern recognition and,
following the early reports of face-selective cells in the temporal cortex of
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monkeys (Gross, Rocha-Miranda, & Bender, 1972; Desimone, Albright,
Gross, & Bruce, 1984), there has been a major effort to understand the neu-
ronal coding of faces (see, for example, Kosslyn & Mumford, 1991; Bruce,
Cowey, Ellis, & Perrett, 1992).

In the typical experimental procedure, the spike discharge of single cells in
the inferior temporal cortex of the monkey is recorded while the animal is
presented with pictures or drawings of faces. It has been observed that cells
which selectively discharge in response to faces as a stimulus class exhibit
broad tuning curves in response to the faces of particular individuals. Mainly
on the basis of this observation, the prevailing view is that single cells cannot
adequately account for selective recognition of individual faces. Instead, it has
been proposed that the neuronal processing is in the form of a sparse popula-
tion code wherein face recognition requires the joint contribution of a small
population of cells, each selectively responsive to the presence of a different
facial feature (Baylis, Rolls, & Leonard, 1985; Young & Yamane, 1992). In
this formulation, it is the partern of activity over an ensemble of cells (a joint
activity vector) that constitutes the recognition code (Gross, 1992; Gross &
Sergent, 1992).

An unresolved issue is how a neuronal population code, sparse though it
may be, can selectively evoke a correct recognition response to a particular

member of a stimulus category. This paper examines the activity levels of

individual cells in a simulated neuronal model of visual object recognition
when the system is required to learn and recognize each face in a group of
line-drawn faces. Analysis of cell response profiles suggests an alternative
interpretation against the common view that sparse coding of a complex visual
pattern such as an individual face implies a neuronal ensemble of separately
coded features. The results indicate that instead of a coding scheme based upon
an ensemble of separate features, a sparse group of cells where each is holisti-
cally tuned to a different exemplar of a particular face provides effective face
recognition.

Brief Description of Model

The neuronal model simulated here (Trehub, 1991, chapters 2, 3, 4, 5, and
7) consisted of five key integrated mechanisms: (1) a 16x16-cell foveal retina;
(2) a mechanism for triggering saccadic excursions to regions of high edge
density in the visual field; (3) a putative post-retinal mechanism for positioning
the centroids of retinotopic excitation patterns close to a standard internal axis
(stimulus capture); (4) a learning mechanism for tuning synaptic transfer
weights on individual adaptive cells (filter cells) in a detection set to patterns of
retinal stimulation; (5) a competitive (winner-take-all) mechanism that selects a
recognition response contingent on the relative activation levels of cells in the
detection set in the context of each stimulus. The spike frequency of each cell
can be considered as a positive monotonic function of its activation level.
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FIGURE 1. Processing sequence for parsing an object in a complex visual environ-
ment. ;

Figure 1 illustrates the processing sequence for parsing an individual face
out of the set of 10 faces presented in the model's visual field. The total field is
analyzed by an array of retinotopically indexed cells (flux detectors), each of
which receives input from a relatively small region of the complete retinal
field. Each flux detector integrates the amount of visual contour excitation in
its particular retinal region and discharges with a frequency proportional to its
total excitation. The contour flux detectors feed a matched array of cells that
control visual saccades. The flux detector with the highest discharge frequency
captures control of the saccadic apparatus and directs a saccade to the circum-
scribed visual region that provides its input. Thus, the region of visual space
with the highest contour density will be fixated first.

There is a field constriction mechanism that limits the fovea-centered aper-
ture of retinotopic input to a short-term memory module called a retinoid
(Trehub, 1977). The retinoid can translate retinotopic excitation patterns over
cells in an egocentric coordinate space. It is quadrantally organized, and
automatically locates and positions pattern centroids on a standarcd reference
axis within the visual system by shifting its visual pattern so that excitation is
balanced within a threshold of tolerance over all quadrants. At the start of the
parsing process, the visual field aperture is constricted to a small window on
the stimulus field and an initial tolerance level is set for hemifield mismatch in
the retinoid system. The centroid of the current effective visual pattern is then
shifted to the standard egocentric reference axis. The visual aperture is pro-
gressively enlarged in a stepwise fashion and, at the same time, the system
relaxes its tolerance for quadrantal-excitation imbalances. At each step, the
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system seeks to adjust the current centroid of the stimulus component within
the afferent aperture so that it lies approximately on the reference axis. When
the visual aperture reaches a limiting size, the pattern of retinoid excitation in
its standardized position within the aperture is projected to a neuronal mechan-
ism for learning and recognition called a synaptic matrix (Trehub, 1991).

A schematic of the synaptic matrix is shown in Figure 2. Its structural
properties and the learning rule can be briefly summarized as follows. Retino-
topic afferents Sij are in discrete point-to-point synapse with a following set of
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FIGURE 2. Schematic of a synaptic matrix. Afferent inputs are designated S,. Mosaic
cells are designated M. Dots represent fixed excitatory synapses; short obliqde slashes
represent fixed inhibitory synapses; filled lozenges represent adaptive excitatory syn-
apses. Reset neuron (-) generates an inhibitory postsynaptic potential to reset all class
cells when discharged. Given any arbitrary input to the synaptic matrix, the class cell
coupled with the filter cell having the highest product sum of afferent axon activity and
corresponding transfer weights will fire first and inhibit all competing class cells.
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neurons, called mosaic cells (M). The axon of each mosaic cell is in parallel
adaptive synapse with all members of a set of cells in the detection matrix,
which are called filter cells (f). Each filter cell is in discrete synapse with an
output neuron called a class cell (Q). Each class cell integrates the activation
input from its coupled filter cell. The axon of each class cell bifurcates and
sends a collateral back in adaptive synapse with the dendrites of all mosaic
cells (M) in the imaging matrix. Finally, a reset neuron (marked -) receives
excitatory input from the axons of all class cells () and sends its own inhibi-
tory input back in parallel synapse with all class cells. Integration of filter-cell
input to paired class cells, together with the reset mechanism, ensures that the
class cell that receives the highest activation from its coupled filter cell will
fire first and inhibit all competing class cells.

One-trial learning of a visual stimulus pattern takes place by modification of
adaptive synapses on filter cells in the detection matrix and mosaic cells in the
imaging matrix. (In this simulation, processes taking place in the imaging
matrix will not be discussed.) The magnitude of learning-related changes in

synaptic transfer weight (¢) are determined according to the following expres-
sion: :

¢im=b+Sl_m(c+kN“') ; x (1)
b—Lim

where ¢, is the transfer weight of synapse ¢, , from the basal value (b)
b—=Lim

to the saturation limit (Lim), on an adaptive filter cell m; b is the initial transfer
weight of the unmodified synapse; ¢ is a fixed synaptic contribution from the
active axonal contact on ¢ ; kN 1 is a proportional synaptic contribution
taking account of N coactive axons on the cell m at the time of learning, and a
synaptic modification constant ; and S, is the activity level of axonal input at
¢, . The product sum of afferent axon activity over the mosaic cell array (M)
and the corresponding synaptic transfer weights (¢) on each filter cell deter-
mine its activation level.

The parameter values used in the present study for stimulus capture, learn-
ing, and recognition of faces were the same as used in a previous simulation of
self-directed learning in a complex environment (Trehub, 1991, chapter 12).

Procedure

The stimuli that were presented to the model consisted of schematic faces
(in pixel display) that had been used in previous experiments to explore percep-
tual classification in humans. A subset of 10 faces taken from the original line-
drawn stimuli used in studies by Reed & Friedman (1973) and Nosofsky
(1991) were digitally scanned and reduced in size so that each face was approx-

imately 18 pixels in height. All 10 faces were presented together throughout
the simulation.
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FIGURE 3. Bit-mapped face stimuli. Faces 1-5 are in categbry A; faces 6-10 are in
category B.

The 10 faces could be separated into 2 different categories with 5 faces in
each category on the basis of a multidimensional (MDS) analysis of eye height,
eye separation, nose length, and mouth height (Figure 3; Reed & Friedman,
1973; Nosofsky, 1991). In the current study, each of the faces was assigned an
identifying name and a letter designation indicating that it belonged to category
A or B (e.g., Tim-A, Ned-B). Before the start of the recognition procedure,
synaptic transfer weights on one filter cell (f) in the detection set were tuned
(weights selectively increased by the learning mechanism) to a random pattern
of retinal excitation. This cell evoked the response "RANDOM" whenever it was
the most active filter cell in the detection set. On all subsequent trials the
neuronal model was presented with all 10 faces in a single display. On each
trial, the model retina automatically fixated on an individual face in a quasi-
random fashion. The task was to capture a face, report its name (face recogni-
tion), and give its category designation. If the response was correct, the opera-
tor typed in "YEs" and another face was captured and the procedure repeated.
If the response was wrong, the operator typed in "No" and a previously un-
modified filter cell (e.g., f,) in the detection set was synaptically tuned to the
retinal pattern of the captured face (the current exemplar) by the intrinsic
properties of the learning mechanism. Then the operator typed in the appro-
priate name and category designation which would be evoked by the model
whenever f, was the most active filter cell. Again, the system captured another
face and the same procedure was repeated. Notice that on the first recognition
trial, the only possible response that the system could make was "RaNDoOM",
since it had nothing else in its response repertoire. Each response to a captured
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face was counted as a trial whether the response was correct and followed
immediately by a new capture, or whether it was incorrect and resulted in the
exemplar-tuned synaptic modification of another filter cell in the detection set
(learning). The simulation proceeded until 400 trials were completed. Perfor-
mance was examined for face recognition and category designation in each of
16 sequential blocks of 25 trials for each block.

Results

Face recognition and categorization

Figure 4 shows the learning curves over all blocks. The percentage of
correct responses for both face recognition and categorization was character-
ized by a curve with an initial rapid rise over the first 50 trials followed by
deceleration of improvement. The categorization response improved more
rapidly than did the recognition of individual faces. At the end of the 400 tri-
als, correct performance for both recognition and categorization was at the
96% level. The conclusion that categorization of faces improved more rapidly
than the recognition of individual faces was based on the following considera-
tions. In the simulation, a correct identification of a face also evokes its correct
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FIGURE 4. Plot of performance. Points plotted show the percent of correct responses
over 16 blocks of 25 trials each. Filled circles indicate level of performance for face
recognition in each of the successive trial blocks. Open squares indicate level of per-
formance for category designation on corresponding blocks.
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category. Only those trials where the identification response was wrong could
provide information about the rate of category learning (cat) relative to the rate
of recognition learning (rec). Since two categories of faces (A and B) were
presented, there was a 50% chance that a wrong identification response would
nevertheless name a face in the correct category. Hence on each block of trials
we would expect a relative advantage for category performance on the basis of
chance alone. Only if the magnitude of the advantage were greater than ex-
pected by chance could we conclude that categorization improved more rapidly
than recognition. Thus in order to determine if the rate advantage for categori-
zation was significantly greater than chance expectation, the following formula
was applied on each block of trials:

Exp Adv [cat] = % Correct [rec] + (100 - % Correct [rec])/2 (2)

The differences between the observed percentage of correct categorization
and the Expected Advantage [cat] over all 16 blocks of 25 trials provided the
data on which to assess the rate of improvement in categorization. There was
an unbiased advantage for categorization ranging from +20% on block 1 to
+6% on block 8. Over the last eight blocks, the categorization advantage
ranged from +4% to 0%. A total of 70 filter cells in the detection set had been
synaptically tuned by the learning mechanism to exemplars of the captured
faces. All filter cells exhibited broad tuning curves over the faces that were
captured. This is illustrated in Figures 5 and 6 where the activation levels of
10 different filter cells are shown in response to each of the 10 faces. These
were randomly selected from the cells that signaled the correct response in a
sample drawn from the last 50 trials in which 10 different faces were captured.

Cell response profiles

On each trial, the neuronal model selects a discrete recognition response on
the basis of competitive activity among cells. The filter cell with the highest
activation level evokes its associated name for the face that has been captured
while inhibiting the output effects of all other cells. It is important to notice
that a filter cell that has been selectively tuned to a particular face can exhibit a
stronger response to other faces. This will not degrade the effectiveness of the

FIGURE 5 (left). Activation levels of each of 10 sampled filter cells (F-cells) in
response to exemplars of each of the 10 face stimuli. Activation response of each F-
cell plotted against each face. Each F-cell in the left column had been synaptically
tuned during learning to one of the 5 faces in category A. Each F-cell in the night
column had been tuned to one of the 5 faces in category B. For each cell, the face that
it had learned is indicated by being circled. In each of the 10 plots, faces in category A
are ordered so that the level of F-cell activation evoked by each face grades down to
the left of the distribution; faces in category B are ordered so that the activation they
evoked grades down to the right of the distribution.
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recognition system as long as the response of the correct cell is higher than any
other cell in the detection set at the time that its learned exemplar or a pattern
most similar to it is captured. For example, it can be seen in Figure 5 that F-
cell 7 gives a stronger response on the trials in which faces 5 and 8 were
captured than on the trial in which face 9 (the face it had learned) was cap-
tured. Yet, as Figure 6 shows, the response of F-cell 7 to the capture of face 9
is stronger than any of its competing filter cells when face 9 is the effective
stimulus.

The overall selectivity of the recognition system can be characterized
by the number of competing filter cells which approach the peak activation
level on each trial in which there is a correct response. This is illustrated in
Figure 7 which shows the distribution of the number of competing cells with
activation levels within 10% of the peak on all correct trials. It was found that
on 31% of the trials there was no competing cellular activity within 10% of the
peak response. On 41% of the trials there was only one competing cell within
this range. The general shape of the selectivity distribution is similar to the
reported distribution of discrepancies between population vectors (ensembles)
of unit responses in cells of the macaque inferotemporal cortex and correspond-
ing stimulus (face) vectors (Young & Yamane, 1992).

Implications

It is clear from these results that filter cells exhibit a graded response to all
faces and therefore do not exhibit a punctate code. This finding is consistent
with some kind of sparse coding mechanism for face recognition. However,
the question of how sparse coding is used to ensure reliable recognition is more
problematic. It is commonly proposed that a sparse population code entails the
joint activity of a relatively small number of cells (an ensemble), each making
its own necessary contribution to the set of encoded features which, taken
together, characterize an individual face (Baylis, Rolls, & Leonard, 1985;
Gross, 1992; Gross & Sergent, 1992; Young & Yamane, 1992). Similarly, in
the more general context of object recognition, it has been suggested that
objects are coded by sparse combinations of active cells where each cell repre-
sents the presence of a particular complex partial feature of the object (Tanaka,
1993: Tanaka, Saito, Fukada, & Moriya, 1991). Let us call this kind of code
sparse-code 1. This approach to the problem of object recognition postulates a
structure of overlapping feature detectors (mini-templates) in the visual system

FIGURE 6 (left). Activation evoked by each face plotted against each F-cell. For each
face, the cell that had learned it is indicated by being circled. Cells that had learned
faces in category A are ordered so that their response levels grade down to the left;
cells that had learned faces in category B are ordered so that their response levels
grade down to the right.
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FIGURE 7. Bar graph showing the percent of trials in which differing numbers of
competing F-cells had an activation response within 10% of the observed peak re-
sponse.

that are assumed to be distributed in replicated fashion over the visual field.
The critical notion is that each stack of feature detectors (putatively in colum-
nar organization) is tagged by its retinotopic location so that a complete object
can be uniquely defined by the whole concurrent activation pattern of a ser of
particular detectors at their particular locations.

However, a caution must be raised here. If, at any given moment, there is
only one object in the visual field, then an activated set of spatially indexed
features might provide a unique definition of that single object. But what if
there is more than one object in the visual field, as is normally the case in the
natural world? Under the normal circumstance, we would need a biologically
plausible mechanism that is able to map our complex retinal activation patterns
onto just those discrete groups of spatially-indexed feature detectors that corre-
spond to each of the separate objects in view (the binding problem). This is not
a trivial problem. Indeed, it remains one of the serious obstacles for the gener-
al class of pattern recognizers based upon the principle of detecting and com-
bining partial features.

An alternative interpretation of sparse coding is suggested by the operating
characteristics of the neuronal model (Trehub, 1991) that generated the results
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obtained in the present simulation study. In this model, when a face is captured
within the visual afferent aperture, all filter cells show increased activation, but
the cell with the highest activation level in response to the current retinal
(proximal) stimulus evokes the appropriate discrete output. Hence, for each
proximal stimulus a single cell can generate a code precise enough for effective
recognition (Barlow, 1972, 1985; Konorski, 1967; see also Konishi, 1991).
The joint contribution of other coding cells is not required.

If this is the case, why did effective performance in the present simulation
require that more than 10 filter cells be synaptically tuned to learn 10 faces?
The answer is revealed in the difference between the distal (environmental) and
the proximal (retinal) stimulus. When a face is in the visual field, we do not
know exactly where its features will be registered on the retina. At one time,
fixation might be centered on the upper part of a given face; at another time on
a lower part of the same face. The features of a constant distal stimulus may
excite differing proximal patterns on the retina at different times. Variations in
fixation of no more than 1 degree in visual angle can result in significant
changes in the distribution of foveal excitation. Each retinal pattern represents
only an exemplar of a given stimulus. Some exemplars may vary from pre-
viously learned patterns to the extent that they exceed the capacity of the
recognition system to generalize correctly . Thus effective recognition of a face
(or any other complex pattern) requires that different cells be tuned to at least a
few different exemplars of the face in order to facilitate proper generalization
and compensate for fortuitous shifts in exemplar capture (Trehub, 1991). In
this sense, the sub-population of exemplar-tuned cells that individually signal a
particular face also constitute a sparse code for that face. Notice, however, that
this code is significantly different from sparse-code 1 in that it does not require
the joint activation of an ensemble of exemplar-tuned cells to achieve effective
recognition. Let us call this kind of neuronal code sparse-code 2.

The characteristic strategy for investigating selective coding of faces (or
other objects) in neurophysiological experiments has depended on finding cells
in which the peak spike rate is systematically evoked by the presentation of
particular faces in an arbitrary set of stimuli (Desimone et al, 1984; Perrett,
Mistlin, & Chitty, 1987; Young & Yamane, 1992; see also Tanaka et al, 1991;
Gallant, Braun, & Van Essen, 1993). Implicit in this strategy is the general
assumption that if the output of a cell is to be a reliable indicator of a particular
object, the cell must respond more vigorously when that object is seen than
when any other object is seen. This investigatory approach precludes the pos-
sibility of uncovering a neuronal recognition mechanism based upon competi-
tive discrimination by sparse-code 2. For example, under the usual paradigm,
F-cell 7 in the present simulation (Figures 5 and 6) would be thought to more
likely code for face 5 or face 8 than for face 9, which it actually learned and
correctly recognized within the competitive recall model (Trehub, 1977, 1991).
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If the neuronal brain mechanism for face recognition in the monkey is
organized on the principle of sparse-code 2 then several implications for the
interpretation of single-cell recordings follow: (1) broad tuning of many cells
in response to a particular face (or any other complex pattern) does not
straightforwardly imply an ensemble code; (2) discovering a set of exemplar-
tuned cells requires that we record the concurrent TeSponses of a large number
of cells to many presentations of each face (the distal stimulus) in the stimulus
set because the retinal pattern (the proximal stimulus) that is captured is likely
to vary over time even for identical faces as a result of shifts in fixation; (3)
given the effect of variation in fixation, it would be helpful for the interpreta-
tion of results to monitor fixation throughout an experiment; (4) the critical
indicator of selective coding is not the relative spike rate of a cell in response
to different stimuli, but rather the rate of its output relative to other cells
responding at the same time.
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