Locally Localized Shock Waves

Lorenzo Sorbo

University of Massachusetts, Amherst

Karch-Randall model

Karch & Randall, 2001

=Randall-Sundrum model with subcritical brane tension

Anti-de Sitter 4d background

Why is it interesting?

There is no 4d zero mode of the graviton!

No massless graviton??

Bulk with infinite volume

4d graviton is a resonance

Randall-Sundrum volcano potential

Karch-Randall volcano potential

ℓ = AdS₄ radiusL=AdS₅ radius

Ultralight graviton with m~L /l²

+ a tower of intermediate mass gravitons, $m_n \sim n/\ell$ + a tower of heavy gravitons, m > 1/L

OK, but...

- How does the potential of a localized source look like?
- How does the graviton couple to matter? (i.e. what is the value of Planck mass?)
- Do we ever see the fifth dimension?

Field of a ultrarelativistic particle

Aichelburg & Sexl, 1971

- Mass μ , momentum $p=\mu v/\sqrt{1-v^2}$
- Limit $v \rightarrow 1$, $\mu \rightarrow 0$, p finite
- All other terms of the form $\mu^n v/\sqrt{1-v^2}$ vanish for $v \to 1$

Linear equations!

Always possible to find the metric for an ultrarelativistic source: SHOCK WAVE

Locally Localized Shock Waves

Kaloper & LS, 2005

The metric:

$$ds^2 = \Omega^2(|z|) \left[\frac{4\,du\,dv}{(1-uv/\ell^2)^2} - \frac{4\delta(u)fdu^2}{(1-uv/\ell^2)^2} + \ell^2 \left(\frac{1+uv/\ell^2}{1-uv/\ell^2} \right)^2 (d\chi^2 + \sinh^2\chi\,d\phi^2) + dz^2 \right]$$

$$\Omega(|z|) = \left[L/[\ell \sin(rac{|z|+z_0}{\ell})]
ight]$$

...with...

$$f(y, \chi) = -\frac{p\ell}{2\pi M_5^3 L^2} \int_0^\infty dq \, q \tanh(\pi \, q) \times \\ \times \sin^2(|y| + y_0) \frac{P_{iq-1/2}^{-2} \left(-\cos(|y| + y_0)\right)}{P_{iq-1/2}^{-1} \left(-\cos(y_0)\right)} P_{iq-1/2} \left(\cosh\chi\right) \\ y = z/\ell, \ y_0 = z_0/\ell = \arcsin(L/\ell)$$

Four different regimes!

- ₹ << L: 5d gravity in flat space
- 2. L<< ?: 4d gravity in flat space (mediated by ultralight graviton)+small corrections from KK modes with m<1/p>

$$rac{1}{M_4^2} = rac{1}{M_5^3\,L}\,\left(1+\mathcal{O}\left(L^2/\ell^2
ight)
ight)\,\left(1+rac{L^2}{\mathcal{R}^2}+\ldots
ight)$$

Four different regimes! (Part II)

3. $\ell << \mathcal{R} << \ell^3/L^2$: ultralight graviton dominance. Shockwave as in *massless* 4d AdS gravity.

(Naive guess: mass shows up at $\mathcal{R} \sim 1/m \sim \ell^2/L$)

Planck mass:

$$M_4^2 = \frac{2M_5^3 \ell}{2\nu + 1} \frac{\left[-\partial_{\nu} P_{\nu}^{-1} \left(-\cos(y_0) \right) \right]}{P_{\nu}^{-2} \left(-\cos(y_0) \right)} \Big|_{\nu = \nu_0} = M_5^3 L \left(1 + \frac{5}{12} \left(\frac{L}{\ell} \right)^2 + \ldots \right)$$

$$\nu_0 = [\sqrt{9 + 4\ell^2 m^2} - 1]/2$$

Four different regimes! (Part III)

4. $R >> \ell^3/L^2$: the mass shows up

(and the 5th dimension too!)

$$f\left(\mathcal{R}>\ell^3/L^2
ight)=rac{4}{3}rac{p}{\pi M_4^2}\,e^{-\left(2+m^2\ell^2/3
ight)\mathcal{R}/\ell}$$

As in massless gravity in AdS₄

As in massive theory in AdS₅!

Conclusions

- Shock wave: first exact solution for a localized source in locally localized gravity
- Different regimes studied
- Expression of 4d Planck mass
- What happens at ultralarge distances?
- CFT interpretation??