Hyperspectral Band Selection from Statistical Wavelet Models

Siwei Feng, Student Member, IEEE, Yuki Itoh, Student Member, IEEE,
Mario Parente, Senior Member, IEEE, and Marco F. Duarte, Senior Member, IEEE

Abstract—High spectral resolution brings hyperspectral images with large amounts of information, which makes hyperspectral images more useful in many applications than images obtained from traditional multispectral scanners with low spectral resolution. However, the high data dimensionality of hyperspectral images increases the burden on data computation, storage, and transmission; fortunately, the high redundancy in the spectral domain allows for significant dimensionality reduction. Band selection provides a simple dimensionality reduction scheme by discarding bands that are highly redundant, thereby preserving the structure of the dataset. This paper proposes a new criterion for pointwise ranking-based band selection that uses a non-homogeneous hidden Markov chain (NHMC) model for redundant wavelet coefficients of each hyperspectral signature. The model provides a discrete multiscale label that encodes the semantic features that are useful to discriminate spectral types. A band ranking score considers the average correlation among the average NHMC labels for each band. We also test richer label vectors that provide a more finely grained quantization of spectral fluctuations. In addition, since band selection methods based on band ranking often ignore correlations in selected bands, we study the effect of redundancy elimination, applied on the selected features, on the performance of an example classification problem. Our experimental results also include an optional redundancy elimination step and test its effect on classification performance which is based on the selected bands. Experimental results also include a comparison with several relevant supervised band selection techniques.

Index Terms—Band Selection, Hyperspectral Imaging, Wavelet, Hidden Markov Model

I. INTRODUCTION

HYPERSPECTRAL remote sensors collect reflected image data simultaneously in hundreds of narrow, adjacent spectral bands, which make it possible to derive a continuous spectrum curve for each image pixel. Compared with traditional multispectral techniques generating image cubes with low spectral resolution, hyperspectral remote sensors obtain a drastically increased number of spectral bands. Such an increase in data dimensionality provides the potential for better accuracy in discrimination among materials with similar spectral characteristics. However, the high dimensionality of hyperspectral data also has its drawbacks. With a fixed number of labelled training data, such a large dimensionality often causes the so-called Hughes phenomenon, i.e., a reduction in the generalization capability of classification system due to “overfitting” during training procedure compared with lower-dimensional data [1]. In fact, hyperspectral images tend to include significant redundancy in adjacent bands, leading to large amounts of redundant information being processed, stored, and transmitted [2, 3]. All these drawbacks of hyperspectral images present challenges to many conventional remote sensing data analysis problems. Thus, dimensionality reduction is often a necessary preprocessing step for hyperspectral data analysis.

One option for hyperspectral data dimensionality reduction is to transform the original data onto a low-dimensional space while preserving a desired amount of information content. Such approaches are referred to as feature extraction, in which the generated features are generally combinations of the original reflectance values. The most popular feature extraction techniques include principal component analysis (PCA), which maximizes the total variance of the selected features, and Fisher’s linear discriminant analysis (LDA), which maximizes the class separability. A significant body of work exists on additional feature extraction techniques, such as orthogonal subspace projection (OSP) [4], projection pursuit (PP) [5], optimized information divergence projection pursuit (OIDPP) [6], etc. However, the computation of features of new samples require the entire spectrum to be available, which again poses burdens on computation, storage, and communication. Moreover, feature extraction changes the original data representation, which complicates the interpretation of the results of relevant hyperspectral data analysis. Particularly, feature extraction cannot be applied in cases where the physical meaning of individual bands needs to be maintained.

Another popular approach in hyperspectral dimensionality reduction is decision fusion, including approaches such as divide-and-conquer [1, 7–9]. In divide-and-conquer, one first groups bands adaptively, and then a classifier is designed for each cluster independently. Finally, the classification decisions in each cluster are merged into a final global classification decision. In this way, the classification problem on the original high-dimensional data can be separated into several low-dimensional classification problems, which may reduce the negative effects brought by the large dimensionality. However, these methods can be hampered by the presence of redundancy between the selected adjacent spectral bands. Furthermore, the common practice of feature extraction in each band group also affects the interpretability of each feature.

An alternative approach to dimensionality reduction is band selection [10–24]. As a complement to feature extraction, band selection aims to select a subset of the original bands,
thus taking advantage of preserving the same feature space as that of the raw data, while avoiding the problem of high computational load as in feature extraction methods. For example, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectrometer has a tiling mode in which only 72 selected channels are acquired [10]. The channels were carefully chosen by experts to capture a sufficiently large set of spectral species while maximizing the spatial field of view. CRISM has been applied in many scenarios. One example is the application in detecting the mineral species of the surface of Mars [25]. Apart from band selection based on expert knowledge, automatic band selection schemes greatly reduce the amount of manual work. In [26, 27], adaptive methods are proposed to robustly discover symmetric absorption bands, which are selected to detect endmembers that consist of a given spectrum.

Though selecting bands with a specific physical meaning (e.g., absorption bands) may make the results more interpretable, these expert-knowledge-based methods may limit the exploiting of relationship between bands that cannot be precisely explained by the physical meaning. These days, there exists a large volume of works in hyperspectral band selection area that employ more general statistical and signal processing methods to select bands without pre-specifying types of bands needed. Band selection methods in this category can be roughly classified into two categories: groupwise selection methods [11–13, 15] and pointwise selection methods [16–22]. Groupwise selection methods aim at separating the entire set of spectral bands into several subsets, and final band sets are selected from these subsets. For example, [12] proposes a hierarchical clustering based method to separate the spectrum into clusters by maximizing the ratio between intercluster variance and intracluster variance. For each cluster, the band with the highest average correlation with other bands in the cluster is selected as the representative band; the final band subset consists of single representatives from each cluster. In another band-clustering method [13], after all bands are grouped into k clusters through a k-means clustering, one removes each cluster center in turn and evaluates the classification performance on the remaining $k - 1$ cluster centers. If the removal of a cluster center leads to the optimal classification performance, then that cluster center will be removed and the remaining $k - 1$ cluster consists of the final output. When used for band selection, bands which are closest to each of the remaining $k - 1$ cluster centers can be used to form the final band set. Some groupwise band selection methods cluster bands according to their location (e.g., [15]), while other methods cluster bands according to their statistical properties (e.g., [11–13]). Additionally, band grouping is a common preprocessing step to methods involving decision fusion over several classifiers trained separately on each band group [1, 7–9].

In contrast, pointwise selection methods perform a gradual band selection procedure without relying on partitioning. Pointwise selection methods can also be separated into two groups. Subset search methods [16–18, 23] aim at optimizing some criterion via search strategies, sequentially increasing or decreasing the number of selected bands until the desired size is achieved. In contrast, band ranking methods [19–22] assign rankings to individual bands to measure their priority in a given task based on some criteria; then, bands with higher rankings are selected. Compared with subset search, the criterion used to judge whether a band should be selected only depends on the band itself. In subset search, the criterion often involve other factors, which makes the computation more complex.

In terms of whether class label information is used during band selection procedure, band selection approaches can be classified as either supervised, unsupervised, or semi-supervised. Supervised band selection methods [14–16, 18, 19, 21, 23] assume a priori knowledge of the class label information for different spectra during the selection process. In contrast, unsupervised band selection methods [11, 12, 17, 20, 24] do not assume any prior class information. Finally, several semi-supervised band selection algorithms have recently been proposed [13, 22], leveraging both labeled and unlabeled training samples for band selection.

In this paper, we propose a supervised pointwise hyperspectral band selection scheme featuring a non-homogeneous hidden Markov chain (NHMC) model that is trained and applied on the wavelet transforms of the training and testing spectra, respectively. The NHMC model provides discrete labels through the Viterbi algorithm [28–30] for each wavelet coefficient based on the coefficient statistics among the training samples. The labels are then collected into a discrete-valued feature matrix for each spectrum. The obtained features encode the scientifically meaningful structural information of each pixel in a hyperspectral image, which are referred to as semantic features. Instead of using the raw data to generate a band ranking, we use labels obtained by the NHMC model for each band and a variety of scales for each pixel. We use these labels, averaged over each class, to calculate pair-wise class correlations for each band as a criterion for ranking-based band selection. To the best of our knowledge, neither wavelet analysis nor hidden Markov models have been fully exploited in the field of hyperspectral band selection in the past.

The designed NHMC-based feature used in this paper is also employed in our previous works on hyperspectral signature classification [31], data universality [32], and hyperspectral unmixing [33]. The first work focuses on classifying pixels from a hyperspectral image. The second work measures the degree to which the performance of individual supervised learning problems depends on the dataset from which the feature design was based on (with the options being local vs. global sets or, in other words, a dataset specific to the supervised learning problem vs. a universal dataset). The third work focuses on decomposing a spectrum into “endmembers” that contribute to the shape of the spectrum. The designed feature is used as the output feature in all three works. The experimental results of the three works demonstrate the advantages of the designed features both in interpretability of the obtained features and in experimental performance, which

1We define structural features in hyperspectral curves which capture the chemical makeup of corresponding material as semantic features, since they can be used for material discrimination.
further indicates the excellent discriminant performance of the designed features.

We also present a comparison against some other supervised and unsupervised hyperspectral band selection methods (covering both groupwise and pointwise band selection methods), decision fusion methods, and wavelet-based dimensionality reduction methods. The comparison involves several pixel-level classification problems with hyperspectral images, and we use the classification accuracy as a performance metric for band selection.

We summarize the main contributions of our paper as follows. First, we propose a supervised pointwise hyperspectral band selection scheme based on an undecimated wavelet transform (UWT) and non-homogeneous hidden Markov chain (NHMC). Most existing wavelet-based hyperspectral dimensionality reduction approaches rely on a discrete wavelet transform for preprocessing and simple dimensionality reduction via thresholding. In contrast, our band selection scheme use UWT for preprocessing, thus preserving the band information in the wavelet coefficient domain, which provides convenience in the subsequent band selection operation. To the best of our knowledge, the use of UWT in band selection is not present in the literature. Second, we propose a criterion to measure the relevance of bands to a particular task for a band ranking method. A band with high relevance is prioritized. Third, we conduct a numerical comparison with a wide range of hyperspectral dimensionality reduction methods (going beyond band selection) that provides an all-around contrast of the dimensionality reduction performance in terms of the classification accuracy on hyperspectral images. Fourth, we perform redundancy elimination on the selected bands to reduce the mutual dependence between selected bands. We compare the band selection performance measured by classification accuracy on hyperspectral image pixels before and after redundancy elimination to see the influence of redundancy elimination on band selection methods.

This paper is organized as follows. Section II reviews some related work and introduces the mathematical background behind our proposed band selection scheme. Section III provides an overview of the proposed hyperspectral signature classification system. Section IV describes our experimental validation setup as well as the corresponding results. Finally, Section V provides some conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the NHMC models that will be used by our proposed method. Furthermore, we review existing approaches to feature selection that will be used in the experimental section.

A. Wavelet Analysis

Wavelet transform is a popular tool in many signal processing applications. In the field of hyperspectral data processing, the wavelet transform is widely used as a pre-processing step [34–36]. The wavelet transform of a signal provides a multiscale analysis of a signal’s content which effectively encodes the locations and scales at which the signal structure is present in a compact fashion. In this paper, we use the undecimated wavelet transform (UWT) to obtain multiscale analysis. We choose UWT because it provides maximum flexibility on the choice of scales and offsets used in the multiscale analysis, and allows for a simple characterization of the spectrum structure at each individual spectral band. Our analysis uses the Haar wavelet, which is more sensitive to a larger range of fluctuations than other wavelets. Thus, the Haar wavelet enables the detection of both slow-varying fluctuations and sudden changes in a signal [37], while it is not particularly sensitive to small discontinuities (i.e., noise) on a signal, in effect averaging them out over the wavelet support.

A one-dimensional real-valued UWT of an N-sample signal $x \in \mathbb{R}^N$ is composed of wavelet coefficients $w_{s,n}$, each labeled by a scale $s \in 1, \ldots, L$ and offset $n \in 1, \ldots, N$, where $L \leq N$. The coefficients are defined using inner products as $w_{s,n} = \langle x, \phi_{s,n} \rangle$, where $\phi_{s,n} \in \mathbb{R}^N$ denotes a sampled version of the mother wavelet function ϕ dilated to scale l and translated to offset n:

$$
\phi_{s,n}(\lambda) = \frac{1}{\sqrt{s}} \phi \left(\frac{\lambda - n}{s} \right).
$$

All the coefficients can be organized into a two-dimensional matrix W of size $L \times N$, where rows represent scales and columns represent offsets. In this case, each coefficient $w_{s,n}$, where $s < L$, has a child coefficient $w_{s+1,n}$ at scale $s + 1$. Similarly, each coefficient $w_{s,n}$ at scale $s > 1$ has one parent $w_{s-1,n}$ at scale $s - 1$. Such a structure in the wavelet coefficients enables the representation of fluctuations in a spectral signature by chains of large coefficients appearing within the columns of the wavelet coefficient matrix W. The second figure in Fig. 1 shows an example of the wavelet coefficient matrix of UWT with 9 scales of a sample hyperspectral signature (shown in the top figure of Fig. 1).

B. Statistical Modeling of Wavelet Coefficients

![Comparison of label matrices obtained from several statistical models for wavelet coefficients. Top: example normalized reflectance (garnet). Second: corresponding UWT coefficient matrix (9-level wavelet decomposition) using a Haar wavelet. Third: corresponding state label matrix from a binary-state GMM NHMC model. Bottom: Corresponding state label matrix from a 6-state GMM NHMC model](image)
The statistical model is motivated by the compression property of wavelet coefficients, which states that the wavelet transform of a piecewise smooth signal generally features a small number of large coefficients and a large number of small coefficients, where “small” and “large” describe the relative magnitudes of wavelet coefficients. This property motivates the use of a zero-mean Gaussian mixture model (GMM) to encode wavelet coefficients into discrete features. Among the numerous variations of GMMs, the simplest one consists of only two Gaussian components and best captures the compression property of wavelet coefficients. In such a binary-state GMM, the Gaussian component with smaller variance characterizes wavelet coefficients with “small” magnitudes, while the Gaussian component with larger variance characterizes wavelet coefficients with “large” magnitudes. By combining a binary GMM with suitable hidden state discovery schemes (e.g., Viterbi algorithm, described in Section II-C), a binary-state GMM can assign to each wavelet coefficient one of two possible states: “large” or “small”, which can then be used as a discrete 2-D feature for the spectrum; we call this feature the state label in the sequel. The third figure of Fig. 1 shows the matrix of binary state label for the hyperspectral signature shown in the top figure, where 0/1 correspond to the “small/large” states, respectively. The figure shows that a wavelet coefficient is more likely to be characterized as “small” than “large”, which is a good endorsement of compression property of wavelet coefficients.

However, apart from its simplicity (i.e., computational complexity) and embodiment of the compression property, binary-state GMMs have a potential drawback due to their overly coarse characterization of wavelet coefficient magnitudes. As mentioned above, binary-state GMMs only assign wavelet coefficients with either a “large” state or a “small” state. For wavelet coefficients close to the boundary between “large” state and “small” state, the encoding scheme can separate two similar wavelet coefficients into two different groups. Such a coarse characterization may have negative influence on subsequent processing steps. Therefore, in addition to binary-state GMMs, we also employ GMMs with more than one Gaussian components to capture the compression property. We associate each wavelet coefficient \(w_{s,n} \) with an unobserved hidden state \(S_{s,n} \in \{0, 1, \ldots, k-1\} \), where the states have prior probabilities \(p_{i,s,n} := p(S_{s,n} = i) \) for \(i = 0, 1, \ldots, k-1 \). Here the state \(i = 0 \) represents smooth regions of the spectral signature, which can be regarded as “the smallest” state. While \(i = 1, \ldots, k-1 \) represent states with increasingly stronger spectral signature fluctuations, which can be regarded as a path from “the second smallest” state to “the largest” state. Each state is characterized by a zero-mean Gaussian distribution for the wavelet coefficient with variance \(\sigma^2_{i,s,n} \). The value of \(S_{s,n} \) determines which of the \(k \) components of the mixture model is used to generate the probability distribution for the wavelet coefficient \(w_{s,n} \):

\[
p(w_{s,n}|S_{s,n} = i) = \mathcal{N}(0, \sigma^2_{i,s,n}).
\]

We can then infer that

\[
p(w_{s,n}) = \sum_{i=0}^{k-1} p_{i,s,n} p(w_{s,n}|S_{s,n} = i).
\]

The bottom figure of Fig. 1 shows state label with 6 states \(S_{s,n} \in \{0, 1, \ldots, 5\} \) of an example hyperspectral shown in the top figure.

In cases where a UWT is used, the persistence property of wavelet coefficients [38, 39], which implies the high probability of a chain of wavelet coefficients to be consistently small or large across adjacent scales, can be accurately modeled by a non-homogeneous hidden Markov chain (NHMC) that links the states of wavelet coefficients in the same offset. Because of the overlap between wavelet functions at a fixed scale and neighboring offsets, adjacent coefficients may have correlations in relative magnitudes [40]. However, for computational reasons, in this paper we only consider the parent-child relationship of the wavelet coefficients in the same offset. Namely, we train an NHMC separately on each of the \(N \) wavelengths sampled by the hyperspectral acquisition device. This means the state \(S_{s,n} \) of a coefficient \(w_{s,n} \) is only affected by the state \(S_{s-1,n} \) of its parent (if it exists) and by the value of its coefficient \(w_{s,n} \). The Markov chain is completely determined by the likelihoods for the first state and the set of state transition matrices for the different parent-child label pairs \(\{S_{s-1,n}, S_{s,n}\} \) for \(s > 1 \): In analogy with the binary GMM case, we can also define a \(k \times k \) transition probability matrix

\[
A_{s,n} = \begin{pmatrix}
\cdot & \cdot & \cdots & \cdot \\
\end{pmatrix}
\]

where \(p_{i,j,s,n} = p(S_{s,n} = j|S_{s-1,n} = i) \), where \(i, j = 0, \ldots, k-1 \). Note that the probabilities in the diagonal of \(A_{s,n} \) are expected to be larger than those in the off-diagonal elements due to the persistence property of wavelet transforms. Note also that all state probabilities \(p_{i,s,n} \) for \(s > 1 \) can be derived from the matrices \(\{A_{s,n}\}_{s=2}^L \) and the probabilities for the first scale \(\{p_{i,1,n}\}_{i=0}^{k-1} \).

The training process of the NHMC model is based on the expectation maximization (EM) algorithm. The set of NHMC parameters \(\theta_n \) of a certain spectral band \(n \) include the probabilities for the first scale \(\{p_{i,1,n}\}_{i=0}^{k-1} \), the state transition matrices \(\{A_{s,n}\}_{s=2}^L \), and the Gaussian variances \(\{\sigma^2_{0,s,n}, \sigma^2_{1,s,n}, \ldots, \sigma^2_{k-1,s,n}\}_{s=1}^L \). Since we use zero-mean GMM in this work, the Gaussian means are not regarded as a parameter.

C. Label Computation

Given the model parameters \(\theta = \{\theta_n\}_{n=1}^N \) the state label values \(l_{s,n} \), where \(s = 1, \ldots, L \) and \(n = 1, \ldots, N \), for a given observation are obtained using a Viterbi algorithm [30] as follows. We use \(l_{s,n} = i \), where \(i = 0, 1, \ldots, k-1 \), to denote the state of wavelet coefficient \(w_{s,n} \). For a particular wavelet coefficient \(w_{s,n} \), a conditional probability vector is defined as

\[
p(w_{s,n}|S_{s,n} = i) = \frac{1}{\sqrt{2\pi\sigma^2_{i,s,n}}} \exp \left(-\frac{w_{s,n}^2}{2\sigma^2_{i,s,n}} \right)
\]

with \(i = 0, 1, \ldots, k-1 \). We define a variable \(\delta_{i,s,n} \) as the “best score” that ends in a particular state \(i \) at scale \(s \) from its previous state, and another variable \(\psi_{i,s,n} \) as the most likely
For the first scale ($s = 1$), the two variables are initialized as

$$\psi_{i,1,n} = 0,$$ \hspace{1cm} (1)

$$\delta_{i,1,n} = p_{i,1,n} \cdot p(w_{1,n}|S_{1,n} = i).$$ \hspace{1cm} (2)

For subsequent scales ($s = 2, \ldots, L$), we have the following mathematical expressions for the two variables:

$$\psi_{i,s,n} = \arg \max_j \delta_{j,s-1,n} \cdot p_{j\rightarrow i,s,n},$$ \hspace{1cm} (3)

$$\delta_{i,s,n} = \delta_{\psi_{i,s,n},s-1,n} \cdot p_{\psi_{i,s,n}\rightarrow i,s,n} \cdot p(w_{s,n}|S_{s,n} = i),$$ \hspace{1cm} (4)

The output of the algorithm are twofold. The first output is a set of estimated states for each wavelet coefficient $w_{s,n}$. When $s = L$, the estimated state is $l_{L,n} = \arg \max_j \delta_{j,L,n}$, i.e., the state with maximum likelihood. When $s = 1, \ldots, L - 1$, the estimated state is $l_{s,n} = \psi_{s+1,n,s,n}$; this implies that the state estimation proceeds backwards through the wavelet scales. The second output is the likelihood $p(W|\theta)$ of a wavelet coefficient matrix W under the model θ as a byproduct. We propose the use of the state label matrix S as a descriptive feature for the original hyperspectral signal x. The feature captures the presence of fluctuations in the spectrum (often described as semantic information that allows for discrimination between different types of spectra) by describing the relative magnitudes of the wavelet coefficients (as “large” or “small”) as well as their connection with adjacent wavelet coefficients in terms of their statistics.

D. Survey of Feature/Band Selection Algorithms

We now review several methods for band selection present in the literature, which will be used for comparison purposes in the experimental section.

In feature weighting (FW) [21], a principal component analysis (PCA) matrix is generated for the spectra in each of the classes, and a weight for each band-class pair is obtained from the row of the class PCA matrix corresponding to the band. The weights for a given band and all classes are fused to obtain a score used in band ranking. These scores aim to capture the weight that a given band has in the PCA decomposition for the classes considered.

Mutual information (MI) measures the degree of dependence between two random variables [41] and has been an important step in many MI-based unsupervised band selection approaches, e.g., [12, 24]. MI can also be used for supervised band selection: one seeks the bands that feature maximal MI with the corresponding class labels over the hyperspectral dataset.

Minimum estimated abundance covariance (MEAC) [18] is a subset search-based band selection algorithm that iteratively selects the band with maximal dissimilarity to those already chosen, using sequential forward (i.e., greedy) selection. More specifically, MEAC is initialized by selecting the band pair that has the largest dissimilarity in terms of maximum linear prediction error, as proposed in [17]. Following sequential forward (i.e., greedy) selection, eligible bands (bands minimizing a target function after combined with previously selected bands) are selected sequentially until the desired band size is reached. The supervised band selection scheme proposed in this paper requires a training procedure. In order to conduct a fair comparison, our experiments in Section IV apply MEAC on a training set, and then select bands from testing samples based on the band selection result in the training procedure.

Heuristics such as genetic algorithms (GAs) [15] and particle swarm optimization (PSO) [23] are nowadays popular in the field of hyperspectral band selection because of their global searching capability, which is expected to provide better performance than greedy algorithms such as sequential forward selection. When using PSO to select bands such as in [23], possible band combinations, which are called particles, and a solution update, which is called velocity, are first initialized and then recursively updated until some criterion is satisfied. The procedure based on GA for band selection is similar to that based on PSO. In [15], bands are first put into different groups based on conditional MI. Then, GA is employed to choose one representative in each group. The rationale behind this setup is to make the search space of GA computationally feasible, as well as to reduce the redundancy between selected the bands. In fact, both methods in [15] and [23] contain algorithms to adaptively determine the optimal number of bands. However, in order to make the comparison with our method feasible, we set the number of bands in both methods to be fixed.

Apart from the pointwise band selection methods mentioned above, there also exist several relevant groupwise band selection methods. For example, Ward’s linkage strategy using mutual information (WaLuMI) and Ward’s linkage strategy using divergence (WaLuDi) [12] put bands into different clusters based on mutual information and Kullback-Leibler divergence, respectively. Meanwhile, an agglomerative strategy combined with Ward’s linkage is employed to merge bands into a pre-defined number of clusters. One representative from each cluster is selected to form the final band set for classification.

III. PROPOSED FRAMEWORK

We provide an overview of the NHMC-based band selection procedure in Fig. 2. The system consists of two modules: an NHMC-based feature training module, and a band selection module. The second module assigns rankings to each band and results in the final band subset selection. The NHMC parameter training stage uses a training library of spectra containing pixels randomly sampled from the raw hyperspectral image cube and runs them through the UWT. The wavelet representations are then used to train a single NHMC model, which is then used to compute state labels for each of the training spectra using a Viterbi algorithm. The feature for each class is then constructed via averaging of all state arrays for the samples in that class. After that, pairwise class average correlation is computed for each band, and the average correlation value for each band is then used as the criterion for ranking-based band selection.

A. Criterion for Band Selection

After obtaining state label matrices for each training sample, we construct a class-wise feature by calculating the element-wise average value of the state label matrices among training
spectra in a certain class. Assume \(l_{c,n}^j \) denotes the state label of sample \(j \) from class \(c \) at the band \(n \) and scale \(s \); then, the feature of class \(c \) at band \(n \) and scale \(s \) is denoted as

\[
l_{c,n}^s = \frac{\sum_{j=1}^{N_c} l_{c,j}^s}{N_c},
\]

where \(N_c \) denotes the number of training samples in class \(c \). Then for each band \(n \), the correlation coefficient of class \(p \) and class \(q \) can be calculated as

\[
\rho_{n}^{p,q} = \frac{\sum_{s=1}^{S} l_{p,n}^s \cdot l_{q,n}^s}{\sqrt{\sum_{s=1}^{S} (l_{p,n}^s)^2 \cdot \sum_{s=1}^{S} (l_{q,n}^s)^2}}.
\]

The criterion for the ranking of a certain band \(n \) is the average of all the pairwise correlation coefficient values for band \(n \),

\[
J_n = \frac{2}{C(C - 1)} \sum_{p=1}^{C-1} \sum_{q=p+1}^{C} \rho_{n}^{p,q},
\]

where \(C \) is the number of classes. We then rank the bands in increasing order of correlation (i.e., the band with lowest correlation is ranked first). Although in this paper we use normalized correlation to measure the similarity between two classes, other metrics (e.g., Bhattacharyya distance, Kullback-Leibler divergence, Jeffries-Matusita distance, etc.) can also be employed; the use of different similarity metrics may lead to different band selection results.

B. Evaluation of Redundancy in Selected Bands

Huang et al. [21] claim that band selection schemes based on band ranking only consider the priority of bands for a given task, while ignoring the possible redundancy between the selected bands. Therefore, a redundancy elimination operation should be performed on ranked bands. However, there is a tradeoff here: after redundancy elimination, the overall relevance of selected bands to the specific problem is inevitably weakened. More specifically, bands with low priority may be selected to replace some bands with higher priority that are highly correlated with other selected bands. This behavior could negatively affect the final classification performance. In Section IV, we will verify the influence of band redundancy elimination on the final classification performance.

Following [21], after bands are ranked according to their priorities, the correlation coefficients of each band (starting from the second band) with all bands before it are calculated. A band will be discarded once its correlation coefficient with any band before it is greater than a pre-specified threshold \(T \). Final band selection will be conducted among the remaining bands.

We describe in Algorithm 1 a minor variant of the redundancy elimination scheme proposed in [21] that is used in this paper. One important difference between Algorithm 1 and the original approach proposed in [21] is that instead of empirically setting a threshold \(T \) to select bands with low redundancy with other bands, we pre-define the number of bands \(N_b \) that are retained after redundancy elimination. We do this in order to conduct a convenient comparison with the experimental results of band selection without redundancy elimination, since all band selection approaches involved in our experiment fix the number of selected bands. The inputs to this algorithm include the ranked band set \(B = \{ b_1, b_2, \ldots, b_N \} \) with higher ranked bands being listed first, and the maximum correlation vector \(V \) that is computed as follows. We first compute the pairwise normalized correlation \(N \times N \) matrix \(D \) of those ranked bands by calculating band correlation coefficients across the training dataset. More specifically, \(d_{i,j} \) corresponds to the normalized correlation value of bands \(b_i \) and \(b_j \). We denote the training dataset by a matrix \(X \in \mathbb{R}^{N \times N_T} \), where \(N_T \) denotes the cardinality of the training set, each column corresponds to a training data point, and each row corresponds to a spectral band. The order of the spectral bands in \(X \) is the
same as that in B, which means bands with higher priorities are listed first. We can then write

$$d_{i,j} = \frac{(X_{b_{i,:}}, X_{b_{j,:}})}{||X_{b_{i,:}}||_2||X_{b_{j,:}}||_2}$$ \hspace{1cm} (8)$$

The maximum correlation coefficient vector V contains the maximum correlation coefficient values between each band and all bands ranked with higher priorities.

$$v_i = \max_{1 \leq j < i} d_{i,j}, \hspace{1cm} i = 2, 3, \ldots, N.$$

We note that v_1 is undefined and is not used in the algorithm. That is because the band with the highest ranking is always preserved. After we get the maximum correlation vector V, we sort the values of all elements in V, and determine the final band set by selecting the N_b bands with the lowest values in V.

IV. EXPERIMENT AND RESULT ANALYSIS

This section presents the experimental results for the comparison between our proposed method and relevant techniques including both pointwise and groupwise band selection.

A. Dataset Description

In order to test the classification performance of the proposed method and four competitors, three different hyperspectral images were used in the experiment.

1) Botswana. This image has a spatial resolution of 30 m with 242 bands covering the 400 – 2500 nm spectral range with spectral resolution of 10 nm. Uncalibrated and noisy bands were removed, and 145 bands remained for data analysis. The image has 1476×256 pixels. For classification purposes, 14 classes were used in this experiment.

2) Kennedy Space Center (KSC). This image has a spatial resolution of 18 m with 224 bands covering the 400 – 2500 nm spectral range. Bands with low SNR or corrupted by water absorption were removed, and 176 bands remained for data analysis. The image has 512×614 pixels. For classification purposes, 13 classes were used in this experiment.

3) Whole Indian Pines (WIP). The 92AV3C is a well-known hyperspectral image acquired by AVIRIS with 145×145 pixels, 224 spectral bands, and 16 classes, which is a small portion of a larger image known as Indian Pines. In this experiment, we consider the whole Indian Pines image, which has 2166×614 pixels and 58 classes. However, performing classification on such a large database with a time consuming classifier (SVM) takes a significant amount of time. We reduced the number of pixels for our simulation by preserving only those classes containing at least 1000 pixels, and we randomly select 1000 pixels for each of these classes. Finally, we have removed the bands covering the region of water absorption with 200 bands remaining. For classification purposes, 39 classes were used in this experiment.

The average value of the spectra for each class from each processed image is shown in Fig. 3.

B. Experiment Setup

In order to increase the statistical significance of our experimental results, the final classification accuracy of each method corresponds to the average from five-fold cross validation testing experiments. For each fold, data from each class were separated into a training set and a testing set in a split of 80% and 20%; we refer to this average as the overall classification rate. We choose support vector machine (SVM) [42] with a radial basis function (RBF) kernel as the exclusive classifier for all testing experiments. Due to the large amount of computation in our experiments, particularly those performed on WIP, we decide to choose only one classifier for testing. Our choice of SVM with RBF kernel is due to its simplicity and good performance. We use LibSVM [43] to implement our SVM-based classification.

C. Classification Results

Figure 4 illustrates our experimental results, where each subfigure corresponds to each of the images listed in Section IV-A. The classification accuracy using all bands (i.e., with no band selection) for each image is displayed as a dashed red line (denoted as “lossless” in Fig. 4 and explained later in this subsection). These results show that both Botswana and KSC have similar complexities, while WIP provides the most difficult classification problem. Figure 3 shows the average spectra from each class of each hyperspectral image: spectra from different classes are quite similar in all three images,
but the number of classes in WIP is much larger than the other two (39 vs. 13 and 14). With such a small distinction between classes, tripling the number of classes potentially results in a clear and significant increase in the complexity of classification.

GMM with 2 states is the simplest GMM model for NHMC, therefore providing the lowest computational cost. However, such a simplicity also brings the potential drawback of an overly coarse characterization of spectral semantics, since there are only two labels “small” and “large” describing the magnitudes of corresponding wavelet coefficients. This may cause low discriminability of the designed features. Compared with binary-state GMM, GMMs with multiple Gaussian components feature high computational cost as well as potentially better discriminability because of their finer structural information characterization. In order to compare the performance of binary-state and multi-state GMMs for this band selection task, we use pairs of connected circle markers for the NHMC results corresponding to the classification rates for $k = 2$ GMM states and to the highest classification rate among $2 \leq k \leq 8$ GMM states. The numbers above the plot denote the value of k that achieves maximum performance. From Fig. 4, we can find that for most cases in Botswana and WIP, multi-state GMM achieves better performance than binary-state GMM. However, the advantage of multi-state GMM is usually less than 1%. That is, although a large number of GMM states capture more structural information in hyperspectral data, the resulting improvement in performance is quite limited. Though not shown explicitly in this paper, our observation shows that in some cases, the classification rates using multi-state GMM is even worse than that of binary-state GMM. There are two possible reasons. First, the magnitude of a wavelet coefficient is not the only factor of determining its GMM state. Besides its magnitude, the GMM state of a particular wavelet coefficient $w_{s,n}$ is also determined by the state label of its parent $S_{s-1,n}$ as well as the transition probability matrix element $A_{s,n}$ which is introduced in Section II-B. In this paper, we train NHMC model and generate features (i.e., state labels) for wavelet coefficients in each band independently. We observe that features assigned to adjacent wavelet coefficients at neighboring bands often disagree with their relative magnitudes. That is, a wavelet coefficient with larger magnitude may have a smaller GMM state, and vice versa. This is due to the fact that the label of a wavelet coefficient is determined by multiple factors, which is mentioned above. And this may cause different maps between wavelet coefficient magnitude and GMM states across scales and offsets (s, n). The variance often makes it difficult to assess the semantic information in the label matrix of a spectral signature. In practice, this variance may sometimes affect the interpretability of features obtained from GMM labels. Furthermore, the likelihood of such variability in the value-to-state mappings could increase when more states are used.

Overall, we can see that for all eight methods, the overall classification accuracy has a sharp increasing slope for small numbers of selected bands. We also note that the results for the WIP image have gentler slope than its two counterparts, likely due to the increased number of classes featured in that problem. The slope flattens after a certain number of selected bands that varies between methods and images. This behavior is described in [12] in terms of transitory and flat zones in the figure. More specifically, the length of the transitory zone of a band selection scheme measures its “speed” of convergence to its achievable stable performance status. Additionally, the overall performance in the flat zone shows the upper limit of the performance of that scheme. However, [12] only gives a description and qualitative comparison regarding these two aspects. In this paper, we consider a much crisper quantitative measure of performance for the band selection methods. First, we determine the smallest number of bands that decreases the classification performance metric by up to 1% of its original value (i.e., the smallest number of bands needed to achieve a classification accuracy whose value is 99% of that using all bands) because, according to our observations, the classification accuracy curves of different band selection schemes switch from the transitory zone to the flat zone at this point. We denote this smallest number of bands as the approximate performance point. For the flat zone, we measure the minimum number of bands for which the classification performance metric meets or exceeds the value obtained when all bands are used, which we term the lossless performance point. With these two criteria, we can quantitatively compare the multiple band selection schemes considered in this section. Intuitively, band selection schemes with small values for both the approximate and lossless performance points have fast convergence speed and high stable performance, and can be
Overall Classification Accuracy / %

Botswana and KSC, and 10 bands for WIP. The number in parentheses on the right of each point is the ratio between the actual classification accuracy at the performance point and the classification accuracy without band selection. For example, in the experiment on Botswana using NHMC, the smallest number of bands that achieves 99% of the classification accuracy without band selection is 30, where the classification rate is 99.02% of that achieved without band selection. Table I shows that, except for KSC, our proposed method uses the smallest number of bands to achieve both approximate and lossless performance. For KSC, our proposed method and FW use the fewest bands to reach approximate and lossless performance, respectively. The discrete nature of the designed features arguably enhances the discriminability between spectra with different structural features.

Note that for some approaches, the smallest number of bands corresponding to the lossless performance is actually equal to the total number of bands (145 for Botswana, 176 for KSC, and 200 for WIP). Particularly for WIP, only our method and FW can achieve performance better than using all spectral bands by performing band selection. Furthermore, in our experiment, FW actually uses 190 out of 200 bands to achieve that goal, which is much larger than the number of bands (140) for our method. However, we do not focus on these improvements in the classification of band selection methods for two reasons. First, in most cases, the number of bands needed for improved classification performance are too large to enable the computational load reduction that motivates band selection. Second, in all three tested images, none of the tested methods achieved a classification rate greater than 1% above that of using all bands. This means that such advantages are negligible.

We also compare the classification performance of our proposed band selection method with related techniques that go beyond band selection. The first, based on decision fusion and proposed in [7], starts by clustering the original bands. After that, a classification decision is made on each band cluster as the classifier. Finally, a weighted majority voting-based decision fusion is conducted to get the final classification decision, where the weight for each band group is dependent...
on the corresponding classification accuracy. Note that in the original method, band groups with classification rates below 50% are not considered in the decision fusion process, i.e., they receive a zero-valued weight. However, since in some cases (especially for WIP), the classification rates of almost all band groups are less than 50%, we remove this requirement in our implementation for feasibility. The final classification rates for all three images are shown in the second column of Table II. We can find that the corresponding classification performance is similar to that of our proposed method when 5 bands are used for both Botswana and KSC and when 10 bands are used for WIP, while noting that all bands are used in this decision fusion-based approach.

<table>
<thead>
<tr>
<th>Hyperspectral Image</th>
<th>[7]</th>
<th>[34]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botswana</td>
<td>90.7864%</td>
<td>91.2325%</td>
</tr>
<tr>
<td>KSC</td>
<td>87.7664%</td>
<td>85.3820%</td>
</tr>
<tr>
<td>WIP</td>
<td>41.0256%</td>
<td>40.2564%</td>
</tr>
</tbody>
</table>

The second approach, proposed in [34], relies on a discrete wavelet transform of the spectra. Though the choice of mother wavelet function can be flexible, we choose the Haar wavelet in our implementation to match the choice made in our NHMC implementations. The receiver operating characteristics (ROC) curves are computed to perform feature selection. First, we calculate the ROC curve when each wavelet coefficients from each band is used for detection. Then, the wavelet coefficient with the largest ROC curve area (denoted as \(A_{Z1} \)) is selected as the initial feature. The selection proceeds greedily by adding the remaining wavelet coefficient that, when selected, produces the largest increase in the ROC curve area for the selected features; the search ends when no increases can be obtained by further adding a feature. While the description of [34] does not specify how to calculate the ROC curve area for a multiclass problem, in our implementation we calculate the average of the ROC curves of the individual pairwise classification problems as the area for the aggregated feature. The classification performance on the three hyperspectral images are listed in the third column of Table II. The classification performance is slightly worse than that for the divide-and-conquer method [7], shown in the second column of Table II.

D. Impact of Redundancy Elimination

Next, we test the effect of redundancy elimination (cf. Section III-B) on band selection performance. Our experiment compares the classification performance for the bands selected with and without redundancy elimination for each band selection scheme. We let the retained number of bands \(N_b \) vary between 10 and 100 with a step size of 10; the classification performance results are displayed in Fig. 5. The figure shows that redundancy elimination only improves classification performance in a limited number of cases, and almost all instances are for MI. To illustrate the diversity of features selected with and without redundancy elimination, Fig. 6 shows the distributions of the selected bands before and after redundancy elimination for Botswana with \(N_b = 30 \). For MI, it is apparent that redundancy elimination greatly improves the diversity in band distribution. Because of the high correlation between nearby bands in hyperspectral images, selecting bands from a wider, more diverse distribution makes the selected bands more representative of the overall structure of a hyperspectral image (and therefore more informative). From Fig. 5(a), we see that redundancy elimination improves classification rates in almost every case for MI. However, we also note that redundancy elimination does not bring significant improvement in classification performance for NHMC and FW. In the first and third columns of Fig. 6, we can find that the selected bands before redundancy elimination are already quite diverse, and redundancy elimination does not seem to improve this situation further. In Fig. 5(a), we can find that for almost all cases of NHMC and for some case of FW, redundancy elimination degrades the classification performance. This is because redundancy elimination includes more bands with low priority in the selected band set, which may have a negative effect on the classification accuracy. For band selection approaches generating selected bands with high correlation between nearby bands such as the case of MI for Botswana, redundancy elimination is worth trying since the benefit of reducing band redundancy may exceed the negative effects brought by sacrificing band priority. However, for methods generating selected bands which are already spread enough like NHMC and FW for Botswana, redundancy elimination may not be necessary step since the advantages from reducing band redundancy may not be larger than the damage caused by lowering the band priority.

V. Conclusion

We propose a supervised band selection framework that reduces redundancy in hyperspectral image bands while preserving useful semantic information. The proposed scheme uses a non-homogeneous hidden Markov chain (NHMC) model in conjunction with an undecimated wavelet transform to design features capturing the semantic information in the structure of each single-pixel hyperspectral datum. A band selection criterion is constructed based on class-wide features, aiming to minimize the correlation between those features. The obtained experimental results demonstrate the advantages of our method over other relevant techniques. In addition, we also tested the effect of increasing the number of GMM states and of redundancy elimination. The results tell us the sufficiency of a simple GMM and the necessity of a high band diversity. In the future, we will focus on the fusion of band selection and spatial information in hyperspectral classification problems, as well as the extension to unsupervised band selection will also be considered. Moreover, though the choice of Haar wavelet makes the obtained wavelet coefficients less sensitive to small discontinuities including noise than other wavelets, due to our observation the discretization procedure from wavelet coefficients to state labels may amplify the existence of noise. And it is likely that the performance of our NHMC-based band selection method is partially damaged due to noise. Therefore, in the future a preliminary denoising step will be conducted on wavelet coefficients in order to obtain robustness to noise.
Fig. 5. Comparison of classification performance of three band ranking methods (NHMC, FW, and MI) before and after redundancy elimination. The notation “+RE” correspond to cases with redundancy elimination.

Fig. 6. Bands selected for the Botswana image in each cross validation fold with $N_b = 30$. The circles denote the band numbers (or indices) that are selected based on the data in each cross validation fold. Small discrepancies between the selections before and after redundancy elimination can be seen as evidence of the low degree of redundancy in the bands selected by the given method.

ACKNOWLEDGMENT

We thank Ping Fung for providing an efficient implementation of our NHMC training code that greatly decreased the time of running experiments.

REFERENCES

Yuki Itoh (S’14) received the B.S. (with an honor) and M.S. degrees in aeronautics and astronautics from the University of Tokyo, Tokyo, Japan, in 2011 and 2013, respectively. He is currently working toward the Ph.D. degree in electrical and computer engineering at University of Massachusetts, Amherst, MA. His research interests include hyperspectral remote sensing, machine learning, and compressed sensing. He was a recipient of a scholarship, the Student Exchange Support Program (Long Term Study Abroad) in 2013-2016 from the Japanese Student Services Organization (JASSO).

Marco Parente (M’05–SM’13) received the B.S. and M.S. (summa cum laude) degrees in telecommunications engineering from the University of Federico II of Naples, Italy, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA. He was a Post-Doctoral Associate in the Department of Geosciences at Brown University. He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Massachusetts Amherst. His research involves combining physical models and statistical techniques to address issues in remote sensing of Earth and planetary surfaces. Prof. Parente’s professional interests include developing machine learning and statistical signal processing techniques for spectroscopic analysis and imaging spectrometer data modeling, reduction and calibration for terrestrial and planetary remote sensing. He is interested in the integration of sensing and decision-making for data prioritization and identification of scientifically attractive targets in manned and unmanned, rover and orbiter-based missions. Dr. Parente’s research also involves the study of physical models of light scattering for remote sensing applications. Dr. Parente is a supporting researcher of several NASA funded mission teams, including the NASA Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), the Moon Mineralogy Mapper (M3) and the Biologic Analog Science Associated with Lava Terrains (BASALT). Dr. Parente is also a consultant for the Johns Hopkins Applied Physics Laboratory and the MIT Lincoln Laboratory. Dr. Parente is serving as an Associate Editor for the IEEE Geoscience and Remote Sensing Letters.

Siwei Feng (S’14) received the B.S. degree in electronic and information engineering (with an honor) from Soochow University, Suzhou, China, in 2012, and M.S. degrees in electrical and computer engineering from University of Massachusetts Amherst, MA, in 2015. He is currently working toward the Ph.D. degree in electrical and computer engineering at University of Massachusetts Amherst, MA. His research interests include high-dimensional signal processing, machine learning, and computer vision.

Marco F. Duarte (S’99–M’09–SM’14) received the B.Sc. degree in computer engineering (with distinction) and the M.Sc. degree in electrical engineering from the University of Wisconsin-Madison in 2002 and 2004, respectively, and the Ph.D. degree in electrical engineering from Rice University, Houston, TX, in 2009. He was an NSF/IPAM Mathematical Sciences Postdoctoral Research Fellow in the Program of Applied and Computational Mathematics at Princeton University, Princeton, NJ, from 2009 to 2010, and in the Department of Computer Science at Duke University, Durham, NC, from 2010 to 2011. He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Massachusetts, Amherst, MA. His research interests include machine learning, compressed sensing, sensor networks, and computational imaging. Dr. Duarte received the Presidential Fellowship and the Texas Instruments Distinguished Fellowship in 2004 and the Hershel M. Rich Invention Award in 2007, all from Rice University. He is currently an Associate Editor of the IEEE Signal Processing Letters. He is also a member of Tau Beta Pi.