Specification Bias

a. Specification mistake - suppose an important variable, X_2, is left out of the regression model.

The true model is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

But, you assume:

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

(What CRM assumptions have been violated? Assumption #1 and Assumption #3.)

b. What happens - Verbally.

Your model assumes only X_1 causes Y to change, **but** in truth, the variable X_2 also causes Y to change.

The effects of X_2 on Y are not accounted for in your model.

As a result, the effect of X_2 on Y gets *tangled up* with the effect of X_1 on Y. We can't get a clear picture of how changes in X_1 affect changes in Y.

c. What happens - Mathematically.

The estimator that you use is:

$$\hat{\alpha}_i = \frac{\sum x_{1i} y_i}{\sum x_{1i}^2}$$

This will be **biased**. To show this take the expected value of the estimator and use the *true expected value of Y* when evaluating:

First, insert the true expected value of Y_i

$$E [\hat{\alpha}_i] = \frac{\sum x_{1i}(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})}{\sum x_{1i}^2}$$

and:

$$E [\hat{\alpha}_i] = \beta_1 \frac{\sum x_{1i} X_{1i}}{\sum x_{1i}^2} + \beta_2 \frac{\sum x_{1i} X_{2i}}{\sum x_{1i}^2} = \beta_1 + \beta_2 \frac{\sum x_{1i} X_{2i}}{\sum x_{1i}^2}.$$

which says that the expected value of $\hat{\alpha}_i$ equals the true effect of X_1 on Y, $\hat{\alpha}_1$, plus the bias due to model misspecification.

The bias due to model misspecification is made up of two parts:

1. $\hat{\alpha}_2$ - the true effect of X_2 on Y; and
2. the relationship between X_2 and X_1.

Moral of this story:

Leaving out an important independent variable can lead to biased parameter estimates.