Statistical Methods for Public Policy and Administration

Spring 2008 
Lecture (PubP&Adm 608) 
Monday and Wednesday, 4:005:30 PM 
Herter Hall room 202 
Lab (PubP&Adm 697AA) 
Wednesday, 6:007:30 PM 
Open Source Lab (First Floor Thompson Hall) 
Instructor Michael Ash  Teaching Assistant Dave Celata 
814 Thompson Hall  Thompson LowRise 20 
Office hours
Tuesday, 9:3010:30 AM Wednesday, 2:303:30 PM Thursday, 10:3011:30 AM Or by appointment  Office hours
By arrangement 
Telephone: 4135456329  Email: celata@gmail.com 
Fax: 4135452921  
Email: mash@pubpol.umass.edu 
UMass Spark login: http://spark.oit.umass.edu 
Personal web page: http://people.umass.edu/maash 
CPPA web page: http://www.masspolicy.org 
Statistics and other quantitative methods constitute a key device by which public decisionmakers and policy advocates understand reality, communicate their understanding, and campaign to change it.
This course will introduce statistical methods and modelling for policy analysis and public administration. Students will learn how to apply statistical methods to interesting questions in public affairs. They will also develop the capacity to identify and critique good and bad statistical practice.
The effective use of statistical methods in policy and administration demands persuasive writing to introduce quantitative analysis and to present quantitative results. Students will learn how to operationalize variables and to write up results in readable prose that will convince educated lay readers, decisionmakers, and social scientists.
We will apply the standard methods of descriptive and inferential statistics. Students will learn to describe and test the distribution of variables with both quantitative and graphical methods. They will also learn to model and test association between variables.
The course emphasizes research design as the basis for plausible claims of causal relationships between variables. By the end of the course, students should understand the conditions that make a plausible case for an association to be considered causal.
Comfort with quantitative methods also implies the capacity to critique their misuse. Students will learn to criticize both poorly elaborated models and overstated claims of causality based on statistical assocation.
The course includes an extensive lab component. Students will gain comfort with statistical methods in both theory and practice. The course will also introduce students to the use of graphics as an effective tool for communicating quantitative information.
There are three graded portions of the course: problem sets; class participation and an inclass presentation; and a final exam.
The problem sets are heavily weighted in the grade because they most closely reflect the type of thinking you will do as practitioners. Problems indicated as ``Exercises'' are at the end of each chapter in the textbook. Problems indicated as ``Empirical Exercises'' can be found under ``Exercises and Empirical Projects'' in the Student Resources section of the website for the textbook http://wps.aw.com/aw_stock_ie_2/. Problems that ask you to replicate and interpret tables or figures in the text require data from ``Data Sets,'' again in the Student Resources section.
For the inclass presentation, each student will present either a good use of statistics (in late March) or a bad use of statistics (in late April) in the literature on policy or administration. Each presentation will be 10 minutes and must describe a statistical analysis. In the course, students will develop the criteria for judgment about good or bad use.
The final exam will be cumulative but weighted towards the second half of the semester.
Points  

Problem sets  50 
Presentation and participation  15 
Final examination  35 
Total  100 
Grades will be assigned according to the following schedule. Please note that your grade depends on a fixed standard of comprehension and expression, not comparisons to other students. Therefore, you should feel comfortable discussing and sharing your notes and ideas with your fellow students as well as collaborating on problem sets.
Point CutOff  Grade 

92  A 
90  A 
88  B+ 
80  B 
78  B 
76  C+ 
72  C 
70  C 
68  D+ 
50  D 
F 
The required textbook for the course is:
Despite the misleading name, econometrics is widely applied in sociology, political science, and policy and administration, as well as in economics. The textbook is organized around four interesting questions in public policy.
The main analytic skills that you need for this course are (1) putting things in categories; and (2) computing averages.
I recommend a review of basic math skills: how to graph y against x and how to determine and interpret the slope of a line; how to do unit analysis, e.g., 8 hours x 5.15 dollars/hour = 41.20 dollars; and how to compute a percent change, e.g., 1,600 gallons decreasing to 1,400 gallons is a 12.5 percent change.
If you would like to review basic math skills, you might want to browse chapters 2, 3, 4, and 5 of Jeffrey O. Bennett and William L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Addison Wesley)
If you would like more background in statistics to supplement topics in the first weeks of the course, the following textbooks may be useful
The supported and recommended (although not required) software for the course is Stata 10. The CPPA computer lab, the Open Source Lab, and the computer lab in Dubois 720 have Stata for student use.
The optional lab course will offer instruction and practice on the use of Stata and other statistical applications. Much of your success in using statistical software will depend on collaboration with each other and posing questions to me and the TA.
You may purchase a copy of Stata for your PC or Mac at an educational price. Place the order online at http://www.stata.com/order/new/edu/gradplan.html, and pick up your copy at the UMass Bookstore.
You may also use spreadsheet applications. (Excel is available in the CPPA cluster and many other labs on campus, many computers come with a spreadsheet, and the free, downloadable OpenOffice.org office suite includes a highquality spreadsheet program.)
Spreadsheet skills are an invaluable skill for both policy analysts and public managers. In addition to budgeting, data management, and graphic displays of quantitative information, modern spreadsheets offer an impressive array of statistical tools. Because I assume that you have already learned how to use spreadsheets elsewhere, I will offer less specific instruction in class on the use of spreadsheets than of the statistics application, but I am always willing to meet with students during office hours to work with spreadsheets.
Please complete reading assignments and problem sets before class on the day indicated.
Session  Topics and Assignments 

Introduction 
Introduction to Statistics
Goals of the course Game in a Box Questions statistics can and cannot answer Causality and research design Counterfactuals Forecasting Math exercise: percent, percentages, and natual logarithm Writingup 
Lecture 1  Introduction to Statistics
Operationalizing variables: outcomes, causal factors, and conditioning variables The shape of data: observations and variables Types of variables Using data to answer questions Source of variation Notation

Lecture 2  Probability
Outcomes and probabilities Expected value, mean, and variance Other measures of central tendency, the median and mode Graphing data: histograms

Lecture 3  Probability
Joint distribution and correlation

Lecture 4  Probability
Common and important distributions Random sampling Distribution of the sample average

Lecture 5  Statistics
Population mean, sample mean Estimators, bias, and efficiency Hypothesis testing Statistical significance and practical significance

Lecture 6  Statistics

Lecture 7  Statistics
Relationships between variables Graphing data: scatterplots

Lecture 8  Linear Regression with One Regressor
A regression model Estimating regression coefficients Graphing data: scatterplots

Lecture 9  Linear Regression with One Regressor
Least Squares Assumptions Sampling Distributions of Estimators

Lecture 10  Linear Regression with One Regressor
Inference about regression coefficients Hypothesis Testing Confidence Intervals

Lecture 11  Linear Regression with One Regressor
Regression When X is a Binary Variable Regression When X is a Categorical Variable

Lecture 12  Linear Regression with One Regressor
Goodness of Fit

Spring Recess  No meeting 
Lecture 13  Linear Regression with Multiple Regressors
Omitted Variable Bias 
Presentations  Student Presentations: Good use of statistics

Linear Regression with Multiple Regressors
 
Lecture 14  Student Presentations: Good use of statistics

Linear Regression with Multiple Regressors
FullySpecified Models
 
Lecture 15  Linear Regression with Multiple Regressors
Estimating and testing regression coefficients Joint Hypotheses and Measures of Fit Standard Error of the Regression

Lecture 16  Internal and External Validity in Regression Analysis
External Validity Internal Validity

Lecture 17  Internal and External Validity in Regression Analysis

Lecture 18  Some Notes on Data Management 
Lecture 19  Experiments and QuasiExperiments

Lecture 20  Experiments and QuasiExperiments

Presentations  Student Presentations: Bad use of statistics

Limited Dependent Variables
 
Lecture 21
 Limited Dependent Variables
Binary Outcomes

Lecture 22  Limited Dependent Variables
The Linear Probability Model Index models, logit and probit Other limited dependent variable models Stock and Watson Stata script for HMDA data 
Lecture 23  Panel Data
Multiple observations

Lecture 24  Panel Data
Fixed Effect Models

Lecture 25  Closing remarks
